搜档网
当前位置:搜档网 › 高中数学 函数的定义域与值域教案 新人教版

高中数学 函数的定义域与值域教案 新人教版

高中数学 函数的定义域与值域教案 新人教版
高中数学 函数的定义域与值域教案 新人教版

函数的定义域与值域

例1.下列各组函数中,表示同一函数的是( ).

A. 1,x

y y x ==

B. 11,y x y

+C.

,y x y ==

2||,y x y == 解:

变式训练1:下列函数中,与函数

y=x 相同的函数是 ( ) A.y=

x

x 2

x

)

2x

D.y=x 2lo g 2

解:

变式训练2:下列是映射的是………………………………………( )

(A)1、

2、

3 (B)1、

2、5 (C)1、

3、5 (D)1、2、3、5 变式训练3:下面哪一个图形可以作为函数的图象……………………( )

(A) (B) (C) (D)

变式训练4:如果(x ,y )在映射f 下的象为(x +y ,x -y ),那么(1,2)的原象是…………( ) (A )(-23,21) (B) (23,-21) (C) (-23,-21) (D) (23,2

1

例2.给出下列两个条件:(1)f(x +1)=x+2x

(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式

解:(1)令t=x +1,∴t≥1,x=(t-1)

2

则f(t)=(t-1)2+2(t-1)=t 2-1,即f(x)=x 2

-1,x∈[1,

(2)设f(x)=ax

2

∴f(x+2)=a(x+2)2

+b(x+2)+c

则f(x+2)-

∴??

?=+=2244

4b a a ,

??

?-==1

1b a ,又f(0)=3?c=3,∴f(x)=x 2

-

变式训练2:(1)已知f (12+x

)=lgx ,求f (x );

(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x )

; (3)已知f (x )满足2f (x )+f (x

1

)=3x ,求f (x

解:(1)令

x

2+1=t ,则x=12

-t ,

∴f(t )=lg

12

-t ,∴f(x )=lg 1

2-

x

(2)设f (x )=ax+b ,则

3f (x+1)-2f (x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17, ∴a=2,b=7,故f (x )=2x+7. (3)2f (x )+f (

x

1

)=3x ,

把①中的x 换成

x 1,得2f (x 1)+f (x )=x

3

①×2-②得3f (x )=6x-

x 3,∴f(x )=2x-x

1

.

变式训练3:求满足下列条件的函数解析式: ⑴2

1)11(x x

x f -=+ ⑵)(,14))((x f x x f f -=是一次函数.

例3、已知函数f(x)=??

?????<-=>.

0,1,0,

1,0,2x x

x x x

(1)画出函数的图象;(2)求f(1),f(-1),f [])1(-f 的值.

解:(1)分别作出f(x)在x >0,x=0,x <0段上的图象,如图所示,作法略. (2)f(1)=12

=1,f(-1)=-,11

1

=-f [])1(-f =f(1)=1.

变式训练:??

???≥<<--≤+=2 221 1 |1|)(2

x x x x x x x f ,那么f (f (-2))= ;如果f (a)=3,那么实数

a= .

例4、求下列函数的定义域: (1)y=

x

x x -+||)1(0 (2)y=

23

2

53

1

x x -+-;

1

·1-+x x

解:(1)由题意得,0

||0

1

???>-≠+x x x 化简得,||1??

?>-≠x x x 即.01

?

?

?<-≠x x 故函数的定义域为{x|x <0且x≠-

(2)由题意可得,05032

2???≥-≠-x x 解得.553

??

???≤≤-±≠x x

故函数的定义域为{x|-5≤x≤5且x≠±3

(3)要使函数有意义,必须有

,0

10

1??

?≥-≥+x x 即,11???≥-≥x x ∴x≥1,故函数的定义域为[1,+∞)

例5、设函数y=f(x)的定义域为[0,1],求下列函数的定义域

(1)y=f(3x); (2)y=f(

x

1

(3)y=f()

3

1()31-++x f x (4)y=f(x+a)+f(x-

例6、若函数f (x )=2

1

x 2

-x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值

解:∵f(x )=2

1(x-1)2

+a-2

1.

∴其对称轴为x=1,即[1,b ]为f (x )的单调递增区间. ∴f(x )min =f (1)=a-2

1=1 ① f (x )max =f (b )=2

1b 2

-b+a=b ②

由①②解得??

???

==.3,

23b a

高中数学正弦函数的性质

正弦函数的性质 一、 教学目标: 1、 知识与技能 (1)进一步熟悉单位圆中的正弦线;(2)理解正弦诱导公式的推导过程;(3)掌握正弦诱导公式的运用;(4)能了解诱导公式之间的关系,能相互推导;(5)理解并掌握正弦函数的定义域、值域、周期性、最大(小)值、单调性、奇偶性;(6)能熟练运用正弦函数的性质解题。 2、 过程与方法 通过正弦线表示α,-α,π-α,π+α,2π-α,从而体会各正弦线之间的关系;或从正弦函数的图像中找出α,-α,π-α,π+α,2π-α,让学生从中发现正弦函数的诱导公式;通过正弦函数在R 上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。 3、 情感态度与价值观 通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 二、教学重、难点 重点: 正弦函数的诱导公式,正弦函数的性质。 难点: 诱导公式的灵活运用,正弦函数的性质应用。 三、学法与教学用具 在上一节课的基础上,运用单位圆中正弦线或正弦函数图像中角的关系,引发学生探索出正弦函数的诱导公式;通过例题和练习掌握诱导公式在解题中的作用;在正弦函数的图像中,直观判断出正弦函数的性质,并能上升到理性认识;理解掌握正弦函数的性质;以学生的自主学习和合作探究式学习为主。 教学用具:投影机、三角板 第一课时 正弦函数诱导公式 一、教学思路 【创设情境,揭示课题】 在上一节课中,我们已经学习了任意角的正弦函数定义,以及终边相同的角的正弦函数值也相等,即sin(2k π+α)=sin α (k∈Z),这一公式体现了求任意角的正弦函数值转化为求0°~360°的角的正弦函数值。如果还能把0°~360°间的角转化为锐角的正弦函数,那么任意角的正弦函数就可以查表求出。这就是我们这一节课要解决的问题。 【探究新知】 1. 复习:(公式1)sin(360?k +α) = sin α 2. 对于任一0?到360?的角,有四种可能(其中α为不大于90?的非负角) [ [ [ ??????β∈βα-β∈βα+β∈βα-β∈βα=β为第四象限角 ),当为第三象限角), 当为第二象限角 ), 当为第一象限角,当οοοοο ο οο οοο36027036027018018018090180) 900 (以下设α为任意角) 3. 公式2: 设α的终边与单位圆交于点P(x ,y ),则180?+α终边与单位圆交于点P’(-x ,-y ),由正弦线可知: sin(180?+α) = -sin α 4.公式3: 同样可得: P (,-y )

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高三数学复习教案:指数与指数函数教案

第二章 指数函数与对数函数及函数的应用 一、知识网络 二、课标要求和最新考纲要求 1、指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2、对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4、函数与方程

(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。 (2)理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数. 5、函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 (3)能利用给定的函数模型解决简单的实际问题。 三、命题走向 函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势. 考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想. 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考查是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质。同时它们与其它知识点交汇命题,则难度会加大。

函数的定义域和值域

函数的定义域、值域 一、知识回顾 第一部分:函数的定义域 1.函数的概念: 设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域. 如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或 a x y =,所有的函数值所构成的集合{} A x x f y y ∈=),(叫做这个函数的值域. 2.定义域的理解: 使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <. 满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,. 满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作 (][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括 时用空心点表示. 4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集. 5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零. (4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.

高中数学函数知识点详细

第 二章 函数 一.函数 1、函数的概念: (1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中 的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则 (3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定 义域一致 (两点必须同时具备) 2、定义域: (1)定义域定义:函数)(x f 的自变量x 的取值范围。 (2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。 (3)确定函数定义域的常见方法: ①若)(x f 是整式,则定义域为全体实数 ②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数x y 111+ = 的定义域。 ③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数 例1. 求函数 () 2 14 34 3 2 -+--=x x x y 的定义域。 例2. 求函数()0 2112++-= x x y 的定义域。 ④对数函数的真数必须大于零 ⑤指数、对数式的底必须大于零且不等于1 ⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10 ≠=x x ⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域 已知函数)(x f 的定义域为[0,1]求)(2 x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域 3、值域 : (1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。 (2)确定值域的原则:先求定义域 (3)常见基本初等函数值域: 一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

高中数学人教A版(2019)必修第一册第四章4.2《指数函数 》教 案

《指数函数及其性质》 教材分析 本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图像研究指数函数的性质)等,同时,编写时充分关注与实际问题的结合,体现数学的应用价值. 根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情景,为学生的数学探究与数学思维提供支持. 教学目标 1.理解指数函数的概念和意义,能画出具体指数函数的图像,掌握指数函数的性质. 2.采用具体到一般、数形结合的思想方法,体会研究具体函数的性质. 3.使学生了解指数函数模型的实际背景,认识数学与现实其他学科的联系;感受探究未知世界的乐趣,从而培养学生对数学的热爱情感. 教学重难点 【教学重点】 掌握指数函数的概念和性质. 【教学难点】 用数形结合的方法从具体到一般地探索、概括指数函数的性质. 课前准备 引导学生通过实际问题了解指数函数的实际背景,通过本节课导学案的使用和预习,初步理解指数函数的概念和意义,根据图像理解指数函数的性质,带着问题学习. 教学过程

(一)创设情景,揭示课题 1.对任意实数x,3x的值存在吗?(-3)x的值存在吗?1x的值存在吗? 2.y=3x是函数吗?若是,这是什么类型的函数? 3.(备选引例) (1)思考1:用清水漂洗含1个质量单位污垢的衣服,若每次能洗去残留污垢的,则漂洗x次后,衣服上的残留污垢y与x的函数关系是什么? (2)(合作讨论)人口问题是全球性问题,由于全球人口迅猛增加,已引起全世界关注.世界人口2000年大约是60亿,而且以每年1.3%的增长率增长,按照这种增长速度,到2050年世界人口将达到100多亿,大有“人口爆炸”的趋势.为此,全球范围内敲起了人口警钟,并把每年的7月11日定为“世界人口日”,呼吁各国要控制人口增长. ○1按照上述材料中的1.3%的增长率,从2000年起,x年后我国的人口将达到2000年的多少倍? ○2到2050年我国的人口将达到多少? ○3你认为人口的过快增长会给社会的发展带来什么样的影响? (3)上一节中GDP问题中时间x与GDP值y的对应关系y=1.073x(x∈N*,x≤20)能否构成函数? (4)一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么? 提出问题:上面的几个函数有什么共同特征? (二)研探新知 1.指数函数的概念

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

高中数学全套讲义 必修4 正弦型函数图像与性质 中等教师版

目录 正弦型函数的图像与性质 (2) 模块一:正弦型函数图像与性质 (2) 考点1:正弦型函数性质 (3) 考点2:五点法作正弦型函数图像 (6) 考点3:求正弦型函数解析式 (7) 课后作业: (10)

正弦型函数的图像与性质模块一:正弦型函数图像与性质1.正弦函数sin =. y x 2

3.函数()sin y A x ω?=+的性质 ⑴ 周期性:函数()sin y A x ω?=+(其中A ω?,,为常数,且00A ω≠>,)的周期仅与自变量的系数有关.最小正周期为2π T ω =. ⑵ 值域:[]A A -, ⑶ 奇偶性:当()π k k ?=∈Z 时,函数()sin y A x ω?=+为奇函数; 当()π π 2 k k ?= +∈Z 时,函数()sin y A x ω?=+为偶函数. ⑷ 单调区间:求形如()sin y A ωx φ=+或()cos y A ωx φ=+(其中0A ≠,0ω>)的函数 的单调区间可以通过图象的直观性求解,或根据解不等式的方法去解答,列不等式的原则是:①把“()0ωx φω+> 视为一个“整体 .②0A >()0A <时, 所列不等式的方向与()sin y x x =∈R 、()cos y x x =∈R 的单调区间对应的不等式的方向相同(反). ⑸ 对称轴方程:0x x =,其中()0π π 2 x k k ω?+= +∈Z . ⑹ 对称中心:()00x , ,其中()0π x k k ω?+=∈Z . 考点1:正弦型函数性质 例1.(1)(2019春?南平期末)已知函数()sin(2)f x x ?=+的图象关于直线3 x π = 对称,则 ?可能取值是( ) A . 2 π B .12 π - C . 6 π D .6 π - 解:函数 故选:D . (2)(2019春?娄底期末)函数5()3cos(4)6 f x x π =+ 图象的一个对称中心是( )

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

高一数学必修1《指数函数》教案

高一数学必修1《指数函数》教案 教学目标: 1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。 2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。 3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 教学重点、难点: 1、重点:指数函数的图像和性质 2、难点:底数a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。 教学方法:引导发现教学法、比较法、讨论法 教学过程: 一、事例引入 T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数? S:-------- T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对非典应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程: C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是:y = 2 x ) S,T:(讨论) 这是球菌个数y 关于分裂次数x 的函数,该函数是什么样的形式(指数形式), 从函数特征分析:底数2 是一个不等于1 的正数,是常量,而指数x 却是变量,我们称这种函数为指数函数点题。 二、指数函数的定义

C:定义:函数y = a x (a 0且a 1)叫做指数函数,x R.。 问题1:为何要规定a 0 且a 1? S:(讨论) C:(1)当a 0 时,a x 有时会没有意义,如a=﹣3 时,当x= 就没有意义; (2)当a=0时,a x 有时会没有意义,如x= - 2时, (3)当a = 1 时,函数值y 恒等于1,没有研究的必要。 巩固练习1: 下列函数哪一项是指数函数( ) A、y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

高中函数值域的经典例题 12种求法

一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。

高一数学《指数函数》优秀教案

高一数学《指数函数》优秀教案 导语:指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。下面是为您收集的教案,希望对您有所帮助。 一.教学目标: 1.知识与技能 (1)理解指数函数的概念和意义; (2)与的图象和性质; (3)理解和掌握指数函数的图象和性质; (4)指数函数底数a对图象的影响; (5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的大小 (6)体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观 (1)让学生了解数学生活,数学又服务于生活的哲理. (2)培养学生观察问题,分析问题的能力. 二.重、难点 重点: (1)指数函数的概念和性质及其应用. (2)指数函数底数a对图象的影响; (3)利用指数函数单调性熟练比较几个指数幂的大小

难点: (1)利用函数单调性比较指数幂的大小 (2)指数函数性质的归纳,概括及其应用. 三、教法与教具: ①学法:观察法、讲授法及讨论法. ②教具:多媒体. 四、教学过程 第一课时 讲授新课 指数函数的定义 一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)(2)(3) (4)(5)(6) (7)(8)(>1,且) 小结:根据指数函数的定义来判断说明:因为>0,是任意一个实数时,是一个确定的实数,所以函数的定义域为实数集R. 若<0,如在实数范围内的函数值不存在. 若=1,是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,不符合

智爱高中数学--函数值域求法十一种(详解)

函数值域求法十一种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 1. 求函数 x 1 y = 的值域。 解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞ 2. 求函数x 3y - =的值域。 解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 2. 配方法 配方法是求二次函数值域最基本的方法之一。 3. 求函数]2,1[x ,5x 2x y 2 -∈+-=的值域。 解:将函数配方得: 4)1x (y 2 +-= ∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y m i n =,当1x -=时,8y m a x = 故函数的值域是:[4,8] 3. 判别式法 4. 求函数 22x 1x x 1y +++= 的值域。 解:原函数化为关于x 的一元二次方程 0x )1y (x )1y (2 =-+- (1)当1y ≠时,R x ∈ 0)1y )(1y (4)1(2 ≥----=? 解得:2 3y 2 1≤≤ (2)当y=1时,0x =,而??????∈23,211 故函数的值域为?? ? ???23,21 5. 求函数)x 2(x x y -+ =的值域。 解:两边平方整理得:0y x )1y (2x 222 =++-(1) ∵R x ∈

相关主题