搜档网
当前位置:搜档网 › 北京市卷高考考试大纲—数学

北京市卷高考考试大纲—数学

北京市卷高考考试大纲—数学
北京市卷高考考试大纲—数学

2016年高考北京卷《考试说明》近期将公布。北京教育考试院相关部门负责人介绍,与往年相比,北京卷《考试说明》稳中有变。

语文

2016年语文学科在总体基本稳定的基础上,为更好地适应当前高中语文课程改革的形势,在考试内容等方面略有调整。

1.现代文阅读,在以往要求考生对“文中信息的分析、筛选、整合”基础上,增加信息的“运用”“对多个信息的比较、辨析”。

2.增加对阅读经典的要求。在现代文阅读和古诗文阅读中,提出“对中外文学经典”“对中国古代文化和文学经典”的“理解、感悟和评价”。

具体调整:

“附录”在保持原有“古诗文背诵篇目”不变的同时,增加“经典阅读篇目例举”,包括古今中外12部文学和文化经典,分别是:《论语》、《三国演义》、《红楼梦》、《呐喊》、《边城》、《四世同堂》、《红岩》、《平凡的世界》、《雷雨》、《欧也妮·葛朗台》、《巴黎圣母院》、《老人与海》。

经典阅读篇目主要依据《普通高中语文课程标准(实验)》“关于课外读物的建议”,并结合实际情况确定。“例举”二字,旨在鼓励考生在阅读这些篇目的基础上,能够更广泛地阅读。

阅读经典是目前语文课程改革的重点,在2015年高考“微写作”选作题中,就涉及了《三国演义》《平凡的世界》《四世同堂》和《巴黎圣母院》。但考虑到本届毕业生在高中三年的学习及复习的实际情况,2016年这12部经典阅读篇目暂不列入考生必须作答的范围,2017年、2018年逐步将这些篇目纳入考生必须作答的范围。

3.调整参考样题。

具体调整:

①删除考查点、题型有重复的样题,如删除原样题中测试题第5-9题、测试题第26题等;

②将旧的高考试题或测试题替换为2015年的高考题,如文言文阅读将2013年第6-10题替换为2015年的文言文第9-14题,将多文本阅读测试题《天坛之美》替换为2015年第1-8题等;

③增加2015年出现的新题,如散文《说起梅花》,作文“二选一”试题等。调整后,参考样题由2015年的70个小题变为73个小题。

数学

理科数学更换4道参考样题;文科数学更换2道参考样题。新换题目均选自2015年高考北京卷。

具体调整:

理科数学更换题目的位置信息如下:

【试题5】(2013年第7题)更换为(2015年第7题);【试题7】(2011年第6题)更换为(2015年第6题);【试题12】(2006年第8题)更换为(2015年第8题);【试题26】(2013年第18题)更换为(2015年第18题)。

文科数学更换题目的位置信息如下:

【试题13】(2014年第8题)更换为(2015年第8题);【试题26】(2011年第18题)更换为(2015年第19题)。

英语

英语“参考试卷”更换2道题,总分值为35分。

具体调整:

新换试题均选自2015年高考北京卷,新换试题位置均在第四部分“书面表达”。

新换试题具有以下特点:

1.以“巩固成果,稳步推进”为目标。

新换试题不突破考试范围,在题型结构、分值设定、能力要求上保持稳定。

2.注重基础考查。

试题任务具体,要求明确,对考生完成写作所需要的词汇、句式等要求均比较基础,题目中还给出了关键的提示词以帮助考生顺利完成写作任务。书信和稿件是考生比较熟悉的写作体裁,考生在英语学习过程中都应该有过类似的写作经历,有利于考生发挥自身真实的语言水平。

3.体现开放性。

试题命制注重考查考生分析问题、解决问题的能力,引导考生独立思考,摆脱单一方法、唯一答案的思维模式,鼓励考生最大限度地调动其语言运用能力,展现其丰富多彩的思维活动。书面表达部分第一节采用了考生熟悉的应用文形式,题目中规定了写作任务包含的范围,但是对于写作的具体内容并未一一罗列,需要考生自己展开积极、合乎逻辑的想象完成写作任务,为不同程度的考生提供了充分的思维发散空间。

4.体现了语言工具性与人文性的统一。

书面表达部分第一节的写作任务涉及具有强烈中华民族文化色彩的娱乐活动划龙舟,第二节通过写稿件的形式,宣传优秀民间艺术。试题要求运用英语完成真实的交际任务,很好地体现了语言的工具性;与此同时,写作内容强调中华文化的传承与传播,使以划龙舟和面人艺术为代表的中华文化在年轻一代中得以传承并走向世界。这对学生情感、态度和价值观都是一次正面的引导,使考生在考试的同时也经历了一次潜移默化的受教育过程。

物理

物理学科《考试说明》中,“试卷结构”和“考试内容与要求”均无变化。参考样题有所调整。

具体调整:

1.将2015年《考试说明》中第50、53题分别替换为2015年北京高考理综卷第19、20题。

2.将2015年《考试说明》中第86题替换为2015年北京高考理综卷第21题。

化学

化学学科在考核目标、考试内容、范围及要求上,与往年保持稳定,但随着课改的进一步深入,高考试题从选材到题目的呈现方式等方面在逐年发生变化,因此,“参考样题”在保持原有题型数量和结构的基础上,做出部分调整。“参考样题”的变化体现了高考化学试题注重考查基础性和综合性,既突出主干知识和基本方法的考查,又加强创新实践思维历程和思维脉络的考查。

具体调整:

“参考样题”替换了2道选择题和3道非选择题。

生物

生物学科“试卷结构”和“考试内容及要求”部分保持不变。“参考样题”部分删除4道原样题,增补5道题。

具体调整:

选择题将3道原样题更换为2015年高考理科综合能力测试第2、4、5题;

非选择题删除1道原样题,增补2015年高考理科综合能力测试第29、30题。

历史

历史学科“试卷结构”和“考试内容与要求”部分保持不变。“参考样题”有部分更新。

具体调整:

2015年考试说明“参考样题”的第13、14、18、19和34题,分别代之以2015年高考试题的第13、12、20、22和37题。

地理

地理学科的“考查目标与要求”和“考试范围”保持不变。更换了5道参考样题,新换题目均选自2015年高考北京卷。

具体调整:

新换的选择题有第1、2、3、11题,非选择题有第36题。更换题目的位置信息如下:【试题5】(2013年第5题)更换为2015年第11题;

【试题6、7】(2013年第10、11题)更换为2015年第1、2题;

【试题8】(2014年第8题)更换为2015年第3题;

【试题32】(2014年第36题)更换为2015年第36题。

政治

政治学科“考试范围”根据新教材的变化进行了一定调整,比如《政治生活》部分的“我国的国家行政机关”“政府的权威”“中国共产党依法治国、依法执政”等,《国家和国际组织常识》中“坚持中国共产党的领导”“保证和发展人民当家作主”“全面推进依法治国”等。

具体调整:

“参考样题”更换了8道试题。

选择题部分:

【试题21】(2013年第29题)和【试题22】(2013年第30题)更换为2015年第32题和第34题,【试题23】(2009年第33题)更换为2015年第25题,【试题27】(2011年第30题)更换为2015年第28题。【试题28】(2012年第31题)更换为2015年第30题。【试题29】(2012年第32题)更换为2015年第31题。

主观题部分:

将2013年第38题更换为2015年第38题,【试题37】(2014年第39题)更换为2015年第39题。

最新全国新课标高考理科数学考试大纲

全国新课标高考文科数学考试大纲 I.命题指导思想 坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能. II.考试内容与要求 一.考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. (1)了解 要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. (2)理解 要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等. (3)掌握 要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决

高考理科数学考试大纲

理科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、 判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应 用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分 析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图 形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语 言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅 仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

浙江省高中数学高考考纲

2019年浙江省高中数学高考考纲 一、三角函数、解三角形 1.了解角、角度制与弧度制的概念,掌握弧度与角度的换算. 2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,了解三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的诱导公式. 4.了解函数y=A sin(ωx+φ)的实际意义,掌握y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响. 5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明. 7.掌握正弦定理、余弦定理及其应用. 二、立体几何 1.了解多面体和旋转体的概念,理解柱、锥、台、球的结构特征. 2.了解简单组合体,了解中心投影、平行投影的含义. 3.了解三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图. 4.会计算柱、锥、台、球的表面积和体积. 5.了解平面的含义,理解空间点、直线、平面位置关系的定义.掌握如下可以作为推理依据的公理和定理. 公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2 过不在一条直线上的三点,有且只有一个平面. 公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4 平行于同一条直线的两条直线互相平行. 定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 6.理解空间线面平行、线面垂直、面面平行、面面垂直的判定定理和性质定理. (1)判定定理: ①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行; ②一个平面内的两条相交直线与另一个平面平行,则这两个平面平行; ③一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直; ④一个平面过另一个平面的垂线,则这两个平面垂直. (2)性质定理:

最新全国数学高考考试大纲

全国高考考试大纲(文科数学) 本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。 (一) 必考内容与要求 1.集合 (1) 集合的含义与表示 ①了解集合的含义、元素与集合的属于关系。 ②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。 (2) 集合间的基本关系 ①理解集合之间包含与相等的含义,能识别给定集合的子集。 ②在具体情境中,了解全集与空集的含义。 (3) 集合的基本运算 ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。 ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 ③能使用韦恩(Venn)图表达集合的关系及运算。 2.函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1) 函数 ①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。 ②在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。 ③了解简单的分段函数,并能简单应用。 ④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。 ⑤会运用函数图像理解和研究函数的性质。 (2) 指数函数 ①了解指数函数模型的实际背景。 ②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。 ③理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点。 ④知道指数函数是一类重要的函数模型。 (3) 对数函数

①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。 ②理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点。 ③知道对数函数是一类重要的函数模型。 ④了解指数函数与对数函数互为反函数(a>0,且 a≠1 )。 (4) 幂函数 ①了解幂函数的概念。 ②结合函数的图像,了解它们的变化情况。 (5) 函数与方程 ①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。 ②根据具体函数的图像,能够用二分法求相应方程的近似解。 (6) 函数模型及其应用 ①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 ②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 3.立体几何初步 (1)空间几何体 ①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。 ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图。 ③会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式。 ④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求)。 ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式。 (2)点、直线、平面之间的位置关系

2019年高考数学考纲与考试说明解读

2019年高考数学考纲与考试说明解读 专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议

全国课标卷考查内容分析(考什么) (一)结论: 考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用 函数的概念:函数的定义域、值域、解析式(分段函数); 函数的性质:函数的奇偶性、单调性、对称性、周期性; 函数的图象:包含显性与隐性; 导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值 与零点;结合函数的单调性解不等式或证明不等式、求参数范围. (二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分. (三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置. 小题考点可总结为八类: (1)分段函数;(2)函数的性质; (3)基本函数;(4)函数图像; (5)方程的根(函数的零点);(6)函数的最值; (7)导数及其应用;(8)定积分。 解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题;(2)证明不等式的问题; (3)方程的根(函数的零点)问题;(4)函数的最值与极值问题; (5)导数的几何意义问题;(6)存在性问题。

考点: 题型1 函数的概念 例1 有以下判断: ①f (x )=|x | x 与g (x )=? ?? ?? 1 x -x 表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2 -2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f ? ?? ??f ? ????12=0. 其中正确判断的序号是________. 题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数()() 211 2x x f x x x a e e --+=-++有唯一零点,则a = A. 12- B. 13 C. 1 2 D. 1 C 【解析】函数()f x 的零点满足() 211 2e e x x x x a --+-=-+, 设()1 1 e e x x g x --+=+,则()()211 1 1 1 1 1e 1 e e e e e x x x x x x g x ---+----=-=- = ', 当()0g x '=时, 1x =;当1x <时, ()0g x '<,函数()g x 单调递减; 当1x >时, ()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为 ()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->, 函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和 ()ag x -有一个交点,即21a -?=-,解得1 2 a = .故选C. 例3、 (2012理科)(10) 已知函数 1 ()ln(1)f x x x =+-;则() y f x =

2019年高考数学考试大纲

2018年高考数学考试大纲:出现新考点题型有变化考纲摘录 知识要求 对知识的要求由低到高分为了解、理解、掌握三个层次,分别用A,B,C 表示。(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能解决相关的简单问题;(2)理解(B):要求对所列知识内容有较深刻的理性认识,知道知识的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,并加以解决;(3)掌握(C):要求系统地掌握知识的内在联系,能够利用所学知识对具有一定综合性的问题进行分析、研究、讨论,并加以解决。 试题类型 全卷分选择题、填空题、解答题三种题型。选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程。文、理科全卷题型、题量和赋分分别如下: 试卷结构 文科卷: 1.全卷22道试题均为必做题; 2.试卷结构为选择题10道,每道5分,共50分;填空题7道,每道5分,共35分;解答题5道,每道分值不低于10分同时不高于14分,共65分。 理科卷: 1.全卷22道试题,分为必做题和选做题。其中,20道试题为必做题,在填空题中设置2道选做题(需要考生在这2道选做题中选择一道作答,若两道都选,按前一道作答结果计分),即考生共需作答21道试题; 2.试卷结构为选择题10道,每道5分,共50分;填空题6道,每道5分,考生需作答5道,共25分;解答题6道,每道分值不低于10分同时不高于14分,共75分;试题按难度(难度=实测平均分/满分)分为容易题、中等题和难题. 难度在 0.70以上的题为容易题,难度在0.40-0.70之间(包括0.40和0.70)的题为中等题,难度在0.40以下的题为难题。控制三种难度的试题的合适分值比例,试卷总体难度适中。 题型变化对文科生影响更明显

高考文科数学考试大纲

20XX年高考文科数考试大纲(新课标) 二、考试范围与要求 本部分包括必考内容和选考内容两部分。必考内容为《课程标准》 的必修内容和选修系列Ⅰ的内容;选考内容为《课程标准》的选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”等3个专题。 (一)必考内容与要求 1.集合 (1)集合的含义与表示 (2)集合间的基本关系 (3)集合的基本运算 2.函胜概念与基本初等函效Ⅰ(指致函做、对数函致、幂函数) (1)函数(2)指数函数(3)对数函数(4)冥函数(5)函数与方程(6)函数模型及其应用 3.立体几何初步 ①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构. (2)点、直线、平面之间的位工关系 ①理解空间直先、平面位置关系的定义,并了解如下可以作为推 ②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理。 理解以下判定定理. ③能运用公理、定理和已获得的结论证明一些空空间图形的位置关系的简单命题。 4.平面解析几何初步 (2)圆与方程(3)空间直角坐标系 5.算法初步 6.统计 (1)随机抽样(2)用样本估计总体(3)变量的相关性 7.概率 (1)事件与概率 (2)古典概型 (3)随机数与几何概型 8.基本初等函数Ⅱ(三角函数) (1)任意角的概念、弧度制 (2)三角函数 9.平面向. (I)平面向量的实际背景及基本概念 (2)向量的线性运算 (3)平面向量的基本定理及坐标表示 (4)平面向量的数量积 (5)向量的应用 10.三角恒等变换 (1)和与差的三角函数公式 ①会用向量的数量积推导出两角差的余弦公式. ②能利用两角差的余弦公式导出两角差的正弦、正切公式.

2019年度高考文科数学考试大纲

-* 文科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

浙江新高考学考考纲考试标准数学学考选考标准

浙江新高考学考考纲考试标准数学学考选考标 准 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学 一、考试性质与对象 浙江省普通高中数学学业水平考试是在教育部指导下,由省教育行政部门组织实施的全面衡量普通高中学生数学学业水平的考试。考试成绩是普通高中学生毕业的基本依据之一,也是高校招生录取和用人单位招聘的重要参考依据。 浙江省普通高中数学学业水平考试实行全省统一命题、统一施考、统一阅卷、统一评定成绩,每年开考2次。考试的对象是2014年秋季入学的高中在校学生,以及相关的往届生、社会人员和外省在我省异地高考学生。 二、考核目标、要求与等级 (一)考核目标 普通高中数学学业水平考试是全面考察和评估我省普通高中学生的数学学业水平是否达到《课程标准》所规定的基本要求和所必须具备的数学素养的检测考试。 (二)考核要求 根据浙江省普通高中学生文化素质的要求,数学学业水平考试面向全体学生,有利于促进学生全面、和谐、有个性的发展,有利于中学实施素质教育,有利于体现数学学科新课程理念,充分发挥学业水平考试对普通高中数学学科教学的正确导向作用。 突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力。关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。 充分发挥数学作为主要基础学科的作用,既考查中学的基础知识、基本技能的掌握程度,又考查对数学思想方法、数学本质的理解水平.全面检测学生的数学素养。 1.知识要求 知识是指《教学指导意见》所规定的必修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法。 对知识的要求从低到高分为四个层次,依次为:了解、理解、掌握、综合应用,其含义如下: (1)了解:要求对所列知识的含义有初步的、感性的认识,能记住和识别数学符号、图形、定义、定理、 公式、法则等有关内容,并能按照一定的程序和步骤模仿,进行直接应用。 这一层次所涉及的主要行为动词有:了解、知道、识别、模仿、会求、会解等。 (2)理解:要求对所列知识内容有较深刻的理性认识.知道知识间的逻辑关系,能够对所列知识作正确的描述说明,用数学语言表达,利用所学的知识内容对有关问题作比较、判别、讨论,有利用所学知识解决简单问题的能力。

(新课标)2020年高考数学考试说明 文

2020年高考文科数考试大纲(新课标) I.考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度. Ⅱ.考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2020年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。 数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实脸)》(以卜简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明 对知识的要求依次是了解、理解、掌握三个层次。 (1)了解:要求对所列知识的含义有初步的、感性的认识.知道这 一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在 有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、 会解等. (2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象。比较、判断,初步应用等。 (3)掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。 这一层次所涉及的主要行为动词有:掌握、导出、分析.推导、证明.研究、讨论、运用、解决问题等. 2.能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。 (1)空间想象能力:能根据条件作出正确的图形。根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. (2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;该开始至把仅仅

2018年高考数学考纲与考试说明解读

2018年高考数学考纲与考试说明解读 专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议

全国课标卷考查内容分析(考什么) (一)结论: 考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用 函数的概念:函数的定义域、值域、解析式(分段函数); 函数的性质:函数的奇偶性、单调性、对称性、周期性; 函数的图象:包含显性与隐性; 导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值 与零点;结合函数的单调性解不等式或证明不等式、求参数范围. (二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分. (三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置. 小题考点可总结为八类: (1)分段函数;(2)函数的性质; (3)基本函数;(4)函数图像; (5)方程的根(函数的零点);(6)函数的最值; (7)导数及其应用;(8)定积分。 解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题;(2)证明不等式的问题; (3)方程的根(函数的零点)问题;(4)函数的最值与极值问题; (5)导数的几何意义问题;(6)存在性问题。

考点: 题型1 函数的概念 例1 有以下判断: ①f (x )=|x | x 与g (x )=? ?? ?? 1 x -x 表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2 -2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f ? ?? ??f ? ????12=0. 其中正确判断的序号是________. 题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a = 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()1 1 e e x x g x --+=+,则 当()0g x '=时, 1x =;当1x <时, ()0g x '<,函数()g x 单调递减; 当1x >时, ()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为 ()12g =.设()2 2h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->, 函数()h x 与函数()a g x -没有交点;若0a -<,当()()11a g h -=时,函数()h x 和 ()a g x -有一个交点,即21a -?=-,解得故选C. 例3、 (2012理科)(10) 已知函数1()ln (1)f x x x = +-;则 () y f x =

天津数学高考大纲.doc

天津数学高考大纲 考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备,对考纲也要特别了解。下面是我为大家整理的,请认真复习! 天津市高等院校春季招生统一考试数学考试大纲 一、考试性质 天津市高等院校春季招生统一考试是高等学校招生考试的重要组成部分,是由符合条件的中等职业学校(含技工学校)的毕业生参加的选拔考试. 二、考试能力要求 数学科目的考试,按照"考查基础知识的同时,注重考察能力"的原则,测试考生的数学基础知识、基本技能、基本思想和方法。考查计算技能、数据处理技能、空间想象能力、分析与解决问题的能力、数学思维能力. (1)计算技能:会根据法则、公式进行数、式、方程的正确运算、变形和处理资料;能根据问题的条件,寻求与设计合理、简捷的运算途径. (2)数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。 (3)空间想象能力:能根据条件画出正确的图形,根据图形想象出直观形象;能正确地分析图形中各种基本元素及其相互关系. (4)数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。 (5)解决实际问题的能力:能对工作和生活中的简单数学相关问题,作

出分析并运用适当的数学方法予以解决。 三、考试内容 本学科的复习考试内容包括代数、三角、几何及概率与统计四个部分.对知识要求由低到高分为三个层次,依次是了解、理解、掌握。高一级的层次要求包含低一级的层次要求. 了解:要求对所列知识的意义有初步的感性认识,知道这一知识内容是什么,并能在有关的问题中进行识别和直接应用. 理解:要求对所列知识 (定义、定理、法则等) 有理性认识,能利用所列知识解决简单问题. 掌握:要求对所列知识有较深刻的认识,并形成技能, 知道与其它相关知识的联系,能解决与所列知识有关的问题. 考试内容及对应知识的要求见表1―表4. (一)考试方式 考试为闭卷、笔试,试卷满分为150分,考试限定用时为90分钟. (二)试卷结构 试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.试题分选择题、填空题和解答题三种题型.选择题是四选一的单项选择题;填空题只要求 直接写结果,不必写出计算过程;解答题包括计算题、证明题和应用题等,解答题应写出文字说明、演算步骤或推理过程.三种题型(选择题、填空题、解答题)题目数分别为8、6、4,试卷共18道题;选择题和填空题占总分的56%,解答题占总分的44%.试卷包括容易题、中等难度题、较难题,总体难度要适当,以中等难度题为主.

2018年高考(全国卷)文科数学考试大纲

2018年高考(全国卷)文科数学考试大纲 2018年高考(全国卷)文科数学考试大纲 Ⅰ.考核目标与要求 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的 逻辑关系,能够对所列 知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问

2018年高考(全国卷)文科数学考试大纲 题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用 等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学 知识对问题进行分析、 研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的 属性;概括是指把仅仅 属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得

2019年高考数学考试大纲解读

高中文科数学《考试大纲》解读 王丕勇 《考试大纲》是高考命题的规范性文件和标准,是考试评价、复习备考的依据; 《考试大纲》明确了高考的性质和功能,规定了考试内容与形式,对指导高考内容改革、规范高考命题都有重要意义. 那么2019 年高考,与往年相比,高考的考查要求有哪些变化呢? 根据普通高等学校对新生文化素质的要求, 依据中华人民共和国教育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列4 的内容, 确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法, 还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1. 了解:要求对所列知识的含义有初步的、感性的认识, 知道这一知识内容是什么, 按照一定的程序和步骤照样模仿, 并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解, 知道、识别, 模仿, 会求、会解等. 2. 理解:要求对所列知识内容有较深刻的理性认识, 知道知识间的逻辑关系, 能够对所列知识做正确的描述说明并用数学语言表达, 能够利用所学的知识内容对有关问题进行比较、判别、讨论, 具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述, 说明, 表达, 推测、想象, 比较、判别, 初步应用等. 3. 掌握:要求能够对所列的知识内容进行推导证明, 能够利用所学知识对问题进行分析、研究、讨论, 并且加以解决.

全国统一高考考试大纲数学(文)

2019年全国统一高考考试大纲——数学 (文) (必修+选修Ⅰ) Ⅰ.考试性质 普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度. Ⅱ.考试要求 《2019年普通高等学校招生全国统一考试大纲(文科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2019年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围. 数学科的考试,按照考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养. 数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能. 一、考试内容的知识要求、能力要求和个性品质要求 1.知识要求

知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法. 对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次. (1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它. (2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题. (3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题. 2.能力要求 能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识. (1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述. 数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式

2019高考文科数学考试大纲(最新整理)

文科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教 育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修 课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课 程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反 映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照 一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列 知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、 判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、 研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、 解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出 图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地 揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图 形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语 言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想 象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属 于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能 有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的 大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

高考数学考试大纲新课标

2008 年普通高等学校招生全国统一考试 新课程标准数学科(理文科)考试大纲 Ⅰ 考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试 .高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取. 因此,高考应具有较高的信度、效度,必要的区分度和适当的难度 . Ⅱ 考试内容 根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的《普通高中课程方案(实验)》(教基[2003]6 号)和《普通高中数学课程标准(实验)》(2003 年 4 月第 1 版,人民教育出版社出版)的必修课程、选修课程系列 2(1)和系列 4 的内容,确定理工(文史)类高考数学科考试内容 . 数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养 . 数学科考试,要发挥数学作为主要基础学科的作用,要考查中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能 . 数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能. 一、考核目标与要求 1.知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 2(1)和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能 . 各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明 . 知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概

18年高考数学考试大纲解读专题09数列文180108218

专题09 数列 (十二)数列 1.数列的概念和简单表示法 (1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式). (2)了解数列是自变量为正整数的一类函数. 2.等差数列、等比数列 (1)理解等差数列、等比数列的概念. (2)掌握等差数列、等比数列的通项公式与前n项和公式. (3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数、等比数列与指数函数的关系. 与2017年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在2018年的高考中预计仍会以“两小或一大”的格局呈现. 如果是以“两小”(选择题或填空题)的形式呈现,一般是一道较容易的题,一道中等难度的题,较易的题主要以等差数列、等比数列的定义、通项公式、性质与求和公式为主来考查;中等难度的题主要以数列的递推关系、结合数列的通项、性质以及其他相关知识为主来考查. 如果是以“一大”(解答题)的形式呈现,主要考查从数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项,前n项和,有时与参数的求解,数列不等式的证明等加以综合.试题难度中等. 考向一等差数列及其前n项和

样题1 若等差数列{}n a 满足递推关系1n n a a n +=-+,则5a = A . 92 B . 94 C .114 D .134 【答案】 B 样题2 已知数列{}n a 是公差为正数的等差数列,其前n 项和为n S ,且2315a a ?=,416S =. (1)求数列{}n a 的通项公式; (2)数列{}n b 满足11b a =,111n n n n b b a a ++-=?. ①求数列{}n b 的通项公式; ②是否存在正整数m ,n (m n ≠),使得2b ,m b ,n b 成等差数列?若存在,求出m ,n 的值;若不存在,请说明理由. 【解析】(1)设数列{}n a 的公差为d ,则0d >. 由2315a a =,416S =,得()()1112154616a d a d a d +?+=+=????, 解得112a d ==???或172 a d ==-???(舍去). 所以21n a n =-. (2)①因为11b a =,111n n n n b b a a ++-=?,所以111b a ==, ()()1111111212122121n n n n b b a a n n n n ++??-===- ?-+-+??,

相关主题