搜档网
当前位置:搜档网 › Fabrication of carbon quantum dots

Fabrication of carbon quantum dots

Fabrication of carbon quantum dots
Fabrication of carbon quantum dots

Sensors and Actuators B 181 (2013) 209–214

Contents lists available at SciVerse ScienceDirect

Sensors and Actuators B:

Chemical

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /s n

b

Fabrication of carbon quantum dots and their application for ef?cient detecting Ru(bpy)32+in the solution

Zhihua Xu a ,c ,Jiaguo Yu a ,?,Gang Liu b ,??

a

State Key Laboratory of Advanced Technology for Material Synthesis and Processing,Wuhan University of Technology,Luoshi Road 122#,Wuhan 430070,PR China b

National Center for Nanoscience and Technology,Beijing 100190,PR China c

College of Chemical Engineering,Huanggang Normal University,Huanggang 438000,PR China

a r t i c l e

i n f o

Article history:

Received 10October 2012

Received in revised form 13January 2013Accepted 19January 2013

Available online 28 January 2013

Keywords:

Carbon quantum dots (CDs)Photoluminescence (PL)

Electrochemiluminescence (ECL)

a b s t r a c t

Carbon quantum dots (CDs)with an average size of less than 10nm were prepared by ionic liquid-assisted electrochemical exfoliation of graphite electrode,and developed as photoluminescence (PL)and electrochemiluminescence (ECL)probes for ef?cient detecting Ru(bpy)32+in the solution based on the quenching of the PL emission of CDs and enhanced ECL of Ru(bpy)32+,respectively.The PL and ECL probes exhibited a detection limit of 0.72and 0.43?M,respectively.The PL and ECL properties of CDs and Ru(bpy)32+will provide a new route to study the novel materials and broaden the use of them in analyte detection.

? 2013 Elsevier B.V. All rights reserved.

1.Introduction

Ru(II)polypyridyl complexes have been extensively investi-gated as luminophore reagents for highly sensitive detection of many analytes,such as oxalate,peroxydisulfate,amine-related and NADH,due to their strong luminescence emission,highly electro-chemical reversibility,chemical stability and excellent solubility in a variety of solvents [1–6].These analytes can be easily either oxidized or reduced with luminophore species at or near the elec-trode.A subsequent rapid chemical reaction occurs to generate an intermediate that has suf?cient reducing or oxidizing power to react with luminophore species to form an excited state and ECL emission.The co-reactant ECL can be used to determine either the co-reactants or Ru(bpy)32+in that the ECL intensity is proportional to the concentration of co-reactants or Ru(bpy)32+in a certain range [7].

Carbon quantum dots (CDs),namely ?uorescent carbon nanoparticles with a size less than 10nm,possess excellent bio-compatibility,water solubility and unique optoelectrical properties [8].They have successfully been used for bioimaging [9–12],bio-chemical and chemical analysis [13–15],photocatalysis [16]and white light-emitting devices [17].Recently,the ECL behavior of water-soluble CDs was reported and the relevant mechanism was proposed by Zheng et al.[18].This work potentially opens up a promising avenue for CDs used as an ECL reagent.Herein,for the

?Corresponding author.Tel.:+862787871029;fax:+862787879468.??Corresponding author.

E-mail addresses:jiaguoyu@https://www.sodocs.net/doc/777143328.html, (J.Yu),liug@https://www.sodocs.net/doc/777143328.html, (G.Liu).

?rst time,we study the PL and ECL behaviors of Ru(bpy)32+and CDs in solution,and develop CDs as nanoprobes for the determination of Ru(bpy)32+species.

2.Experimental

2.1.Preparation of carbon quantum dots (CDs)

The electrochemical preparation of CDs was carried out in a two-electrode con?guration [19].A high-purity graphite rod (99.9%)with a diameter of 0.6cm 2served as working elec-trode,parallel to another graphite rod as counter electrode with a distance of 2cm.The electrolyte was the mixture of 5mL water,4mL 1-butyl-3-methylimidazolium tetra?uoroborate ([BMIm][BF 4])and 4mL 1-butyl-3-methylimidazolium hexa?uo-rophosphate ([BMIm][PF 6]).Static potentials of 15V were applied to the two electrodes using a DC power supply for 6h at room tem-perature [20].After electrolysis,the yellowish-brown oil solution was decanted completely,then the precipitates was washed with 30mL distilled water.After centrifugation,the yellowish-brown supernate was decanted carefully and known as original CDs solu-tion,exhibiting a bright blue ?uorescence upon irradiation with 254and 365nm UV light.It is notable that the CDs solution used in our experiment is 1/16concentration of the original CDs solution and labeled as CDs solution in our study.

2.2.Characterization

The transmission electron microscopy (TEM)analysis was con-ducted using a JEM-2100F electron microscope (JEOL,Japan).

0925-4005/$–see front matter ? 2013 Elsevier B.V. All rights reserved.https://www.sodocs.net/doc/777143328.html,/10.1016/j.snb.2013.01.043

210Z.Xu et al./Sensors and Actuators B 181 (2013) 209–

214

Fig.1.(a)TEM and (b)AFM images of CDs.(c)The cross-sectional view of the height pro?le corresponding to the line drawn in (b).

Atomic force microscopy (AFM)images were obtained by a Dimen-sion 3100AFM,operating in tapping mode with a scan rate of 1.20Hz.An n-doped silicon tip with 1–10 cm phosphorus (Veeco,MPP-11100-140)was used as the probe.Fourier transform infrared (FTIR)spectra were collected using a Shimadzu IRAf?nity-1FTIR spectrometer in a range of 4000–400cm ?1.Light absorp-tion properties were obtained using ultraviolet–visible (UV–vis)spectrophotometer (UV-2550,Shimadzu,Japan).The photolumi-nescence (PL)spectra were conducted on a ?uorescence spec-trophotometer (F-7000,Hitachi,Japan)at room temperature at bias potential of 400V.The ?potential of CDs was measured by a Zeta Potential Analyzer (ZetaPALS,Brookhaven Instruments Corporate,USA).

2.3.ECL experiments

The electrochemical measurements coupled with ECL experi-ments were performed by a MPI-E multifunctional electrochemi-luminescent analytical system (Remex Analyse Instrument Co.Ltd,Xi’an,China)with the voltage of the photomultiplier tube (PMT)set at 800V in aqueous solution using 0.05M phos-phate buffer solution (PBS)as supporting electrolyte.The pH value of PBS was adjusted to 7.6by 0.1M NaOH and H 3PO 4solution.The working electrode was a disk platinum electrode with a diameter of 0.3mm and the reference electrode was an Ag/AgCl electrode.A platinum wire was used as the auxiliary electrode.

2.4.Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS)was carried out on a CHI electrochemical analyzer (CHI660C Instruments).The fre-quency of EIS ranges from 10Hz to 10MHz and the alternating current (AC)signal amplitude is 5mV.The EIS data were analysed using Zview software.

3.Results and discussion

TEM image (Fig.1a)shows that the as-synthesized CDs are less than 10nm in size,similar to the previous reports [12,21].The corresponding AFM topographical image (Fig.1b)shows that an apparent thickness of CDs is in the range 5–8nm,in agreement with the results of TEM as shown in Fig.1a.

Fig.2shows the FTIR spectrum of the as-prepared CDs.The typi-cal peaks around 3447and 1466cm ?1are ascribed to the stretching vibrations and in-plane bending vibration of OH,respectively [15,18].The bands at 2943and 2887cm ?1are related to the stretch-ing vibration of C H in the group of CH 3or CH 2,due to some ionic liquid residue in the CDs.The dull and intense band of 3447cm ?1indicate the presence of hydrogen bonds,and that

at

Fig.2.FTIR spectrum of the as-prepared CDs.

Z.Xu et al./Sensors and Actuators B181 (2013) 209–214

211

Fig.3.UV–vis absorption spectra of(a)500?M Ru(bpy)32+,(b)500?M Ru(bpy)32++ CDs and(c)CDs.

1650cm?1manifests the presence of carbonyl(C O).Obviously, the as-prepared CDs have an abundance of COOH groups at their surfaces.

The UV–vis absorption spectra of different solutions containing Ru(bpy)32+and CDs are shown in Fig.3.The CDs solution exhibits a broad absorption shoulder band in a range of265–380nm,consis-tent with the previous report[20].Two strong and broad absorption bands appear at ca.280nm and450nm for500?M Ru(bpy)32+ solution,corresponding to the absorption electronic?–?*tran-sition and metal-to-ligand charge transfer(MLCT)adsorption of Ru(bpy)32+,respectively[22,23].In contrast,the500?M Ru(bpy)32++CDs solution shows a greatly decreased visible-light absorption peak around450nm,although its absorption feature is similar to that of500?M Ru(bpy)32+solution.The observed difference can be explained as follows.Because the measured value of the isoelectric point of CDs is about4.6.This means that the CDs surface is negatively charged at pH7.6.Thus Ru(bpy)32+ can be spontaneously adsorbed on the surface of CDs due to electrostatic interaction.Therefore,it is easy to understand the 500?M Ru(bpy)32++CDs solution exhibiting a decreased absorp-tion peak at about450nm because of the decreased concentration of Ru(bpy)32+in the mixed solution.

The typical PL emission spectra of the CDs under different exci-tation wavelength are shown in Fig.4.A strong and blue PL can be easily observed with the naked eyes when CDs solution is under a 365nm UV lamp(as shown in the inset of Fig.4).As can be seen from Fig.4,the CDs solution exhibits a broad and symmetry PL emission feature,and the PL emission red-shifts as the excitation wavelength increases,accompanied with a trend of?rst increas-ing and then decreasing of PL intensity,which could be attributed to size heterogeneity and distribution of different emissive sites on the carbon dots[8,17].The CDs solution exhibits the most intensive PL emission at excitation wavelength of350nm,therefore,350nm of excitation wavelength is selected in the further study.

Fig.5displays the PL emission spectra of500?M Ru(bpy)32+, CDs and CDs in the presence of various concentrations of Ru(bpy)32+.The CDs solution exhibits a strong PL emission cen-tered at ca.429nm.In contrast,a PL emission band located at ca.611nm displays for500?M Ru(bpy)32+solution[24].As for CDs+Ru(bpy)32+solutions,the characteristic?uorescent intensity related to CDs decreases signi?cantly;while the intensity related to Ru(bpy)32+slightly increases with increasing Ru(bpy)32+con-centration and then decreases with the Ru(bpy)32+

concentration Fig.4.PL emission spectra of CDs under UV and visible excitation from200to 450nm.Inset shows photographs of CDs(a)under natural light and(b)under365nm UV,respectively.

up to500?https://www.sodocs.net/doc/777143328.html,pared to that of500?M Ru(bpy)32+solution, the PL emission intensity of CDs+500?M Ru(bpy)32+solution at ca.611nm slightly decreases;while ca.99%?uorescence at ca. 429nm is quenched compared with pure CDs solution,suggesting that Ru(bpy)32+has a very strong?uorescence quenching abil-ity.Furthermore,a slight blue-shift of the emission band around 429nm and a new PL emission shoulder at ca.480nm appears clearly with increasing Ru(bpy)32+concentration up to25?M. Such observations are rationalized as follows.Ru(bpy)32+could spontaneously adsorbs on the negatively charged CDs due to elec-trostatic interaction.Thus,electron transfer easily occurs from CDs to Ru(bpy)32+,leading to a new PL emission peak and sig-ni?cant decrease of PL intensity for CDs.Another explanation is from inner?lter effects,since the wavelength of CDs emission coincides with Ru(bpy)32+absorption band.However,the real mechanism still needs to be further investigated in our future work.

As shown in the inset of Fig.5,the PL intensity was lin-early proportional to the concentration of Ru(bpy)32+from2.5to 500?M(R=0.971)with a detection limit of0.72?M.The

limit

Fig.5.PL emission spectra of(a)CDs,and CDs in the presence of various con-centrations of Ru(bpy)32+.The mixed solution of CDs and Ru(bpy)32+is denoted as CDs+Ru(bpy)32.(b)CDs+2.5?M Ru(bpy)32+,(c)CDs+25?M Ru(bpy)32+,(d) CDs+125?M Ru(bpy)32+,(e)CDs+500?M Ru(bpy)32+and(f)500?M Ru(bpy)32+. Inset:linear calibration curve for Ru(bpy)32+detection.Excitation was at350nm.

212Z.Xu et al./Sensors and Actuators B 181 (2013) 209–

214

Fig.6.(A)ECL-potential curves and (B)corresponding cyclic voltammograms of (a)500?M Ru(bpy)32+,(b)CDs and (c)CDs +500?M Ru(bpy)32+in air-saturated 0.05M pH 7.6PBS.Inset of Fig.6A is ECL-potential curves of (a)and (b).Scan rate:50mV/s.

of detection (LOD)was determined by using lgC LOD =3 /slope ratio (where ?is the standard deviation of the mean PL inten-sity for CDs solution,and the slope ratio (sensitivity)was ca.0.830.).The calculations were performed according to the rec-ommendations of IUPAC [25].The relative standard deviation (at CDs +2.5?M Ru(bpy)32+solution)was 0.8%(n =5).It indicates that the ?uorescence quenching of CDs can provide a potential probe for Ru(bpy)32+concentration in aqueous solution.Further,the PL emission of Ru(bpy)32++CDs solutions are stable under photoir-radiation for a number of hours,showing negligible reduction in intensity.

Fig.6A shows the ECL-potential curves of 500?M Ru(bpy)32+,CDs and CDs +500?M Ru(bpy)32+solutions.An apparent ECL signal is observed for 500?M Ru(bpy)32+solution due to the annihi-lation reaction of the reduced and oxidized Ru(bpy)32+[26,27].The CDs solution exhibits a weak anodic ECL emission,presum-ably resulting from the formation of excited-state CDs (denoted as CD *)via electron-transfer annihilation of negatively charged (CD ??)and positively charged (CD ?+)CDs [18].Surprisingly,CDs +500?M Ru(bpy)32+solution shows an enhanced ECL,which is distinct from that of 500?M Ru(bpy)32+and CDs.The strong ECL signal is probably associated with the interaction between the species generated from Ru(bpy)32+and CDs at or near the electrode.Fig.6B shows the corresponding cyclic voltammograms of 500?M Ru(bpy)32+,CDs and CDs +500?M Ru(bpy)32+solutions.Typical redox peaks of Ru(bpy)32+are observed on the CV of 500?M Ru(bpy)32+.In contrast,no redox peaks are observed on CDs.The typical redox peaks of Ru(bpy)32+are also observed on the CV of CDs +500?M Ru(bpy)32+solution,however,the anodic peak cur-rent of Ru(II)/Ru(III)increases and the corresponding cathodic peak current decreases compared to those of 500?M Ru(bpy)32+solu-tion.The CVs results indicate that CDs can catalyze the oxidation of Ru(bpy)32+.

Based on the current observations and the previous reports that positively charged (CD ?+)or negatively charged (CD ??)could be produced when holes or electrons inject on a Pt electrode in the CDs solution [18],we propose that Ru(bpy)33+species could be generated through an indirect electrooxidation of Ru(bpy)32+with the CD ?+on the electrode surface since CD ?+species is very unstable and energetic.Then,the excited-state [Ru(bpy)32+]*species form via electron-transfer annihilation of Ru(bpy)33+and CD ??and/or Ru(bpy)3+produced on the counter Pt electrode (Eqs.(6)and (7))due to a small electrode spacing [26].Since the Ru(bpy)33+species are partly consumed by CD ??to produce Ru(bpy)32+species,the change in the concentrations of Ru(bpy)32+and Ru(bpy)33+species on the electrode surface causes the increase of the anodic peak current and the decrease of the cathodic peak current.The main reaction steps are proposed tentatively as the

following Eqs.(1)–(7).However,the mechanism of CDs-enhanced ECL behaviors of Ru(bpy)32+still need to be further veri?ed.

Ru(bpy)32+?e ?→Ru(bpy)33+

×(oxidation on the working electrode)

(1)

CD +h +→CD

?+

(holes injection on the working electrode)

(2)

CD

?+

+Ru(bpy)32+→Ru(bpy)33+

+CD

(indirect electrooxidation on the electrode)

(3)

Ru(bpy)3

2+

+e ?→Ru(bpy)3

+

(reduction on the counter electrode)

(4)

CD +e ?→CD

??

(electrons injection on the counter electrode)

(5)

Ru(bpy)33++CD

??

→Ru(bpy)32+?+CD (excited state formation)

(6)

Ru(bpy)33++Ru(bpy)3+→Ru(bpy)32+?(excited state formation)

(7)

Ru(bpy)32+?→Ru(bpy)32++h

(light emission)

(8)

Fig.7compares the typical EIS of Pt electrode in the 500?M Ru(bpy)32+and CDs +500?M Ru(bpy)32+solutions.The EIS con-sists of a semicircle in the range of whole frequency.The semicircle corresponds to the charge transfer resistance (Rt)in paralleled with the double layer capacitance.The experimental data were modeled using non-linear-least-square (NLLS)?t analysis soft-ware and the electrical equivalent circuit was shown in the inset of Fig.7.Rs is the solution resistance;CPE is a con-stant phase element related to the double-layer capacity of the electrode.The CDs +500?M Ru(bpy)32+solution exhibits a rel-atively smaller Rt value (2403 cm 2)than 500?M Ru(bpy)32+(3063 cm 2),implying that CDs can accelerate the electron-transfer kinetics of the oxidation reaction at the electrode surface.

Fig.8shows the ECL responses of CDs solution in the presence of various Ru(bpy)32+concentrations.The ECL signal is observed to be linearly proportional to the concentration of Ru(bpy)32+(R =0.997)(shown in the inset of Fig.8).Based on the difference in ECL inten-sity,a detection limit of 0.43?M of Ru(bpy)32+is obtained by using lgC LOD =3 /slope ratio (where is the standard deviation of the mean ECL intensity for CDs solution,and the slope ratio (sensitivity)was ca.0.996),and the relative standard deviation

Z.Xu et al./Sensors and Actuators B 181 (2013) 209–214

213

Fig.7.EIS of 500?M Ru(bpy)32+(a)and CDs +500?M Ru(bpy)32+(b)in 0.05M pH 7.6PBS.Inset is the equivalent circuit applied to ?t impedance measurements,bias potential:1.15V.Rs is the solution resistance,Rt is the charge transfer resistance and CPE is a constant phase element related to the double-layer capacity of the

electrode.

Fig.8.ECL responses of (a)CDs +2.5?M Ru(bpy)32+,(b)CDs +7.5?M Ru(bpy)32+,(c)CDs +25?M Ru(bpy)32+,(d)CDs +75?M Ru(bpy)32+,(e)CDs +125?M Ru(bpy)32+and (f)CDs +500?M Ru(bpy)32+.Inset:linear calibration curve for Ru(bpy)32+detec-tion.Scan rate:50

mV/s.

Fig.9.Continuous cyclic ECL curves of 500?M Ru(bpy)32++CDs in 0.05M pH 7.6PBS.Scan rate:50mV/s.

(at CDs +500?M Ru(bpy)32+solution)was 2.1%(n =11).The cal-culations were performed according to the recommendations of IUPAC [25].

The ECL emission of CDs +500?M Ru(bpy)32+in 0.05M pH 7.6PBS over consecutive cyclic potential scans was shown in Fig.9.It can be observed that the ECL intensity are strong and stable for 21cycles,further indicating that ECL method is a feasible ways for Ru(bpy)32+determination through the enhancement of the ECL intensity of Ru(bpy)32+by CDs.

4.Conclusion

In summary,based on PL quenching of CDs and ECL enhance-ment of Ru(bpy)32+,CDs were demonstrated to be a novel probe for ef?cient detection of Ru(bpy)32+species.The detection limit of CDs-based ?uorescent probes is 0.72?M,and that of ECL probes is 0.43?M for Ru(bpy)32+detection.The powerful combination of PL and ECL will provide a novel approach to examine advanced materials unique and useful in analyte detection.

Acknowledgements

This work was supported by NSFC (51072154,21177100and 51272199),Key Project of Chinese Ministry of Education (212115),NSFHB (2010CDA078),HBECF (Q20102903),863Pro-gram (2012AA062701)and 973Program (2013CB632402).

References

[1]W.Miao,Electrogenerated chemiluminescence and its biorelated applications,

Chemical Reviews 108(2008)2506–2553.

[2]M.M.Richter,Electrochemiluminescence (ECL),Chemical Reviews 104(2004)

3003–3036.

[3]Y.Yuan,H.Li,S.Han,L.Hu,S.Parveen,G.Xu,Vitamin C derivatives as new

coreactants for tris(2,2 -bipyridine)ruthenium(II)electrochemiluminescence,Analytica Chimica Acta 701(2011)169–173.

[4]J.Jin, F.Takahashi,T.Kaneko,T.Nakamura,Characterization of electro-chemiluminescence of tris(2,2-bipyridine)ruthenium(II)with glyphosate as coreactant in aqueous solution,Electrochimica Acta 55(2010)5532–5537.

[5]J.G.Yu, F.F.Fan,S.L.Pan,V.M.Lynch,K.M.Omer, A.J.Bard,Spontaneous

formation and electrogenerated chemiluminescence of tris(bipyridine)Ru(II)derivative nanobelts,Journal of the American Chemical Society 130(2008)7196–7197.

[6]J.Xu,J.G.Yu,M.H.Zhou,H.G.Yu,Fabrication of Ru(bpy)32+-titanate nanotube

composite and its application as sensitive solid-state electrochemilumines-cence sensor material,Journal of Physics and Chemistry of Solids 71(2010)527–529.

[7]W.Miao,J.P.Choi, A.J.Bard,Electrogenerated chemiluminescence 69:

the tris(2,2 -bipyridine)ruthenium(II),(Ru(bpy)32+)/Tri-n-propylamine (TPrA)system revisited –a new route involving TprA ?+cation radicals,Journal of the American Chemical Society 124(2002)14478–14485.

[8]Y.P.Sun,B.Zhou,Y.Lin,W.Wang,K.A.S.Fernando,P.Pathak,M.J.Meziani,B.A.

Harruff,X.Wang,H.Wang,P.G.Luo,H.Yang,M.E.Kose,B.Chen,L.M.Veca,S.Y.Xie,Quantum-sized carbon dots for bright and colorful photoluminescence,Journal of the American Chemical Society 128(2006)7756–7757.

[9]S.C.Ray,A.Saha,N.R.Jana,R.Sarkar,Fluorescent carbon nanoparticles:synthe-sis,characterization,and bioimaging application,Journal of Physical Chemistry C 113(2009)18546–18551.

[10]L.Cao,X.Wang,M.J.Meziani, F.Lu,H.Wang,P.G.Luo,Y.Lin, B.A.

Harruff,L.M.Veca, D.Murray,S.Y.Xie,Y.P.Sun,Carbon dots for multi-photon bioimaging,Journal of the American Chemical Society 129(2007)11318–11319.

[11]S.T.Yang,L.Cao,P.G.Luo,F.Lu,X.Wang,H.Wang,M.J.Meziani,Y.Liu,G.Qi,Y.P.

Sun,Carbon dots for optical imaging in vivo,Journal of the American Chemical Society 131(2009)11308–11309.

[12]S.T.Yang,X.Wang,H.Wang,F.Lu,P.G.Luo,L.Cao,M.J.Meziani,J.H.Liu,Y.Liu,

M.Chen,Y.Huang,Y.P.Sun,Carbon dots as nontoxic and high-performance ?uorescence imaging agents,Journal of Physical Chemistry C 113(2009)18110–18114.

[13]H.Gon alves,P.A.S.Jorge,J.R.A.Fernandes,J.C.G.E.Silva,Hg(II)sensing based

on functionalized carbon dots obtained by direct laser ablation,Sensors and Actuators B 145(2010)702–707.

[14]H.X.Zhao,L.Q.Liu,Z.D.Liu,Y.Wang,X.J.Zhao,C.Z.Huang,Highly selective

detection of phosphate in very complicated matrixes with an off an off-on ?u-orescent probe of europium-adjusted carbon dots,Chemical Communications 47(2011)2604–2606.

214Z.Xu et al./Sensors and Actuators B181 (2013) 209–214

[15]L.Q.Liu,Y.F.Li,L.Zhan,Y.Liu,C.Z.Huang,One-step synthesis of?uorescent

hydroxyls-coated carbon dots with hydrothermal reaction and its applica-tion to optical sensing of metal ions,Science in China Chemistry54(2011) 1342–1347.

[16]H.Li,X.He,Z.Kang,H.Huang,Y.Liu,J.Liu,S.Lian,C.H.A.Tsang,X.Yang,S.T.

Lee,Water-soluble?uorescent carbon quantum dots and photocatalyst design, Angewandte Chemie International Edition49(2010)4430–4434.

[17]F.Wang,Y.H.Chen,C.Y.Liu,D.G.Ma,White light-emitting devices based

on carbon dots electroluminescence,Chemical Communications47(2011) 3502–3504.

[18]L.Zheng,Y.Chi,Y.Dong,J.Lin,B.Wang,Electrochemiluminescence of water-

soluble carbon nanocrystals released electrochemically from graphite,Journal of the American Chemical Society131(2009)4564–4565.

[19]Z.H.Xu,J.G.Yu,G.Liu,Enhancement of ethanol electrooxidation on plas-

monic Au/TiO2nanotube arrays,Electrochemistry Communications13(2011) 1260–1263.

[20]J.Lu,J.Yang,J.Wang,A.Lim,S.Wang,K.P.Loh,One-pot synthesis of?uorescent

carbon nanoribbons,nanoparticles,and graphene by the exfoliation of graphite in ionic liquids,ACS Nano3(2009)2367–2375.

[21]F.Wang,S.Pang,L.Wang,Q.Li,M.Kreiter,C.Liu,One-step synthesis of highly

luminescent carbon dots in noncoordinating solvents,Chemistry of Materials 22(2010)4528–4530.

[22]Z.H.Xu,J.G.Yu,A novel solid-state electrochemiluminescence sensor

based on Ru(bpy)32+immobilization on TiO2nanotube arrays and its application for detection of amines in water,Nanotechnology21(2010) 245501–245505.

[23]Y.Du,B.Qi,X.Yang,E.Wang,Synthesis of PtNPs/AQ/Ru(bpy)32+colloid and its

application as a sensitive solid-state electrochemiluminescence sensor mate-rial,Journal of Physical Chemistry B110(2006)21662–21666.

[24]N.E.Tokel,A.J.Bard,Electrogenerated chemiluminescence.IX.Electrochem-

istry and emission from systems containing tris(2,2 -bipyridine)ruthenium(II) dichloride,Journal of the American Chemical Society94(1972)2862–2863. [25]Analytical Methods Committee,Recommendations for the de?nition,estima-

tion and use of the detection limit,Analyst112(1987)199–204.

[26]G.C.Fiaccabrino,M.Koudelka-Hep,Y.T.Hsueh,S.D.Collins,R.L.Smith,Elec-

trochemiluminescence of tris(2,2 -bipyridine)ruthenium in water at carbon microelectrodes,Analytical Chemistry70(1998)4157–4161.[27]P.Bertoncello,R.J.Forster,Nanostructured materials for electrochemilu-

minescence(ECL)-based detection methods:recent advances and future perspectives,Biosensors and Bioelectronics24(2009)3191–3200. Biographies

Zhihua Xu received her B.S.degree from Hubei Normal University in2000, M.S.degree from Zhejiang University of Technology in2003and Ph.D.from Zhejiang University in2006.In2009,she became an associate professor at Huang-gang Normal University.She was a post-doctoral fellow at Wuhan University of Technology from2009to2011.Her ongoing research focuses on electrochem-istry including electrogenerated chemiluminescence,photoelectrocatalysis and electrocatalysis.

Jiaguo Yu received his BS and MS in chemistry from Huazhong Normal University and Xi’an Jiaotong University,respectively;his Ph.D.in Materials Science in2000 from Wuhan University of Technology.In2000,he became a Professor at Wuhan University of Technology.He was a post-doctoral fellow at the Chinese University of Hong Kong from2001to2004,a visiting scientist from2005to2006at University of Bristol,a visiting scholar from2007to2008at University of Texas at Austin.His research interests include semiconductor photocatalysis,electrogenerated chemi-luminescence,adsorption,and so on.Jiaguo Yu(Yu J.G.)has published more than 270SCI papers in international journals with peer review(Yu JG)which are cited >13,000times H-index60,plus20patents.

Gang Liu received his B.S.degree from Lanzhou University in1989and M.S. degree from Institute of Modern Physics,Chinese Academy of Sciences in1992. In1995,he joined Prof.Wayne Goodman’s group at Texas A&M University, USA and received his Ph.D.degree in2000.Then he did postdoctoral work at Brookhaven National Laboratory,University of Pennsylvania and Temple Univer-sity.He joined National Center for Nanoscience and Technology,China in2007 as an associate professor.His ongoing research focuses on function nanomate-rials,aiming at the structure–property correlations of nanostructured materials important in chemical transformations,energy production and environmental remediation.

快速减载系统操作手册

ABB

ABB Copyright ? ABB. 2010

(1) (3) 1. (4) 1.1 (4) 1.2 (4) 1.3 (5) 2 (6) 2.1 (6) 2.2 (6) 3 (7) 3.1 Workplace (7) 3.1.1Operator Workplace (7) 3.1.2Plant Explorer Workplace (7) 3.2 Workplace (7) 3.3 Operator Workplace (8) 3.3.1 (9) 3.3.2 (9) 3.4 (9) 3.5 Process Graphic Display (10) 4 (10) 4.1 (10) 4.2 ) (11) 4.3 (12) 4.4 (16) 5 (16) 5.1 AC800M (17) 5.2 (17) 5.3 CPU (18) 5.4 (18) 5.4.1 (18) 5.4.2 Full Backup and Restore (22) 5.4.3 Panel common alarm (27)

1. 1.1 1.2 ABB – Asea Brown Boveri – AC800M - Advant 800 Advant Controller 800 series AI – Analog Input CB – Circuit breaker DCS – Distributed Control System DI – Digital Input DO – Digital Output DI DO AI AO HSI – Human System Interface Loadbusbar – MW – Mega Watt MVar – Mega Var OS – Operator Station P – Active Power Q – Reactive Power SR – Spinning Reserve

快速装车站系统手册样本

迅速定量装车站 系统顾客手册 目录 第1某些迅速定量装车站简介 (3) 1.1系统概述 (3)

1.2装车工艺 (3) 1.3各子系统描述 (5) 1.3.1钢构造 (5) 1.3.2机械设备 (6) 1.3.3称重系统 (7) 1.3.4液压系统 (10) 1.3.5配电系统 (10) 1.3.6控制系统 (11) 第2某些开车和停车顺序 (13) 2.1原则 (13) 2.2自动装车启动顺序 (14) 2.3自动装车停止顺序 (v15) 2.4紧急停车 (16) 第3某些装车运营前、中、后应检查项目 (16) 3.1运营前需检查项目 (17) 3.1.1基本规定 (17) 3.1.2 重要设备 (17) 3.2 生产过程中需检查项目 (18) 3.2.1基本规定 (18) 3.2.2重要设备 (18) 3.2.3停车后需检查项目 (19) 3.2.4 控制室操作人员须知 (19) 第4某些常用问题及解决办法 A.给煤/料系统 (19) B.装载系统 (20) 第5某些计算机软件操作阐明 (21)

第1某些:迅速定量装车站简介 1.1系统概述 迅速定量装车站是基于大型料斗秤工作原理,依照列车额定载重在定量仓中预设吨位,然后通过液压闸门和溜槽控制,向行进中列车车厢迅速卸料,实现持续、迅速、精确装车。迅速定量装车系统重要由钢构造、机械设备、称重系统、液压系统、自动润滑系统、电控系统及软件系统构成。 缓冲仓作用重要是存储一定煤量,以保证在装车过程中有足够物料用于装车,避免高压皮带电机频繁启动;装车机械设备用于控制装车煤流;称重系统装车用于迅速准拟定量装车;液压系统为各种机械设备提供动力;自动润滑系统为装车机械设备提供润滑,保证设备使用寿命;电控系统用于装车系统中所有电气设备供配电和运营控制;软件系统用于判断发出各种控制指令,调节装车精度,监测各设备运营状态,记录存储装车记录和报警信息。 装车站工作制度同矿井,年工作300天,服务年限同矿井。 产品构造:块精煤灰分≤13.5%,水分<6%,分为100-25mm(洗混块)、25-13mm(洗小块)两个级别;末精煤灰分≤10.5%,水分<10%;混煤灰分≤31.5%,为动力用煤。块)两个级别;末精煤灰分≤10.5%,水分<10%;混煤灰分≤31.5%,为动力用煤。 1.2 装车工艺 工艺流程如图1.1所示,其中皮带、给煤机数量因矿而异。重要流程描述:列车到站后,一方面拟定装车品种,启动初始静态计算软件,拟定启动给煤机台数及给煤量,启动产品煤仓给料系统,落料经输煤皮带,送至装车塔楼内缓冲仓,待缓冲仓达到一定煤位后,启动持续装车系统,控制系统自动计算决定缓冲仓下液压闸门启动数量和运营时间,按给定重量精准配料将煤放至称重仓中。称重仓下安装有高精度称重传感器,对配料实时测量实时反馈,与缓冲仓形成闭环控制,逐渐减缓配料直至达到预定重量时,自动关闭缓冲仓配料闸门。列车匀速行驶,车厢就位,称重仓下卸料闸门启动,通过装车溜槽放入列车车厢,溜槽自动平煤,使车厢煤堆形成梯形堆积。装完第一节车箱后,卸料闸门自动关闭,与此同步,缓冲仓配料再次闸门自动计算启动,进行第二节车厢精准配料称重,配料完毕,车厢刚好行进到装车位置,装载第二节车厢……如此循环,列车保持持续匀速迈进,直至装完最后一节车厢后,溜槽自动提高移动到锁定位置并上栓固定,此时打印机可随后打出具备装车日期、时间、车号、车型、原则载重、净重、误差、收货

系统安装部署手册模板

。 中国太平洋保险(集团)股份有限公司Xxxxxxxxxxx项目 系统安装部署手册 V1.0 项目经理: 通讯地址: 电话: 传真: 电子邮件:

文档信息 1引言 (3) 1.1编写目的 (3) 1.2系统背景 (3) 1.3定义 (3) 1.4参考资料 (3) 2硬件环境部署 (3) 2.1硬件拓扑图 (3) 2.2硬件配置说明 (3) 3软件环境部署 (3) 3.1软件环境清单 (3) 3.2软件环境部署顺序 (3) 3.3操作系统安装 (4) 3.4数据库安装 (4) 3.5应用级服务器安装 (4) 3.6其他支撑系统安装 (4) 4应用系统安装与配置 (4) 4.1应用系统结构图 (4) 4.2安装准备 (4) 4.3安装步骤 (4) 4.4系统配置 (5) 5系统初始化与确认 (5) 5.1系统初始化 (5) 5.2系统部署确认 (5) 6回退到老系统 (5) 6.1配置回退 (5) 6.2应用回退 (5) 6.3系统回退 (5) 6.4数据库回退 (5) 7出错处理 (5) 7.1出错信息 (5) 7.2补救措施 (5) 7.3系统维护设计......................................................... 错误!未定义书签。

1 引言 1.1 编写目的 [说明编写系统安装部署手册的目的] 1.2 系统背景 [ a . 说明本系统是一个全新系统还是在老系统上的升级; b . 列出本系统的使用单位/部门、使用人员及数量。] 1.3 定义 [列出本文件中用到的专门术语的定义和缩写词的原词组。] 1.4 参考资料 [列出安装部署过程要用到的参考资料,如: a . 本项目的完整技术方案; b . 系统运维手册; c . 其他与安装部署过程有关的材料,如:工具软件的安装手册] 2 硬件环境部署 2.1 硬件拓扑图 [列出本系统的硬件拓扑结构,如服务器、网络、客户端等。] 2.2 硬件配置说明 [列出每一台硬件设备的详细配置,如品牌、型号、CPU 数量、内存容量、硬盘容量、网卡、带宽、IP 址址、使用、应部署哪些软件等等] 3 软件环境部署 3.1 软件清单 [列出需要用到哪些软件,包括操作系统软件、数据库软件、应用服务器软件和其他支撑系统软件等,要列明每个软件的全称、版本号、适用操作系统、LICENSE 数量等] 3.2 软件环境部署顺序 [列出每一台硬件上的软件安装顺序,如果不同硬件间的软件安装顺序存有依赖关系,也要在备注中列出,

快速装车站(1)

LCS-100型定量快速装车站的推广应用 一、项目简介: 由于技术条件、经济条件限制,原有各矿井铁路装车模式均采用传统装车系统,传统装车系统存在效率低下,装车滞留时间较长,需要大量人工作业等缺点,企业产销环节脱节,严重制约企业的经济效益提升。 1、实施单位:双马煤矿、金凤煤矿、羊场湾煤矿、任家庄煤矿、太西洗煤厂、清水营煤矿、梅花井煤矿、枣泉煤矿 2、实施时间:2002年5月至今 3、项目实施的背景、条件 随着集团公司原煤产量日益增大,对装车系统提出了更高的要求。为了提高装车效率,节省人力,集团公司经过产品对比、技术论证调查,决定选用LCS-100型定量快速装车站系统。该系统具有安装形式简便、设备布置紧凑、占用场地面积小、自动化程度高、维护量小、需用操作人员少、装车速度快及具有称重能力等特点。 目前公司共有双马煤矿5400t/h、金凤煤矿5400t/h、羊场湾煤矿5500t/h、任家庄煤矿5400t/h、太西洗煤厂5000t/h、清水营煤矿5000t/h、梅花井煤矿5400t/h、枣泉煤矿5300t/h等八个矿井均安装了LCS-100型铁路快速装车系统,以及石槽村煤矿安装一套5400t/h筒仓式铁路快速定量装车系统,以上快速装车系统在企业的原煤销售环节起到了至关重要的作用,保证了运销环节的高效运行。 4、运用的技术 快速定量技术、自动控制技术。

5、实现的效果 优化铁路装车作业工序,将原本需要大量人工作业的工序全部集成为自动化操作,特别是系统具备的自动打印报表等功能,方便了企业产销统计工作。自动配煤、自动装车不仅减少了人工投入,实现在作业环节中的安全保障,同时提高了装车的速度、精度,节省了装车作业时的滞留时间。 二、技术内容 1.技术方案 选用LCS-100型定量快速装车站系统替代了传统多人员参与装车系统,减少劳动力、提高安全管理水平。LCS-100型定量快速装车站主要参数如下: 装车能力:标准5500 t/h,最高可达到8000 t/h; 缓冲仓缓冲能力:0~1000 t; 称量范围:0~100 t; 称重传感器精度:0.01%; 装车精度:单车装车精度0.1%,整列车装车精度0.05%; 铁路线形:贯通式、环线、尽头式及各类站场; 铁路线间距:≥5m; 牵引方式:电力机车、内燃机车、蒸汽机车、调车绞车等; 牵引速度:0.8~2.0 km/h 适用车型:现有各类车型; 操作方式:自动、半自动、手动; 结构形式:单线单套快速定量装车站

火车装车控制使用手册

装车控制使用手册 装车站为机、电、液一体的自动装车系统,下面就如何操作作简单介绍,仅供参考。 (一)、系统启动前的准备工作 1.快速装车系统操作使用前的一般规定: 1)操作员具有高中(中技)以上文化程度; 2)操作员上岗前要经过安全和业务培训; 3)操作员要熟悉快速装车站的工艺流程; 4)操作员应具有机械、液压、电气控制及计算机的基本知识; 5)操作员要掌握给煤机、胶带运输机和装车设备的工作原理、基本结构和主要性能; 6)岗位司机应取得钢缆皮带操作工上岗资格。 2.开机前的检查项目: 1)检查胶带机电机、液力偶合器、减速器、制动器、逆止器、防堵开关、拉绳开关、跑偏开关、防打滑装置、纵向撕列保护、胶带、各类滚筒、拉紧装置、皮带清扫器、托辊等设备及部件是否完好。 2)检查给煤机各螺栓是否紧固,吊挂是否平衡稳固,电机两端防护罩是否完好,弹簧座软连接是否磨损 3)检查装车塔楼内液压站、油缸、泵、阀等是否有渗漏现象,各截止阀位置是否正确,油路是否畅通。 4)检查液压泵(1#2#)动力电是否送好,油位、油温是否正常。 3.检查工控机的通讯情况:将计算机打开,进入控制画面,若控制画面图象显示正常,则说明网络通讯正常,反之则不正常。 4.冬季,液压系统启动前应注意: 由于冬季环境温度底,导致达不到液压系统的工作温度,因此要在装车前对液压系统进行热油循环或油箱预热。 5.对液压系统进热油循环或油箱预热: 进入控制画面,在控制画面的右上角点击“热油循环”或“油箱预热”按钮,系统将自动开始加热循环(注意:此时溜槽不能停在装车位置) (二)、系统的运行操作 1.“系统启动”按钮的功能及操作: 功能:开启液压油泵。操作:按下1s 2.“系统停止”按钮的功能及操作: 功能:停止液压油泵。操作:按下1s 3.“缓冲仓全部闸门”按钮的功能及操作: 功能:控制缓冲仓全部闸门的开和闭。操作:按下,闸门开;弹起,闸门关闭4.“缓冲仓闸门开”按钮的功能及操作: 功能:控制缓冲仓补料闸门的开和闭。操作:按下,闸门开;弹起,闸门关闭5.“卸料闸门启动”按钮的功能及操作: 功能:打开卸料闸门。操作:按下1s 6.“卸料闸门停止”按钮的功能及操作: 功能:关闭卸料闸门。操作:按下ls 7.“重读”按钮的功能及操作: 功能:在定量仓处在就绪状态下,重新配煤时用。操作:按下ls 8.“卸料闸门点动”按钮的功能及操作:

火车装车站电控说明书

快速定量装车自动控制系统 使用说明书 山东煤矿泰安机械厂 2006年9月

目录 一、总体说明 二、系统简介 三、操作流程 四、操作说明 五、故障处理及日常维护

一、总体说明 随着煤炭工业的发展,装运水平不断提高,先进的、现代化的煤炭装运系统也随之出现。煤矿装车速度和准确度要求的不断提高,采用一次定量装车是最有效和可靠的办法。大型定量装车站基于大型料斗秤的工作原理,预先在定量仓中按车皮标重装载,通过闸门和卸料溜槽控制,向行进中的车厢快速卸载,实现一次连续动态行进中快速准确装车。 技术指标:装车速度可达到5300 t/h,最高达8000 t/h,单节装车精度>0.1%,整列装车精度>0.01%,牵引速度可在0.8~1.5 km/h。山东煤矿泰安机械厂生产的快速定量装车系统具有性能优越,工作稳定可靠,称重精度高,装车速度快的特点,具有配煤和自动采样功能,并配备有完整的数据采集系统及微处理机称重控制系统。维护量少,备品备件简单。 快速定量装车系统工艺流程:来车后成品煤在煤仓下通过给煤机,经输煤皮带,将煤送至装车站的缓冲仓内,当缓冲仓的煤位达到正常煤位时,开启缓冲仓下面的配料平板闸门,将煤放至定量仓中,由定量仓安置的称重传感器实时测量,当达到预定质量时,关闭缓冲仓配料闸门,待车厢到位后,通过定量下的摆动式溜槽装入车厢内,同时由溜槽的唇部将煤刮平,从而实现连续准确动态快速装车。 二、系统简介 本控制系统采用的是美国AB公司ControlLogix系统系列的PLC对设备进行控制。并通过以太网与一用一备两台上位机通讯。 ZKD快速定量装车控制系统主要由以下几部分组成: 1、PLC柜 2、MCC柜 3、操作台 4、现场操作箱 5、上位机及打印机 6、现场仪表 称量仓的的煤量是由拉姆齐MT2000静态重量指示仪来测量并通过中间继电器发给PLC控制系统,由PLC来控制缓冲仓的四个闸板。操作人员可以在控制室通过上位机看到列车的装车情况,并通过操作台对列车进行加煤。现场操作箱主要是用户检修时可在现场操作设备。 ControlLogix系统描述 1.系统综述 ControlLogix是一种被称为混合控制系统的新概念控制器,为DCS系统提供了日益完

离港系统手册-终结版

中国航信离港系统讲义 中国民航信息网络股份有限公司 客户服务部

目录一. 离港系统简介 (5) 系统介绍(软件) (5) .终端与主机的连接(硬件) (5) .系统使用基础知识 (5) 二. 基本系统指令 (5) .进入系统 (5) .工作区操作DA/SI/AI/SO/AO/AN (5) .工作号定义 (6) .页控制PG/PF/PN/PB/PL (6) .打印指令PT/PC (6) .查询指令CD/CNTD/CO/TIME/ACRT/HELP (6) 三.工作流程 (6) 四. 建立航班 (7) .基础指令EX/CND/SEI/SEM/CG (7) .建T-CARD BF:T (7) .查看过渡区航班SFL (8) .生效过渡区中的航班BP:R/ACT (8) .查看生效航班AFL (8) .删除航班T-CARD BF:T (9) .航班建立流程 (9) .查看及修改航班信息 (9) 查看航班信息FI (9) 修改航班信息FU(单项修改) (10) 修改航班信息FDC (多项修改) (10) 显示及修改编目航班信息CSD/CSM (10) 五. 准备航班 (12) .初始化航班IF (12) 查看名单报MB/MD (12) 设置缺省航班FT (12) 航班状态显示SY (12) 删除航班初始化DFL (13) 航班座位控制 (13) 航班座位图显示SE (13) .锁定座位BS (14) 改变座位性质SU (15) 保留座位RS (15) 锁过站座位BT (15) 分配座位AL (15) 预留座位JCS# PA# (15) 释放保留座位RA (15) 六. 控制航班: (17)

智能交通系统操作手册V1.0

智能交通系统软件操作手册V1.0 1. 系统简介 2. 系统运行环境 3. 系统软件安装 4. 系统软件启动运行

5. 系统软件操作说明 5.1、电子地图 软件的电子地图整体框架如下:进入主界面如下图。 从主界面我们可以看到,软件由功能切换面板、菜单栏、主操作界面及状态栏等组成。 菜单栏 功能切换面板Array 主操作界面状态栏

5.1.1、地图显示 点击电子地图与路口背景图之间的按钮进行画面的全屏操作 5.1.2、地图缩放 该地图具有3倍的缩放功能,点击电子地图的左上角的“+”表示对地图实行原基础的放大一倍,点击“-”表示对地图实行原基础的缩小一倍。 5.1.3、电子地图的拖动 在电子地图上,按住鼠标左键能拖动地图来达到观察预期所要的地图信息。 5.1.4、电子地图路口范围点击 该软件能直接在电子地图上直接点击相应的路口控制机,从而获取该路口的相关信息。点击地图上

的图标,如点击正确,则图上的图标就会出现“√”及染色改变。点击正确的相应的路口控制机图标表示如下图: 点击后,在路口背景图上显示了该路口的名称等信息。 5.1.4、地图输出 该软件能对地图上的任一个地图实行打印输出。将所希望打印的地图范围设定,以软件的边框为界,然后点击右键,在下拉菜单里选择打印。

5.1.5、设计图输出 在地图上点击鼠标右键,弹出下拉菜单栏,选择路口设计图 点击路口设计图后,就会进入设计图纸的界面。 在路口设计图的界面上,双击鼠标左键,能对图纸实行全屏操作的切换。当需要推出路口设计图回到电子点图是,按ESC键进行推出操作。

5.1.6、电子地图右键菜单 该电子点图右键菜单,包含了该软件的各大子系统的功能在里面,包括电子地图、相位编辑等等功能,

快速定量装车站使用说明.

快速定量装车站软件说明书 天地科技股份有限公司

一、系统说明 1.1系统概述 大型快速定量装车站基于大型料斗秤的工作原理,预先在定量仓中按车皮标重装载,通过闸门和卸料溜槽控制,向行进中的车厢快速卸载,实现一次连续动态行进中的快速准确装车。快速定量装车系统主要由大型钢结构、装车机械设备、称重系统、液压系统、电控系统、软件系统组成。 缓冲仓的目的是存储一定量的煤炭,以确保在正常工作中有足够的煤炭用于装车,从而避免煤炭输送机频繁启动;定量称重装车用于快速准确定量装车;装车机械设备用于控制装车煤流;液压系统为各种机械设备提供动力;电控系统用于装车系统中所有设备监测和自动控制;自动润滑系统为装车机械设备提供润滑,保证设备的使用寿命;软件系统用于判断发出各种控制指令,调节装车精度,监测各设备的运行状态,记录存储装车记录和报警信息。 1)集中控制系统组成 本工程的集中控制采用AB系列PLC,采用主从通讯,通过ControlNet通讯网络组成有机的整体;高压供电系统微机保护装置等其他设备,必须能通过MODBUS接入就近的PLC分站并可以实现与主网进行通讯。变频器系统通过DeviceNet接入就近的PLC 分站并可以实现与主网进行通讯;最终主网通过光纤传送到集控室内到。 本系统提供与选煤厂调度监测系统的通讯接口,以便及时监测设备运行状态及相关参数。本生产控制系统的网络形成独立的控制网,避免遭受外界网络病毒攻击造成控制系统的不稳定。 2)计算机监控系统组成 计算机监控系统提供全站范围的实时监控,整个计算机监控系统将是分层次结构的控制系统,完成整个系统的控制、显示、设备运行状态监控及设备故障报警,数据的监测、存储、分析、报表打印等功能要求。计算机监控系统配置分为三层:第一层:主控室级:主控室硬件主要由操作员工作站、工程师工作站、打印机等构成,工程师工作站用来完成组态工作并具有完全的操作员站功能,操作员站主要用于操作;由AB公司RSVIEW32软件组态构成系统监控软件平台,实现全站的系统监控及生

快速定量装车站

快速定量装车站系统用户手册 目录

第1部分快速定量装车站介绍 (3) 1.1系统概述 (3) 1.2装车工艺 (3) 1.3各子系统描述 (5) 1.3.1钢结构 (5) 1.3.2机械设备 (6) 1.3.3称重系统 (7) 1.3.4液压系统 (10) 1.3.5配电系统 (10) 1.3.6控制系统 (11) 第2部分开车和停车顺序 (13) 2.1原则 (13) 2.2自动装车启动顺序 (14) 2.3自动装车停止顺序 (v15) 2.4紧急停车 (16) 第3部分装车运行前、中、后应检查的项目 (16) 3.1运行前需检查的项目 (17) 3.1.1基本要求 (17) 3.1.2 主要设备 (17) 3.2 生产过程中需检查的项目 (18) 3.2.1基本要求 (18) 3.2.2主要设备 (18) 3.2.3停车后需检查的项目 (19) 3.2.4 控制室操作人员须知 (19) 第4部分常见问题及解决方法 A.给煤/料系统 (19) B.装载系统 (20) 第5部分计算机软件操作说明 (21)

第1部分:快速定量装车站介绍 1.1系统概述 快速定量装车站是基于大型料斗秤的工作原理,根据列车额定载重在定量仓中预设吨位,然后通过液压闸门和溜槽控制,向行进中的列车车厢快速卸料,实现连续、快速、准确装车。快速定量装车系统主要由钢结构、机械设备、称重系统、液压系统、自动润滑系统、电控系统及软件系统组成。 缓冲仓的作用主要是存储一定的煤量,以确保在装车过程中有足够的物料用于装车,避免高压皮带电机频繁启动;装车机械设备用于控制装车煤流;称重系统装车用于快速准确定量装车;液压系统为各种机械设备提供动力;自动润滑系统为装车机械设备提供润滑,保证设备的使用寿命;电控系统用于装车系统中所有电气设备供配电和运行控制;软件系统用于判断发出各种控制指令,调节装车精度,监测各设备的运行状态,记录存储装车记录和报警信息。 装车站工作制度同矿井,年工作300天,服务年限同矿井。 产品结构:块精煤灰分≤13.5%,水分<6%,分为100-25mm(洗混块)、25-13mm(洗小块)两个级别;末精煤灰分≤10.5%,水分<10%;混煤灰分≤31.5%,为动力用煤。块)两个级别;末精煤灰分≤10.5%,水分<10%;混煤灰分≤31.5%,为动力用煤。 1.2 装车工艺 工艺流程如图1.1所示,其中皮带、给煤机数量因矿而异。主要流程描述:列车到站后,首先确定装车品种,启动初始静态计算软件,确定开启给煤机的台数及给煤量,启动产品煤仓给料系统,落料经输煤皮带,送至装车塔楼内的缓冲仓,待缓冲仓达到一定煤位后,启动连续装车系统,控制系统自动计算决定缓冲仓下的液压闸门的开启数量和运行时间,按给定重量精确配料将煤放至称重仓中。称重仓下安装有高精度的称重传感器,对配料实时测量实时反馈,与缓冲仓形成闭环控制,逐渐减缓配料直至达到预定重量时,自动关闭缓冲仓配料闸门。列车匀速行驶,车厢就位,称重仓下卸料闸门开启,通过装车溜槽放入列车车厢,溜槽自动平煤,使车厢煤堆形成梯形堆积。装完第一节车箱后,卸料闸门自动关闭,与此同时,缓冲仓配料再次闸门自动计算开启,进行第二节车厢精确配料称重,配料完成,车厢刚好行进到装车位置,装载第二节车厢……如此循环,列车保持连续匀速前进,直至装完最后一节车厢后,溜槽自动提升移动到锁定位置并上栓固定,此时打印机可随即打出具有装车日期、时间、车号、车型、标准载重、净重、误差、收货单位和到站等数据的装车报表。

(车道系统)操作手册

目录 1.术语和定义----------------------------------------------------------------------------------- 2 2.车道设备介绍 -------------------------------------------------------------------------------- 3 2.1.车道设备-------------------------------------------------------------------------------- 3 2.2.称重设备-------------------------------------------------------------------------------- 3 2.3.称重平台-------------------------------------------------------------------------------- 4 3.计重收费的政策和标准 ---------------------------------------------------------------------- 4 3.1.里程费计费规则 ------------------------------------------------------------------------ 4 3.2.公路承载能力标准的定义 -------------------------------------------------------------- 6 4.车道操作流程 -------------------------------------------------------------------------------- 7 4.1.系统功能-------------------------------------------------------------------------------- 7 4.2.入口车道系统--------------------------------------------------------------------------- 8 4.3.出口车道系统-------------------------------------------------------------------------- 12

装车站操作手册(全)

快速定量装车站操作手册

目录 第1部分快速定量装车站介绍 (3) 1.1系统概述 (3) 1.2装车工艺 (3) 1.3各子系统描述 (5) 1.3.1钢结构 (5) 1.3.2机械设备 (6) 1.3.3称重系统 (7) 1.3.4液压系统 (10) 1.3.5配电系统 (10) 1.3.6控制系统 (11) 第2部分开车和停车顺序 (13) 2.1原则 (13) 2.2自动装车启动顺序 (14) 2.3自动装车停止顺序 (15) 2.4紧急停车 (16) 第3部分装车运行前、中、后应检查的项目 (16) 3.1运行前需检查的项目 (17) 3.1.1基本要求 (17) 3.1.2主要设备 (17) 3.2生产过程中需检查的项目 (18) 3.2.1基本要求 (18) 3.2,2主要设备 (18) 3.2.3停车后需检查的项目 (19) 3.2.4 控制室操作人员须知 (19) 第4部分常见问题及解决方法 A.给煤/料系统 (19) B.装载系统 (20) 第5部分计算机软件操作说明 (21) 讲解列车编组、调入列车、设备控制、生产查询、报表打印、维护保养等要领

第1部分:快速定量装车站介绍 1.1系统概述 大型快速定量装车站基于大型料斗秤的工作原理,预先在定量仓中按车皮标重装载,通过闸门和卸料溜槽控制,向行进中的车厢快速卸载,实现一次连续动态行进中的快速准确装车。快速定量装车系统主要由大型钢结构、装车机械设备、称重系统、液压系统、电控系统、软件系统组成。 缓冲仓的目的是存储一定量的煤炭,以确保在正常工作中有足够的煤炭用于装车,从而避免煤炭输送机频繁启动;定量称重装车用于快速准确定量装车;装车机械设备用于控制装车煤流;液压系统为各种机械设备提供动力;电控系统用于装车系统中所有设备监测和自动控制;自动润滑系统为装车机械设备提供润滑,保证设备的使用寿命;软件系统用于判断发出各种控制指令,调节装车精度,监测各设备的运行状态,记录存储装车记录和报警信息。 装车站工作制度同矿井,年工作300天,服务年限同矿井。 1.2 装车工艺 装车工艺过程如下:待装列车到站后,首先确定待装品种,启动初始静态计算软件,确定开启给煤机的台数及给煤量,启动输煤系统,所需要煤种经输煤皮带,过渡溜槽等环节,将煤卸至装车站内的缓冲仓,同时启动动态优化计算软件,根据缓冲仓煤位、列车装车情况及煤炭品种自动调节变频给煤机,控制给煤量,形成闭环控制系统;待缓冲仓达到一定煤位后,开启缓冲仓下面的配料平板闸门,将煤放至称重仓中,由称重仓安置的称重传感器实时测量,当达到预定重量时,关闭缓冲仓配料闸门,实现静态精确称重,待车厢到位后,通过称重仓下的伸缩式装车溜槽装入车厢内,将首次定量的物料装入第一个车箱,同时由溜槽的唇部将煤刮平。装车过程中溜槽可自动刮平车内煤,形成梯形堆积。装完第一节车箱后,溜槽微抬、关闭闸门;与此同时,缓冲仓双翼滑动式液压无尘平板闸门自动打开进行第二次配料称重循环作业。定量完毕,匀速行进中的车辆已进入下一个装车位置,放下装车溜槽并打开称重仓下双翼滑动式液压无尘平板闸门,装载第二节车厢……如此连续循环作业,从而实现连续准确动态快速装车。列车连续匀速前进,直至装完最后一节车厢后,溜槽自动提升移动到锁定位置并上栓固定,此时打印机可随即打出具有装车日期、时间、车号、车型、标准载重、净重、误差、收货单位和到站等数据的装车清单。

系统部署手册

XXXXXXXXXXXXXXXXX项目 XXXXXX系统 部 署 手 册 作者:xxxxxxx XXXX股份有限公司 XXXX年XX月

目录 一、环境 (3) 1.系统环境: (3) 2.软件环境: (3) 3.硬件环境 (3) 二、系统部署 (3) 1.Jdk安装 (3) 1.1 安装jdk (3) 1.2 jdk环境变量配置 (5) 2.oracle安装 (6) 2.1 oracle安装 (6) 3.apache-tomcat安装 (14) 4.XXXXXXXXXX系统需要修改的地方 (15) 5. 启动、停止Tomcat服务器 (15)

一、环境 1.系统环境: Windows2003 32位 2.软件环境: Java JDK版本:jdk1.6 以上版本 oracle版本:Oracle 11g 或oracle 10g tomcat 版本: tomcat 6.3 3.硬件环境 二、系统部署 1.Jdk安装 1.1 安装jdk 运行下载好的jdk-6u10-beta-windows-i586-p.exe,按提示进行操作。

在设置JDK安装路径时,建议放在C:\jdk1.6或D:\jdk1.6这种没有空格字符的目录文件夹下,避免在以后编译、运行时因文件路径而出错。这里我们将它安装到D:\jdk1.6目录下。 安装好JDK后,会自动安装JRE。这样JDK的安装即完成。

1.2 jdk环境变量配置 新建系统变量Classpath和Path,

详细设置如下图所示。 2.oracle安装 2.1 oracle安装 1. 解压缩文件,将两个压缩包一起选择,鼠标右击 -> 解压文件如图 2.两者解压到相同的路径中,如图:

快速定量装车站使用说明

. 快速定量装车站软件说明书 天地科技股份

一、系统说明 1.1系统概述 大型快速定量装车站基于大型料斗秤的工作原理,预先在定量仓中按车皮标重装载,通过闸门和卸料溜槽控制,向行进中的车厢快速卸载,实现一次连续动态行进中的快速准确装车。快速定量装车系统主要由大型钢结构、装车机械设备、称重系统、液压系统、电控系统、软件系统组成。 缓冲仓的目的是存储一定量的煤炭,以确保在正常工作中有足够的煤炭用于装车,从而避免煤炭输送机频繁启动;定量称重装车用于快速准确定量装车;装车机械设备用于控制装车煤流;液压系统为各种机械设备提供动力;电控系统用于装车系统中所有设备监测和自动控制;自动润滑系统为装车机械设备提供润滑,保证设备的使用寿命;软件系统用于判断发出各种控制指令,调节装车精度,监测各设备的运行状态,记录存储装车记录和报警信息。 1)集中控制系统组成 本工程的集中控制采用AB系列PLC,采用主从通讯,通过ControlNet通讯网络组成有机的整体;高压供电系统微机保护装置等其他设备,必须能通过MODBUS接入就近的PLC分站并可以实现与主网进行通讯。变频器系统通过DeviceNet接入就近的PLC 分站并可以实现与主网进行通讯;最终主网通过光纤传送到集控室到。 本系统提供与选煤厂调度监测系统的通讯接口,以便及时监测设备运行状态及相关参数。本生产控制系统的网络形成独立的控制网,避免遭受外界网络病毒攻击造成控制系统的不稳定。 2)计算机监控系统组成

计算机监控系统提供全站围的实时监控,整个计算机监控系统将是分层次结构的控制系统,完成整个系统的控制、显示、设备运行状态监控及设备故障报警,数据的监测、存储、分析、报表打印等功能要求。计算机监控系统配置分为三层: 第一层:主控室级:主控室硬件主要由操作员工作站、工程师工作站、打印机等构成,工程师工作站用来完成组态工作并具有完全的操作员站功能,操作员站主要用于操作;由AB公司RSVIEW32软件组态构成系统监控软件平台,实现全站的系统监控及生产的统一集中管理。为增强系统的通讯速度和兼容性,该层采用工业以太网。本部分可以利用快速装车站的已有设备。 第二层:车间控制级:由AB公司的Controlnet和DeviseNet、DH+等通讯协议分别构成网络,连接各个控制站实现全厂的监控有机整体。为保证系统运行的可靠,该层采用冗余网络配置。 第三层:现场控制级:由ControlLogix系列PLC的控制站(主站+远程I/O模块)组成,完成全厂生产流程的实时过程控制。 3)PLC主、分站设置说明 依据集装站工艺系统以及各系统分布情况,采取就近控制的原则,采用AB系列PLC,ControlLogix的控制主站和分站,系统在产品仓下低压配电室、储煤场高低压配电室分别设Controlnet控制分站。其中储煤场高低压配电室设置1个控制主站,1个远程I/O 控制分站;产品仓下低压配电室设1个控制主站,1个远程I/O控制分站,整个系统通过总线Controlnet相连,形成分布式控制系统。每一控制站要有25%的备用点。 PLC系统主站设在快速装车站集控室,由供方提供,关于通讯接口配置如下:CPU模块:1756-L61 ControlNet通讯模块: 1756-CNB

百望快速开票系统用户操作手册

百望快速开票系统用户操作手册V1.0.1 二零一六年十月

目录 专业术语 (3) 1 百望快速开票系统整体框架 (4) 1.1 百望发票助手微信端 (5) 1.2 百望发票助手PC端 (5) 1.3 增值税发票税控开票软件(税控盘版) (6) 2 百望快速开票系统功能操作 (6) 2.1 按功能菜单操作 (6) 2.1.1 百望发票助手微信端 (6) 2.1.2 百望发票助手PC端 (35) 2.1.3 开票软件端 (42) 2.2 按业务流程操作 (46) 2.2.1 消费者(购方)操作步骤 (46) 2.2.2 商家(销方)操作步骤 (46) 3 常见问题 (47) 3.1 商家(开票方)不能识别扫描枪。 (47) 3.2 开票界面自动填充7字符ID号码。 (47)

专业术语

1百望快速开票系统整体框架 百望云服务提供百望发票助手微信端所有功能和百望发票助手PC端部分功能、开票软件部分功能实现快速开票所必须的环境。 商家(开票方)通过注册百望发票助手PC端、百望发票助手微信端到百望云服务以保证百望发票助手PC端、微信端、开票软件三者的正常通信和交互。 微信端及PC端各自以不同方式生成待开票信息供开票软件使用以实现快速开票。 以下将分别列出三者主要功能及相互间业务关联。

1.1百望发票助手微信端 主要为实现消费者(受票方)主动提供开票信息给商家(开票方)或商家(开票方)通过线上主动获取消费者(受票方)二维码名片信息实现快速开票的功能。该部分整体功能详见上图。 1.2百望发票助手PC端 主要功能为获取商家(开票方)税控设备信息、注册微信服务、商家(开票方)绑定信息维护、打印商家(开票方)二维码名片和打印百望发票助手二维码名片。

系统操作手册

全国农产品加工业年度统计分析系统 用户操作手册 二〇一四年九月

目录 第一章系统概述 ............................................................................... - 1 - 1.1 系统概述 ............................................................................... - 1 - 1.2 权限说明 ............................................................................... - 1 - 1.3 手册说明 ............................................................................... - 2 -第二章系统运行环境 ....................................................................... - 3 - 2.1系统运行环境要求................................................................ - 3 - 2.2相关设置 ............................................................................... - 3 -第三章用户登录 ............................................................................... - 5 - 3.1 网址与登录方式.................................................................... - 5 -第四章区县用户操作指南................................................................. - 6 - 4.1 报表填报 ............................................................................... - 6 - 4.1.1 数据填报 .............................................................................................................. - 6 - 4.1.3 审核数据 .............................................................................................................. - 7 - 4.1.2 数据修改 .............................................................................................................. - 8 - 4.1.3数据明细.............................................................................................................. - 9 - 4.1.4数据删除............................................................................................................ - 10 - 4.1.5 数据上报 ............................................................................................................ - 10 - 4.2综合查询.............................................................................. - 11 - 4.3 账户管理 ............................................................................. - 11 - 4.4 报表定制 ............................................................................. - 13 -第五章地市、省厅系统用户操作指南 .......................................... - 14 - 5.1 数据审核 ............................................................................. - 14 -

系统安装部署手册模板

中国太平洋保险(集团)股份有限公司Xxxxxxxxxxx项目 系统安装部署手册 V1.0 项目经理: 通讯地址: 邮政编码:200002 电话: 传真: 电子邮件: 文档信息 项目名称:项目名称 项目经理:项目经理文档版本编号:版本编号项目管理阶段:文档版本日期:版本日期质量复审方法:项目经理和技术经理复审 起草人:起草日期: 复审人:复审日期: 目录 1 引言 3

1.1 编写目的 3 1.2 系统背景 3 1.3 定义 3 1.4 参考资料 3 2 硬件环境部署 3 2.1 硬件拓扑图 3 2.2 硬件配置说明 3 3 软件环境部署 3 3.1 软件环境清单 3 3.2 软件环境部署顺序 3 3.3 操作系统安装 3 3.4 数据库安装 4 3.5 应用级服务器安装 4 3.6 其他支撑系统安装 4 4 应用系统安装与配置 4 4.1 应用系统结构图 4 4.2 安装准备 4

4.3 安装步骤 4 4.4 系统配置 4 5 系统初始化与确认 4 5.1 系统初始化 4 5.2 系统部署确认 4 6 回退到老系统 4 6.1 配置回退 5 6.2 应用回退 5 6.3 系统回退 5 6.4 数据库回退 5 7 出错处理 5 7.1 出错信息 5 7.2 补救措施 5 7.3 系统维护设计 5

1 引言 1.1 编写目的 [说明编写系统安装部署手册的目的] 1.2 系统背景 [ a.说明本系统是一个全新系统还是在老系统上的升级; b.列出本系统的使用单位/部门、使用人员及数量。] 1.3 定义 [列出本文件中用到的专门术语的定义和缩写词的原词组。] 1.4 参考资料 [列出安装部署过程要用到的参考资料,如: a.本项目的完整技术方案; b.系统运维手册; c.其他与安装部署过程有关的材料,如:工具软件的安装手册] 2 硬件环境部署 2.1 硬件拓扑图 [列出本系统的硬件拓扑结构,如服务器、网络、客户端等。]

相关主题