搜档网
当前位置:搜档网 › 自动气象站数据文件格式1

自动气象站数据文件格式1

自动气象站数据文件格式1
自动气象站数据文件格式1

自动气象站数据文件格式

一、自动气象站数据接口文件格式设计

自动气象站数据文件需满足气象观测规范要求,在原自动气象站相关数据文件基本上,并考虑今后功能扩展,以及数据文件的可读性,对原Z文件、FJ.TXT文件的格式做出如下调整,增加了辐射要素数据H文件。

1.Z文件格式调整:

原Z文件中每条记录为240个字节,现在每条记录后,增加回车(13)换行(10)符号,即每条记录为242个字节。

原Z文件的第一条记录作为文件头,在原定义内容中取消“总辐射遥测登记、净辐射遥测登记、直接辐射遥测登记、散射辐射遥测登记、反辐射遥测登记”,以“-”

填充相应位置;在第236~240位置处写入版本号“V2.00”,以利于今后的版本升级

和功能扩展。

原规定的正点数据是在56分采集,现改为00分采集的数据,即00分为正点。

原规定的日照采用真太阳时,现改为地方平均太阳时。

2.大风遥测数据文件FJ.TXT格式调整:

原来规定存放10条记录,现改为存放20条记录。

原FJ.TXT文件每条记录为16个字节,现在每条记录后,增加回车(13)换行(10)符号,即每条记录为18个字节。

3.为适应辐射观测要求,增加了辐射要素数据H文件。

二、基本文件格式描述

根据以上原则,自动气象站接口数据文件由以下文件组成:

文件名称文件说明简介

ZIIiiiMM.YYY 地面常规要素定时数据文件保存全月每天正点时刻的地面常规要素值ZZ.TXT 地面常规要素实时数据文件保存每分钟的地面常规要素值

FJ.TXT 大风遥测数据文件保存达到大风标准的数据,只保留最近20次的记录

HIIiiiMM.YYY 辐射定时数据文件保存全月每天每个定时的辐射要素值HH.TXT 辐射实时数据文件保存每分钟的辐射要素值

三、地面常规要素定时数据文件ZIIIiiiMM.YYY

1. (文件名中“Z”、为指示符、IIiii为站号、MM为月份、YYY为年份的后3位)该文件为随机文件,每月一个,记录采用定长类型,每一条记录242个字节,记录尾用回车换行结束,ASCII字符存盘,每个要素值高位不足补空格。

2. 第一次生成时应进行初始化,初始化的过程是:首先检测盘上原先有

没有,如原先没有,而是首次形成该文件则应把全月、每天、每个时次存放雨量位置的每个字节全部填入ASCII码为“255”的压缩代码,其它要素的位置一律存“----”字符(即4个减号)。

3.按北京时计时,气候观测数据以北京时20时为日界,正点定时遥测数据中正点观测时间的含义是指北京时的00分。

4. 的第一条记录为文件头,内容为本站月基本参数长度为242个字节,每一项参数长为5个字节,最后两字节为回车换行,内容如下表:

序号要素名备注

1.区站号5字节

2.年5字节

3.月5字节

4.经度5字节

5.纬度5字节

6.气压表拔海高度5字节

7.定时观测次数5字节

8.干湿表系数Ai值5字节

9.观测场拔海高度5字节

10.遥测选型登记5字节

11.干球遥测登记5字节

12.湿球遥测登记5字节

13.湿敏电容遥测登记5字节

14.气压遥测登记5字节

15.风向遥测登记5字节

16.风速遥测登记5字节

17.雨量遥测登记5字节

18.感雨器遥测登记5字节

19.地面温度遥测登记5字节

20.5CM地温遥测登记5字节

21.10CM地温遥测登记5字节

22.15CM地温遥测登记5字节

23.20CM地温遥测登记5字节

24.40CM地温遥测登记5字节

25.80CM地温遥测登记5字节

26.160CM地温遥测登记5字节

27.320CM地温遥测登记5字节

28.日照遥测登记5字节

29.蒸发遥测登记5字节

30.保留90字节,用“-”填充

31.版本号5字节

32 回车换行符2字节

1、存储规定:

经度和纬度的分保留两位,高位不足补“0”,如北纬32度02分存“03202”。

拔海高度和通风速度保留一位小数,扩大10倍存入。

遥测(I)型选择存“1”、遥测(II)型选择存“2”。

遥测登记:有该项目存“1”,无该项目存“0”。

干湿表系数Ai,应把原值扩大107倍后存入。例如Ai=000667,则存入6670

所有要素位数不足的,在前面用空格填充。

版本号:在文件头的最后5个字节中写上V2.00,以利将来版本升级和功能扩展。

2、Z文件中每一时次为一条记录,每天24条记录。

记录号的计算方法:N=D 24+T-19

式中:N—记录号

D—北京时日期(月末一天21—23时的日期D 取0)

T—北京时

如:每月1日第2条记录应为北京时的上月最后一天的21时的数据,这时N=2,如4日23点,则N=100。

3、中的每一条记录,存46个要素的定时值,以ASCII字符存盘,除每小时雨量为60个字节外,其它每一要素长度为4字节,分配如下表:

序号要素名字节长度序号要素名字节长度

1.日、时(北京时)4字节25.水汽压4字节

2.2分钟风向4字节26.露点温度4字节

3.2分钟平均风速4字节27.本站气压4字节

4.10分钟平均风向4字节28.最高本站气压4字节

5.10分钟平均风速4字节29.最高本站气压出现时间4字节

6.最大风速时风向4字节30.最低本站气压4字节

7.最大风速4字节31.最低本站气压出现时间4字节

8.最大风速时间4字节32.地面温度4字节

9.阵风风向4字节33.地面最高温度4字节

10.阵风风速4字节34.地面最高出现时间4字节

11.阵风最大时风向4字节35.地面最低温度4字节

12.阵风最大时风速4字节36.地面最低出现时间4字节

13.阵风最大时时间4字节37.5厘米地温4字节

14.雨量60字节38.10厘米地温4字节

15.干球温度4字节39.15厘米地温4字节

16.最高气温4字节40.20厘米地温4字节

17.最高气温出现时间4字节41.40厘米地温4字节

18.最低气温4字节42.80厘米地温4字节

19.最低气温出现时间4字节43.160厘米地温4字节

20.湿球温度4字节44.320厘米地温4字节

21.湿敏电容4字节45.蒸发量4字节

22.相对湿度4字节46.日照4字节

23.最小相对湿度4字节47.回车换行2字节24.最小相对湿度出现时间4字节

存储要求:

(1). 定时遥测数据中正点值的含义是指北京时正点采集的数据。

(2). “日、时”作为识别标志用,日、时各两位,高为不足补“0”,其中“日”是按北京时的日期;“时”是指定时正点小时数。

(3). 日照采用地方平均太阳时,日界为地方平均太阳时的24时00分,每月1日0-1时的日照存入第2条记录的第46号字段. . . . 1日23-24时的日照存入第25条记录的第46号字段。

(4). 各种极值存上次正点观测到本次正点观测这一时段内的极值。

(5). 雨量是从上次正点观测到本次正点观测这一时段内的雨量,共60个字节,一分钟一个字节。

(6). 数据记录单位:数据的记录单位应遵守《地面气象观测规范》规定,存储各要素值不含小数点,具体规定如下表:

要素名记录单位存储规定

气压0.1hpa扩大10倍

温度0.1℃扩大10倍

相对湿度1%原值

水汽压0.1hpa扩大10倍

露点温度0.1℃扩大10倍

雨量0.1mm扩大10倍

风向1°原值

风速0.1m/s扩大10倍

日照0.1小时扩大10倍

蒸发0.1mm扩大10倍

时间月、日、时、分各取二位高位不足补0

其中:

气压值≥1000.0hpa者先减去1000.0,再乘以10后存入;

若要素缺测或无记录,除有特殊规定外,则均应按约定的字长,每个字节位均存入一个“-” 字符(“----”);

雨量是一分钟一个字节,,该字节存该分钟雨量的压缩代码(表达式为Y$=CHR$(R)其中“Y$”为压缩码“R”为每分钟降水量),压缩代码(字符)的ASCII码值即为该分钟雨量的10倍值,(单位:0.1毫米,并规定253为微量降水,254表示没有观测,255表示缺测)遥测雨量计停止使用期(含冬季停用或长期故障停用)一律存254,作为识别标志。

冬季湿球停用,用湿敏电容测定湿度时,除在湿敏电容数据位写入相应的数据值外,同时应将求出的相对湿度值存入相对湿度数据位置,在湿球位置一律存“****”(四

个星号)作为识别标志。

所有要素位数不足的,在前面用空格填充。

四、地面常规要素实时数据文件 ZZ.TXT

第一次生成时应进行初始化,初始化的过程是:

首先检测盘上原先是否有。如没有,而是首次形成该文件则应把存放雨量的位置的每个字节全部填入ASCII码“255”的压缩代码,其他要素的记录位置一律存“----”字符(四个减号)

为随机文件,存46个要素的实时值,以ASCII字符存盘共240个字节,除每分钟雨量为一个字节每小时雨量为60个字节外,其它每一要素长度为4字节,分配如下表。

序号要素名字节长度序号要素名字节长度

1.时间(时时分分)4字节24.最小相对湿度出现时间4字节

2.2分钟风向4字节25.水汽压4字节

3.2分钟平均风速4字节26.露点温度4字节

4.10分钟平均风向4字节27.本站气压4字节

5.10分钟平均风速4字节28.最高本站气压4字节

6.最大风速时风向4字节29.最高本站气压出现时间4字节

7.最大风速4字节30.最低本站气压4字节

8.最大风速时间4字节31.最低本站气压出现时间4字节

9.阵风风向4字节32.地面温度4字节

10.阵风风速4字节33.地面最高温度4字节

11.阵风最大时风向4字节34.地面最高出现时间4字节

12.阵风最大时风速4字节35.地面最低温度4字节

13.阵风最大时时间4字节36.地面最低出现时间4字节

14.雨量60字节37.5厘米地温4字节

15.干球温度4字节38.10厘米地温4字节

16.最高气温4字节39.15厘米地温4字节

17.最高气温出现时间4字节40.20厘米地温4字节

18.最低气温4字节41.40厘米地温4字节

19.最低气温出现时间4字节42.80厘米地温4字节

20.湿球温度4字节43.160厘米地温4字节

21.湿敏电容4字节44.320厘米地温4字节

22.相对湿度4字节45.保留---- 4字节

23.最小相对湿度4字节46.保留---- 4字节

说明:

1、时间中的时、分各两位,高位不足补0,时、分指北京时的实际时间。

2、若要素缺测或无记录则存入“----”

3、各要素极值应是从上次正点观测后到本次观测这一时段内的极值。

4、雨量是从上次正点观测后到本次观测这一时段内的各分钟雨量,共60字节,(本次观测

在非正点时刻,则该时到下次正点时刻内的相应分钟内应无记录)一分钟一个字节,该字节存该分钟雨量的压缩代码(字符),压缩代码(字符)的ASCII码值即为该分钟雨量的10倍值,(单位:0.1毫米,并规定253为微量降水,254表示没有观测,255表示缺测)遥测雨量计停止使用期(含冬季停用或长期故障停用)一律存254,作为识别标志。Y$=CHR$(R) Y$:压缩码R:每分钟降水量

5、冬季湿球停用,用湿敏电容测定湿度时,除在湿敏电容数据位写入相应的数据值外,同

时应将求出的相对湿度值存入相对湿度数据位置,在湿球位置一律存“****”(四个星号)作为识别标志。

6、所有要素位数不足的,在前面用空格填充。

7、数据记录单位的要求和的规定相同。

五、大风遥测数据文件FJ.TXT,供编发实时气象报用。

1、FJ.TXT数据存入标准

按照《危险天气通报电码(GD-22II)》和《重要天气报告电码(GD-11II)》规定的阵风风速的发报标准为:

风速≥17m/s;

风速≥20m/s;

风速≥24m/s;

风速达到17m/s大风后又小于17m/s并已持续15分钟;

风速达到20m/s大风后又小于17m/s并已持续20分钟;

达到以上标准之一时存入有关数据,FJ.TXT文件内各条记录采用滚动方式存贮,最新一次数据放在第一条记录。

2、FJ.TXT数据存入格式

FJ.TXT为随机文件,以ASCII字符存盘,共20条记录,每条记录18个字节(最后两个字节为回车换行),每一要素长度4字节,分配如下:

月、日时、分风向风速回车换行

4字节4字节4字节4字节2字节

其中风速是指达到大风时到调用数据时,该时间区段内的极大风速,风向与之相对应。

月、日、时、分是指风速到达上面一条所规定标准的时间。

六、辐射定时数据文件HIIiiiMM.YYY

1. (文件名中“H”为指示符、IIiii为站号、MM为月份、YYY为年份的后3位)该文件为随机文件,每月一个,记录采用定长类型,每一条记录76个字节,记录尾以回车换行结束,用ASCII字符存盘,按右对齐排列,每个要素值高位不足补空格。

2. 第一次生成时应进行初始化,初始化的过程是:首先检测盘上原先有没有,如原先没有,而是首次形成该文件则应把全月、每天、每个时次存放位置一律存“----”字符(即4个减号)。

3. 辐射定时数据文件的日界为地方平均太阳时的24时00分。

4.的第一条记录为文件头,内容为本站月基本参数,长度为76字节,

每一项参数长为5个字节,最后两字节为回车换行,每一项参数长为5个字节:

序号要素名位置存储规定

1.区站号5字节前2位为区号,后3位为站号

2.年5字节4位数组成

3.月5字节2位数组成,高位不足补“0”。

4.经度5字节经度和纬度的分保留两位,高位不足补“0”,

如北纬32度02分存“3202”

5.纬度5字节

6.总辐射遥测登记5字节有该项目存“1”,无该项目存“0”

7.净辐射遥测登记5字节

8.直接辐射遥测登记5字节

9.散射辐射遥测登记5字节

10.反辐射遥测登记5字节

11.曝辐量累积时间5字节以分为单位,1小时存“60”,半小时存“30”、

20分钟存“20”,常规为“60”。

12.保留14字节用“-”填充

13.版本号5字节当前版本号为:V1.00

15 回车换行符2字节回车换行符

5. 的每一条记录存18个要素的定时值,以ASCII字符存盘,除时间为6字节外,其他每一要素长度为4字节,分配如下表:

序号要素名字节长度

1.时间(日日时时分分)6字节

2.总辐射曝辐量4字节

3.总辐射最大值4字节

4.总辐射最大出现时间4字节

5.净辐射曝辐量4字节

6.净辐射最大值4字节

7.净辐射最大出现时间4字节

8.直接辐射曝辐量4字节

9.直接辐射最大值4字节

10.直接辐射最大出现时间4字节

11.水平面直接辐射4字节

12.散射辐射曝辐量4字节

13.散射辐射最大值4字节

14.散射辐射最大出现时间4字节

15.反射辐射曝辐量4字节

16.反射辐射最大值4字节

17.反射辐射最大出现时间4字节

18.日照4字节

19.回车换行符2字节

(1)记录号的计算方法:

B=60 / 曝辐量累积时间*24

N=(D-1) B + T+1

式中:N—记录号D—日期(1-31)T—地平时(1-24)

(2)曝辐量记录单位按照《气象辐射观测方法》规定为单位为MJ · m-2 (取两位小数),扩大100倍后存入,存储值不含小数点;日照记录单位为1分钟,扩大10倍,存储值不含小数点。

(3)根据的文件头第13项“曝辐量累积时间”各定时可以为1小时,半小时、20分钟等,当定时为一小时,总辐射曝辐量、净辐射曝辐量、直接辐射曝辐量、散射辐射曝辐量、反射辐射曝辐量存的是每小时辐照度的总量,当定时为20分钟时,则总辐射曝辐量、净辐射曝辐量、直接辐射曝辐量、散射辐射曝辐量、反射辐射曝辐量存的是20分钟辐照度的总量,以此类推。

(4)要素的最大值存指定时段内出现的最大辐照度,它是一个瞬时值

(5)时间中的日、时、分各两位,高位不足补“0”;最大出现时间中的时、分各两位,高位不足补0。

(6)所有要素位数不足的,在前面用空格填充。

七、辐射实时数据文件HH.TXT

第一次生成时应进行初始化,初始化的过程是:

首先检测盘上原先是否有< HH.TXT >。如没有,而是首次形成该文件则应把存放要素的记录位置一律存“----”字符(四个减号)

< HH.TXT >为随机文件,存6个要素的瞬时值,以ASCII字符存盘共24个字节,每一要素长度为4字节,分配如下表。

序号要素名字节长度

1.时间4字节

2.总辐射辐照度4字节

3.净辐射辐照度4字节

4.直接辐射辐照度4字节

5.散射辐射辐照度4字节

6.反射辐射辐照度4字节

1、时间中的时、分各两位,高位不足补0,时、分指北京时的实际时间。

2、总辐射、净辐射、直接辐射、散射辐射、反射辐射的辐照度存每分钟的实时值,高位不

足补0。

3、所有要素位数不足的,在前面用空格填充。

辐射定义:

辐照度E:在单位时间内,投射到单位面积上的辐射能,也就是通常观测到的瞬时值。

单位为W · m-2(取整数)。

曝辐量H:指一段时间(如一天)辐照度的总量或称累积量。单位为MJ · m-2 (取两位小数)1MJ · m-2=106 W · m-2

单位换算:

1瓦·米2 (W · m-2)1千瓦·米- 2 (KW · m-2)

1 0.001

1000 1

667.8 0.6678

1焦耳·米- 2(J · m-2)1兆焦耳-2(MJ · m-2)

1 0.000001

1000000 1

41868.0 0.041868

气象站实时地面气象数据传输文件格式

气象站实时地面气象数据传输文件格式 本目录下的所有自动站实时报文数据格式均遵循以下说明; 由于国家气象信息中心更改了文件名规范,但文件内容格式未做更改! 文件名更改参见文件:“附件:自动站观测资料传输文件名调整方案.doc” 2、地面气象要素数据文件 地面气象要素数据文件包括正点地面气象要素数据和加密地面气象要素数据文件,该文件为顺序数据文件,共4条记录,第1条记录为本站基本参数,共34个字节;第2条记录为器测项目,共262字节;第3条记录为小时内分钟降水量,120个字节;第4条记录为目测项目和天气报、加密天气报有关的编报项目,共134字节,当某观测时间无此条记录内容时,该条记录省略;最后一条记录的后面加上“=”,表示单站数据结束,其他记录尾用回车换行“”结束;文件结尾处加“NNNN”,表示全部记录结束。 ⑴第1条记录:包括区站号、纬度、经度、观测场拔海高度、气压传感器拔海高度和观测方式共6组,每组用1个半角空格分隔,排列顺序及长度分配如下表: ⑵第2条记录共52个要素值,每组用1个半角空格分隔,排列顺序及长度分配如下表:

⑶第3条记录为小时内分钟降水量,120个字节,每分钟2个字节,即1~2位为第1分钟的记录,3~4为第2分钟的记录……,如此类推,119~120位为第60分钟的记录;每分钟内无降水时存入“00”,微量存入“,,”,降水量≥10.0mm时,一律存入99,缺测存入“//”。 ⑷第4条记录共23个要素值,每组用1个半角空格分隔,排列顺序及长度分配如下

数据包头格式

一、TCP报头 TCP报文段的报头有10个必需的字段和1个可选字段。报头至少为20 字节。报头后面的数据是可选项。 1、源端口号(16位) 标识发送报文的计算机端口或进程。一个TCP报文段必须包括源端口号,使目的主机知道应该向何处发送确认报文。 2、目的端口号(16位) 标识接收报文的目的主机的端口或进程。 3、序列号(32位)

用于标识每个报文段,使目的主机可确认已收到指定报文段中的数据。当源主机用于多个报文段发送一个报文时,即使这些报文到达目的主机的顺序不一样,序列号也可以使目的主机按顺序排列它们。 在建立连接时发送的第一个报文段中,双方都提供一个初始序列号。TCP 标准推荐使用以4ms间隔递增1的计数器值作为这个初始序列号的值。使用计数器可以防止连接关闭再重新连接时出现相同的序列号。 对于那些包含数据的报文段,报文段中第一个数据字节的数量就是初始序列号,其后数据字节按顺序编号。如果源主机使用同样的连接发送另一个报文段,那么这个报文段的序列号等于前一个报文段的序列号与前一个报文段中数据字节的数量之和。例如,假设源主机发送3个报文段,每个报文段有100字节的数据,且第一个报文段的序列号是1000,那么第二个报文段的序列号就是1100(1000+100),第三个报文段的序列号就是1200(1100+100)。 如果序列号增大至最大值将复位为0。 4、确认号(32位) 目的主机返回确认号,使源主机知道某个或几个报文段已被接收。如果ACK控制位被设置为1,则该字段有效。确认号等于顺序接收到的最后一个报文段的序号加1,这也是目的主机希望下次接收的报文段的序号值。返回确认号后,计算机认为已接收到小于该确认号的所有数据。 例如,序列号等于前一个报文段的序列号与前一个报文段中数据字节的数量之和。例如,假设源主机发送3个报文段,每个报文段有100字节的数据,且第一个报文段的序列号是1000,那么接收到第一个报文段后,目的主机返回含确认号1100的报头。接收到第二个报文段(其序号为1100)后,目的主机返回确认号1200。接收到第三个报文段后,目的主机返回确认号1300。 目的主机不一定在每次接收到报文段后都返回确认号。在上面的例子中,目的主机可能等到所有3个报文段都收到后,再返回一个含确认号1300的报文段,表示已接收到全部1200字节的数据。但是如果目的主机再发回确认号之前等待时间过长,源主机会认为数据没有到达目的主机,并自动重发。 上面的例子中,如果目的主机接收到了报文段号为1000的第一个报文段以及报文段号为1200的最后一个报文段,则可返回确认号1100,但是再返回确认号1300之前,应该等待报文段号为1100的中间报文段。 5、报文长度(4位) 由于TCP报头的长度随TCP选项字段内容的不同而变化,因此报头中包含一个指定报头字段的字段。该字段以32比特为单位,所以报头长度一定是32比特的整数倍,有时需要在报头末尾补0。如果报头没有TCP选项字段,则报头长度值为5,表示报头一个有160比特,即20字节。 6、保留位(6位) 全部为0。 7、控制位(6位) URG:报文段紧急。 ACK:确认号有效。

气象站点数据插值处理流程

注:下面的为之前做的方法(7-以后不用做),里面的参数与现在的有出入,自己找到区域内站点,插值过程如下。 气象站点数据插值处理流程 1气象站点数据整理 Excel格式,第一行输入字段名称,包括站点名称、x经度(lon)、y纬度(lat)、平均气温、平均风速、相对湿度、平均日照时数。其中经纬度需换算为度的形式,其它数据换算为对应单位。 2excel气象数据转为shape格式的矢量点数据插值分析 (1)打开Arcgis,添加excel气象站点数据。打开LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img,打开边界.shp,三个应该能叠加在一起 (2)在arcgis内容列表中右键单击excel表,选择“显示XY数据”,设置X、Y字段为表中对应经-x、纬-y度字段,编辑坐标系,设置为气象站点经纬度获取时的坐标系,这里为地理坐标系WGS84。(图中错了,按上述,要不就换下一下XY对应的经纬度试一试看看形状对就可以了) (3)导出为shape格式的点数据。右键单击上一个步骤中新生成的事件图层,单击“数据-导出数据”。需注意导出数据的坐标系应选择“此图层的源数据”。

(4)设置Arcgis环境。在“地理处理”菜单下单击“环境”,在环境设置窗口中选择“处理范围”,选择一个处理好的遥感数据(LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img,主要是参考该遥感数据的行数和列数)。再选择“栅格分析”,按下图设置插值的分辨率为“0.0045”,掩膜文件设置为边界2/LC_Ther10-11_16m合并_warp_裁剪BIL1.00_cj重采样6066_经纬度.img。注意:生成出来的是否有坐标系,插值-环境-输出坐标系-与**相同 (5)气象站点数据插值。在toolbox中选择工具箱“Spatial Analyst————反距离权法”,默认12个数据参与运算,“Z值字段”分别选择平均风速、平均气温、相对湿度,直接输出,不要改输出路径名字。再导出数据。在差值分析界面最下栏也有环境,进去设置,注意经纬度显示位置是经纬度投影的投影坐标系,UTM不能用 (6)数据转换为image格式。上步骤中得到的插值栅格数据是Arcgis格式的栅格格式(grid格式),该格式envi识别不了。右键单击插值数据选择“数据—导出数据”,设置导出数据格式为image。 (7)再用envi claas 转换为UTM投影 (8)UTM 设置参数:datum:(原来为North America 1927)改为为WGS84, zone 49。 E: 719614.2770 N: 4100314.6180 X/Y PIXEL: 16.0 meter output x size: 8723 output y size: 6066

点云数据处理

c++对txt文件的读取与写入/* 这是自己写程序时突然用到这方面的技术,在网上搜了一下,特存此以备后用~ */ #include #include #include using namespace std; i nt main(){ char buffer[256]; ifstream myfile ("c:\\a.txt"); ofstream outfile("c:\\b.txt"); if(!myfile){ cout << "Unable to open myfile"; exit(1); // terminate with error } if(!outfile){ cout << "Unable to open otfile"; exit(1); // terminate with error } int a,b; int i=0,j=0; int data[6][2]; while (! my() ) { my (buffer,10); sscanf(buffer,"%d %d",&a,&b); cout<头文件读:从外部文件中将数据读到程序中来处理对于程序来说,是从外部读入数据,因此定义输入流,即定义输入流对象:ifsteam in就是输入流对象。这个对象当中存放即将从文件读入的数据流。假设有名字为my的文件,存有两行数字数据,具体方法:int a,b; ifstream infile; in("my"); //注意文件的路径infile>>a>>b; //两行数据可以连续读出到变量里in() 如果是个很大的多行存储的文本型文件可以这么读:char buf[1024]; //临时保存读取出来的文件内容string message; ifstream infile; in("my"); if(in()) //文件打开成功,说明曾经写入过东西{ while(in() && !in()) { memset(buf,0,1024); in(buf,1204); message = buf; ...... //这里可能对message做一些操作cout< #i nclude #i nclude using namespace std; //////////////从键盘上读取字符的函数void read_save(){ char c[80]; ofstream outfile("f1.dat");//以输出方工打开文件if(!outfile){ cerr<<"open error!"<=65&&c[i]<=90||c[i]>=97&&c[i]<=122){//保证输入的字符是字符out(c[i]);//将字母字符存入磁盘文件

EI3.0数据文件格式

集成交互式道路路线设计系统—EICAD用户手册附录第163页 第八篇附录 目录 1、EICAD道路设计文件格式 (165) 1.1桩号断链文件(*.DL)格式 (165) 1.2道路横断面宽度文件(*.HDM)格式 (165) 1.3超高文件(*.CG )格式 (167) 1.4构造物信息文件(*.GZX)格式 (169) 1.5桩号序列文件(*.ST)格式 (171) 2、EICAD平面设计文件格式 (171) 2.1交点线文件(*.JDX)格式 (172) 2.2 交点设计文件(*.JD)格式 (172) 2.3 交点数据文件(*.JDD)格式 (173) 2.4 积木法线形单元文件(*.ICD)格式 (174) 2.5 平曲线参数文件(*.PAR)格式 (175) 2.6 单元设计要素文件(*.DYD)格式 (175) 2.7 逐桩坐标和逐桩资料文件(*.INF)格式 (175) 2.8道路横断面模型文件(*.3DD)格式 (176) 2.9 坐标控制点文件(*.ZBD)格式 (176) 2.10 计算边桩坐标时使用的输入文件(*.TXT)格式 (177) 2.11变速车道参数文件(*.BSD)格式 (177) 3、EICAD纵断面设计文件格式 (179) 3.1 竖曲线文件(*.SQX)格式 (179) 3.2 纵地面线文件(*.DMX)格式 (179) 3.3 控制点文件(*.KZD)格式 (180) 3.4 地质概况文件(*.DGK)格式 (180) 3.5 结构物文件(*.JGW)格式 (181) 3.6 街沟设计文件(*.JGS)格式 (182) 3.7 横地面线文件(*.HDX)格式 (182) 3.8 桥梁文件(*.QL)格式 (183) 3.9 标注文件(*.BZ)格式 (183) 3.10 基点高程文件(*.JGC)格式 (183) 3.11 雨水口位置文件(*.JGK)格式 (184) 4、EICAD横断面设计文件格式 (184) 4.1填挖边坡文件(*.BP)格式 (185) 南京狄诺尼科技有限责任公司CAD事业部

三维点云数据处理的技术研究

三维点云数据处理的技术研究 中国供求网 【摘要】本文分析了大数据领域的现状、数据点云处理技术的方法,希望能够对数据的技术应用提供一些参考。 【关键词】大数据;云数据处理;应用 一、前言 随着计算机技术的发展,三维点云数据技术得到广泛的应用。但是,受到设备的影响,数据获得存在一些问题。 二、大数据领域现状 数据就像货币、黄金以及矿藏一样,已经成为一种新的资产类别,大数据战略也已上升为一种国家意志,大数据的运用与服务能力已成为国家综合国力的重要组成部分。当大数据纳入到很多国家的战略层面时,其对于业界发展的影响那是不言而喻的。国家层面上,发达国家已经启动了大数据布局。2012年3月,美国政府发布《大数据研究和发展倡议》,把应对大数据技术革命带来的机遇和挑战提高到国家战略层面,投资2亿美元发展大数据,用以强化国土安全、转变教育学习模式、加速科学和工程领域的创新速度和水平;2012年7月,日本提出以电子政府、电子医疗、防灾等为中心制定新ICT(信息通讯技术)战略,发布“新ICT计划”,重点关注大数据研究和应用;2013年1月,英国政府宣布将在对地观测、医疗卫生等大数据和节能计算技术方面投资1(89亿英镑。 同时,欧盟也启动“未来投资计划”,总投资3500亿欧元推动大数据等尖端技术领域创新。市场层面上,美通社发布的《大数据市场:2012至2018年全球形势、发展趋势、产业

分析、规模、份额和预测》报告指出,2012年全球大数据市场产值为63亿美元,预计2018年该产值将达483亿。国际企业巨头们纷纷嗅到了“大数据时代”的商机,传统数据分析企业天睿公司(Teradata)、赛仕软件(SAS)、海波龙(Hy-perion)、思爱普(SAP)等在大数据技术或市场方面都占有一席之地;谷歌(Google)、脸谱(Facebook)、亚马逊(Amazon)等大数据资源企业优势显现;IBM、甲骨文(Oracle)、微软(Microsoft)、英特尔(Intel)、EMC、SYBASE等企业陆续推出大数据产品和方案抢占市场,比如IBM公司就先后收购了SPSS、发布了IBMCognosExpress和InfoSphereBigInsights 数据分析平台,甲骨文公司的OracleNoSQL数据库,微软公司WindowsAzure 上的HDInsight大数据解决方案,EMC公司的 GreenplumUAP(UnifiedAnalyticsPlat-form)大数据引擎等等。 在中国,政府和科研机构均开始高度关注大数据。工信部发布的物联网“十二五”规划上,把信息处理技术作为四项关键技术创新工程之一提出,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分,而另外三项:信息感知技术、信息传输技术、信息安全技术,也都与大数据密切相 关;2012年12月,国家发改委把数据分析软件开发和服务列入专项指南;2013年科技部将大数据列入973基础研究计划;2013年度国家自然基金指南中,管理学部、信息学部和数理学部都将大数据列入其中。2012年12月,广东省启了《广东省实施大数据战略工作方案》;北京成立“中关村大数据产业联盟”;此外,中国科学院、清华大学、复旦大学、北京航空航天大学、华东师范大学等相继成立了近十个从事数据科学研究的专门机构。中国互联网数据中心(IDC)对中国大数据技术和服务市场2012,2016年的预测与分析指出:该市场规模将会从2011年的7760万美元增长到2016年的6。17亿美元,未来5年的复合增长率达51(4%,市场规模增长近7倍。数据价值链和产业链初显端倪,阿里巴巴、百度、腾

中国气象局第4号令《气象资料共享管理办法》

中国气象局第4号令 《气象资料共享管理办法》 第一章 总则 第二章 共享气象资料的提供 第三章 共享气象资料的使用 第四章 罚则 第五章 附则 附件:我国参加地面气候资料国际交换的站点表 (2001年11月27日中国气象局令第4号公布) 第一章 总则 第一条 为了加强气象资料共享,进一步促进气象资料更好地为经济建设、国防建设、社会发展和人民生活服务,依据《中华人民共和国气象法》有关规定,制定本办法。 第二条 各级气象主管机构组织提供气象资料共享,以及用户使用其提供共享的气象资料,应当遵守本办法。 第三条 本办法所称气象资料,是指各级气象主管机构组织

收集并存档的各种气象观(探)测记录,以及由这些记录加工处理而成的各类气象数据集、各种气候统计值和数值分析资料等。 第四条 国务院气象主管机构负责全国气象资料共享工作的管理。地方各级气象主管机构负责本行政区域内气象资料共享工作的管理。 第五条 提供涉密气象资料共享,以及使用、保管共享的涉密气象资料,应当遵守《中华人民共和国保守国家秘密法》和《气象部门保守国家秘密实施细则》等有关规定。 第二章 共享气象资料的提供 第六条 各级气象主管机构负责共享气象资料提供工作的单位,应当通过网络适时、滚动向社会发布下列基本气象资料,供公众无偿下载: (一)我国参加世界气象组织全球通信系统(GTS)交换的地面气象站的定时(4次)观测报告和高空站的定时(2次)观测报告; (二)我国参加地面气候资料国际交换的气象站(附件)的气温、气压、湿度、风、降水、日照等要素的当年的月、年统计值。 第七条 各级气象主管机构负责共享气象资料提供工作的单位,应当免费向从事气象工作的机构、事业单位开展的公益服务、非营利性科研和教育机构从事的非商业性活动提供所需的气象资

地震处理数据文件格式

地震处理数据文件格式 1. SEG-Y 格式(标准) (1)卷头: 3600字节 (a)(a) ASCII 区域: 3200字节(40条记录x 80 字节/每条记录)。 (b)(b) 二进制数区域: 400字节(3201~3600)。 3213~3214 字节—每个记录的数据道数(每炮道数或总道数)。 3217~3218 字节—采样间隔(μs)。 3221~3222 字节—样点数/每道(道长)。 3225~3226 字节—数据样值格式码1-浮点; 3255~3256 字节—计量系统:1-米,2-英尺。 3261~3262*字节—文件中的道数(总道数)。 3269~3270*字节—数据域(性质):0-时域,1-振幅,2-相位谱 “ * “ 号字为非标准定义。 (2)道记录块: (a)(a) 道头字区: 含: 60个字/4字节整或120个字/2字节整,共240个字节,按二进制格式存放。·SEG—Y格式道头说明: 字号(4字节) 字号(2字节) 字节号内容说明 1 1— 2 1—4 一条测线中的道顺序号,如果一条测线有若干卷磁带,顺序号连续递增。 2 3—4 5—8 在本卷磁带中的道顺序号。每卷磁带的道顺序号从l开始。 3 5—6 9—12 * 原始的野外记录号(炮号)。 4 7—8 13—16 在原始野外记录中的道号。 5 9—10 17—20 测线内炮点桩号(在同一个地面点有多于一个记录时使用)。 6 11—12 21—24 CMP号(或CDP号)。(弯线=共反射面元号) 7 13—14 25—28 在CMP道集中的道号(在每个CMP道集中道号从1开始)。 8—1 15 29—30* 道识别码: l=地震数据;4=爆炸信号;7=计时信号; 2=死道;5=井口道;8=水断信号; 3=无效道(空道);6=扫描道;9…N=选择使用(N=32767) 8—2 16 31—32 构成该道的垂直叠加道数(1是一道;2是两道相加;…) 9—l 17 33—34 构成该道的水平叠加道数(1是一道; 2是两道叠加;…) 9—2 18 35—36 数据类型:1=生产;2=试验 10 19—20 37—40 从炮点到接收点的距离(如果排列与激发前进方向相反取负值) (分米)。 11 21—22 41—44 接收点的地面高程。高于海平面的高程为正,低于海平面为负(cm)。 12 23—24 45—48 炮点的地面高程(cm)。 13 25—26 49—52 炮井深度(正数,cm)。 14 27—28 53—56 接收点基准面高程(cm)。 15 29—30 57—60 炮点基准面高程(cm)。 16 31—32 61—64 炮点的水深(cm)。 17 33—34 65—68 接收点的水深(cm)。 l8—l 35 69—70 对41一68字节中的所有高程和深度应用此因子给出真值。比例因子=l, 土10,土100,土1000或者土10000。如果为正,乘以因子;如果为负, 则除以因子。(此约定中= -100) 18—2 36 71—72 对73—88字节中的所有坐标应用此因子给出真值。比例因子=1,土10, 土[00,土1000或者土10000。如果为正,乘以因子;如果为负,则除

数据处理点云处理

非接触三维扫描测量数据的处理研究 1 点云数据的处理 1.1 噪声点的剔除和失真点的查找.在非接触三维扫描测量过程中,受测量方式、被测量物体材料性质、外界干扰等因素的影响,不可避免地会产生误差很大的点(噪声点)和失真点(跳点).因此在数据处理的第一步,就应利用相关专用软件所提供的去噪声点功能除去那些误差大的噪声点和找出可能存在的失真点[3].失真点的查找需要一定的技巧和经验,下面介绍3种方法供大家参考:①直观检查法.通过图形显示终端,用肉眼直接将与截面数据点集偏离较大的点或存在于屏幕上的孤点剔除.这种方法适合于数据的初步检查,可从数据点集中筛选出一些比较大的异常点.②曲线检查法.通过截面的首末数据点,用最小二乘法拟合得到一条样条曲线,曲线的阶次可根据曲面截面的形状决定,通常为3~4阶,然后分别计算中间数据点pi到样条曲线的距离‖e‖,如果‖e‖大于等于[ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除(见图1).③弦高差方法.连接检查点的前后2点,计算中间数据点pi到弦的距离‖e‖,如果‖e‖ [ε]([ε]为给定的允差),则认为pi是坏点,应予以剔除.这种方法适合于测量点均匀且较密集的场合,特别是在曲率变化较大的位置(见图2). 图1 曲线检查法剔除坏点 图2 弦高差方法 1.2 数据精简.非接触三维扫描测量的突出特点是点云十分密集,数据量极其庞大(在1m2的范围内有数十万个点).若将如此庞大的数据量直接用于曲面构建不仅需要巨大的计算机资源(普通微机可能无法胜任)和很长的计算时间,而且整个处理过程也将变得难以控制,更何况并非所有的测试数据对曲面的构建都有用.因此,有必要在保证一定精度的前提下,对测试数据进行精简.数据精简的原则是在扫描曲率较大的地方保持较多的数据点,在曲率变化较小的地方保持较少的数据点.不同类型的点云采用不同的精简方式.散乱点云可通过随机采样的方法来精简,而对于扫描线点云和多边形点云可采用等间距、倍率、等量及弦偏差等方法进行精减.此外均匀网格法与非均匀网格法也可用来精减点云数据.其中均匀网格法只需选取其中的某些点,无需改变点的位置,可以很好地保留原始数据,特别适合简单零件表面瑕点的快速剔除.由于均匀网格法没有考虑被测物体的表面形状特征,因此它不适合对形状复杂的重要工程部件测试数据的处理.与之相反,非均匀网格法可以根据被测工程部件外部形状特征的实际需要来确定网格的疏密,因此它可在保证后继曲面构建精度的前提下减少数据量,这在处理尺寸变化较大的自由形体方面显得十分有效. 1.3 数据的平滑处理.点云数据中的随机误差将影响到后续曲面的构建及生成三维实体模

气象数据处理流程

气象数据处理流程1.数据下载 1.1.登录中国气象科学数据共享服务网 1.2.注册用户 1.3.选择地面气象资料 1.4.选择中国地面国际交换站日值数据 选择所需数据点击预览(本次气象数据为:降水量、日最高气温、日最低气温、平均湿度、辐射度、积雪厚度等;地区为:黑龙江省、吉林省、辽宁省、内蒙古) 下载数据并同时下载文档说明 1.5.网站数据粘贴并保存为TXT文档 2.建立属性库 2.1.存储后的TXT文档用Excel打开并将第一列按逗号分列 2.2.站点数据处理 2.2.1.由于站点数据为经纬度数据 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。

2.2.2.利用VBA程序 Sub we() i = 6 For j = 1 To 30 Windows("").Activate Rows("1:1").Select Field:=5, Criteria1:=i Field:=6, Criteria1:=j Windows("").Activate Rows("1:1").Select Windows("book" + CStr(j)).Activate Range("A1:n100").Select Range("I14").Activate ChDir "C:\Documents and Settings\王\桌面" Filename:="C:\Documents and Settings\王\桌面\6\" & InputBox("输入保存名", Title = "保存名字", "20070" + CStr(i) + "0" + CStr(j)), _ FileFormat:=xlDBF4, CreateBackup:=False SaveChanges:=True Next j End Sub 将数据库按照日期分为365个文件 3.建立回归模型增加点密度 由于现有的日辐射值数据不能覆盖东三省(如图),需要对现有数据建模分析,以增加气象数据各点密度。 已有数据10个太阳辐射站点,为了实现回归模型更好拟合效果,将10个样本全部作为回归参数。利用SPSS软件建模步骤:

数据文件格式

1.交点线文件(*.JDX) 系统提供三种交点线资料的格式: 格式一: XY(或NE) 1 起点编号坐标坐标 0 交点号坐标坐标 R LS1 LS2 R1 R2 交点号坐标坐标 R LS1 LS2 R1 R2 …… 终点编号坐标坐标 0 格式二: XY(或NE) 2 起点编号起点坐标X 起点坐标Y 0 交点号起始边方位角起始边长度 R LS1 LS2 R1 R2 交点号来向边方位角来向边长度 R LS1 LS2 R1 R2 ……… 终点编号终止边方位角终止边长度 0 格式三: XY(或NE) 3 起点编号起点坐标X(或N)起点坐标Y(或E) 0 交点号起始边方位角起始边长度 R LS1 LS2 R1 R2 交点号来向边偏角来向边长度 R LS1 LS2 R1 R2

………. 终点编号终止边偏角终止边长度 0 格式说明: 大地(测量)坐标系,采用“NE”标识;数学直角坐标系采用“XY”标识。 对于低等级路起点坐标和起始边方位角可以假设为0。 偏角的正负与坐标相关,在XY坐标系下:左正右负;在NE坐标系下:左负右正。 变量意义 R:圆曲线半径 LS1、LS2:第1和第2回旋线的长度,对于四级公路,当LS1、LS2的值为负值时表示Lc1和Lc2值(缓和段的长度),HARD系统允许在四级公路中同时存在LS和LC值;(无相应回旋线时输0,成对出现)R1 R2 ---第1、第2回旋线起点半径;(无相应半径时输0,成对出现。) 对于存在虚交的交点线文件,应按如下述格式填写,比如TA、 TB、 TC、 TD 四点组成虚交(TA为总交点,TB、 TC、 TD为分交点),应将这四点共有的曲线信息写在TA 的后面,而其他三点的曲线信息位置填写 -1 。比如: NE n 表示第n种交点线格式 . . . . . TA 坐标坐标 R LS1 LS2 R1 R2 TB 坐标坐标 -1 TC 坐标坐标 -1 TD 坐标坐标 -1 . . . . . . Hard系统能够处理任意多点的虚交问题。 6、提醒用户:交互式设计的同时可以通过“输出文件”输出*.JDX和*.PQX文件以随时存储设计成果。

气象数据处理流程

气象数据处理流程 1.数据下载 1.1. 登录中国气象科学数据共享服务网 1.2. 注册用户 1.3. 1.4. 辐射度、1.5. 2. 2.1. 2.2. 2.2.1. 为方便插值数据设置分辨率(1公里)减少投影变换次数,先将站点坐标转为大地坐标 并添加X、Y列存储大地坐标值后将各项数据按照站点字段年月日合成总数据库 (注意:数据库存储为DBF3格式,个字段均为数值型坐标需设置小数位数) 为填补插值后北部和东部数据的空缺采用最邻近法将漠河北部、富锦东部补齐2点数据。 2.2.2.利用VBA程序 Sub we() i = 6

For j = 1 To 30 Windows("chengle.dbf").Activate Rows("1:1").Select Selection.AutoFilter Selection.AutoFilter Field:=5, Criteria1:=i Selection.AutoFilter Field:=6, Criteria1:=j Cells.Select Selection.Copy Workbooks.Add ActiveSheet.Paste Windows("chengle.dbf").Activate ", Title = " 3. 利用 3.1. 3.2. 选择分析→回归→非线性回归 3.3. 将辐射值设为因变量 将经度(X)和纬度(Y)作为自变量,采用二次趋势面模型(f=b0+b1*x+b2*y+b3*x2+b4*x*y+b5*y2)进行回归,回归方法采用强迫引入法。 如图,在模型表达式中输入模型方程。 在参数中设置参数初始值

中国气象数据共享数据格式(知识分析)

中国地面资料国际交换站1971-2000年气候标准值数据集 文件名-数据格式对照表 统计项目文件名数据格式表名 累年月平均本站气压SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10004.TXT 结果文件附表19累年月平均海平面气压SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10005.TXT 结果文件附表20累年月极端最高本站气压及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10201.TXT 结果文件附表21累年月极端最低本站气压及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10202.TXT 结果文件附表22累年月平均最高本站气压SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10203.TXT 结果文件附表23累年月平均最低本站气压SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-PRS-10204.TXT 结果文件附表24累年月平均气温SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12001.TXT 结果文件附表25 SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12201.TXT 结果文件附表26累年月平均气温平均差、标准差和最大正、负 距平 累年月平均最高气温SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12211.TXT 结果文件附表27累年月平均最低气温SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12212.TXT 结果文件附表28累年月极端最高气温及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12011.TXT 结果文件附表29累年月极端最低气温及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12012.TXT 结果文件附表30累年月日最高气温顺位及出现日期和1%、5%概 SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12220.TXT 结果文件附表31率界限值 SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12221.TXT 结果文件附表32累年月日最低气温顺位及出现日期和1%、5%概 率界限值 累年月平均气温日较差SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12202.TXT 结果文件附表33累年月最大气温日较差及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12203.TXT 结果文件附表34累年月最小气温日较差及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12204.TXT 结果文件附表35累年月各级气温日较差日数SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04250.TXT 结果文件附表36累年月平均气温分级值SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12222.TXT 结果文件附表37累年月平均最高气温分级值SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12223.TXT 结果文件附表38累年月平均最低气温分级值SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12224.TXT 结果文件附表39累年月日最高气温≤0.0℃日数SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04256.TXT 结果文件附表40累年月日最低气温≥25.0℃日数SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04260B.TXT 结果文件附表41 SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04264.TXT 结果文件附表42累年月(9-4月)最长连续降温日数及止日和降 温值 累年月(9-4月)连续最大降温值及日数和止日SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04265.TXT 结果文件附表43累年月各级日平均气温频率SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04230A.TXT 结果文件附表44累年月最高日平均气温SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12052.TXT 结果文件附表45累年月最低日平均气温SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-12053.TXT 结果文件附表46累年月各级温湿度出现频率SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-TEM-04230B.TXT 结果文件附表47累年月平均水汽压SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-VAP-13004.TXT 结果文件附表48累年月最大水汽压及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-VAP-13009.TXT 结果文件附表49累年月最小水汽压及出现日期SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-VAP-13010.TXT 结果文件附表50累年月平均相对湿度SURF_CLI_CHN_MUL_MUT_19712000_CES-MMON-RHU-13003.TXT 结果文件附表51

点云滤波方法

点云滤波方法-CAL-FENGHAI.-(YICAI)-Company One1

激光雷达点云数据滤波算法综述 滤波对象及目的:通过机载激光雷达快速获取高精度三维地理数据,对它所获取的点云数据的滤波过程就是将LIDAR点云数据中的地面点和非地面点分离的过程。 滤波方法:对数学形态学的滤波算法、基于坡度的滤波法、基于TIN的LIDAR点云过滤算法、基于伪扫描线的滤波算法、基于多分辨率方向预测的LIDAR点云滤波方法。 (一)LIDAR数据形态学滤波算法: (1)离散点云腐蚀处理。遍历LIDAR点云数据,以任意一点为中心开w×w大小的窗口,比较窗口内各点的高程,取窗口内最小高程值为腐蚀后的高程(2)离散点膨胀处理。再次遍历LIDAR点云数据,对经过腐蚀后的数据用同样大小的结构窗口做膨胀。即以任意一点为中心开w×w大小的窗口,此时,用腐 蚀后的高程值代替原始高程值,比较窗口内各点的高程,取窗口内最大高程值 为膨胀后的高程 (3)地面点提取。设Z p是p点的原始高程,t为阈值,在每点膨胀操作结束时,对该点是否是地面点作出判断。如果p点膨胀后的高程值和其原始高程值Z p 之差的绝对值小于或等于阈值t,则认为p点为地面点,否则为非地面点 该算法有两种滤波方式:一种是按离散点进行滤波,一种是按格网滤波。(1)按离散点滤波:是对每个激光点进行腐蚀和膨胀操作各一次,结构窗口内数据的选取按距离来量度。 (2)按格网滤波:指将每个格网看成一个“像素”,按照数字图像处理中取邻域的方法来开取结构窗口。腐蚀时,格网的“像素值”即为w×w邻域所包含格网的最小高程值;膨胀时,格网的“像素值”即为w×w邻域所包含格网的最大高程值。 优缺点:总体上,数学形态学算法存在的主要问题是坡度阈值的人工选取和细节地形的方块效应。如果阈值设定太大,可能保留一些低矮的地物目标,设定太小,则可能削平地形特征。现在各种阈值的选取一般根据研究者的经验设定,或者根据地形特征设定的,没有考虑全局的特征因素,不具有普适性。解决这些问题的方法是根据地形的起伏大小和高程变化自适应的进行滤波窗口调整。但此方法在大范围地区及地形变化强烈山区的有效性还有待进一步 研究。 实际应用:从应用上,Lindenberger将数字形态学方法引人到机载激光雷达数据滤波中,首先采用水平结构单元对机载激光测高数据进行开运算,过滤剖面式激光扫描数据,然后利用自回归过程改善了开运算结果。 (二)基于坡度变化的滤波算法 滤波基本思想:基于坡度变化的滤波算法是根据地形坡度变化确定最优滤波函数,对于给定的高差值,随着两点间距离的减小,高程值大的激光脚点属于地面点的可能性就越小。

点云数据处理

点云数据处理 ICP点云配准就是我们非常熟悉的点云处理算法之一。实际上点云数据在形状检测和分类、立体视觉、运动恢复结构、多视图重建中都有广泛的使用。点云的存储、压缩、渲染等问题也是研究的热点。随着点云采集设备的普及、双目立体视觉技术、VR和AR的发展,点云数据处理技术正成为最有前景的技术之一。PCL是三维点云数据处理领域必备的工具和基本技能,这篇博客也将粗略介绍。 三维点云数据处理方法 1. 点云滤波(数据预处理) 1. 点云滤波(数据预处理) 点云滤波,顾名思义,就是滤掉噪声。原始采集的点云数据往往包含大量散列点、孤立点,比如下图为滤波前后的点云效果对比。 点云滤波的主要方法有:双边滤波、高斯滤波、条件滤波、直通滤波、随机采样一致滤波、VoxelGrid滤波等,这些算法都被封装在了PCL点云库中。 2. 点云关键点 我们都知道在二维图像上,有Harris、SIFT、SURF、KAZE这样的关键点提取算法,这种特征点的思想可以推广到三维空间。从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表性和描述性,从而加快了后续的识别,追踪等对数据的处理了速度,故而,关键点技术成为在2D和3D 信息处理中非常关键的技术。

常见的三维点云关键点提取算法有一下几种:ISS3D、Harris3D、NARF、SIFT3D 这些算法在PCL库中都有实现,其中NARF算法是博主见过用的比较多的。 3. 特征和特征描述 如果要对一个三维点云进行描述,光有点云的位置是不够的,常常需要计算一些额外的参数,比如法线方向、曲率、文理特征等等。如同图像的特征一样,我们需要使用类似的方式来描述三维点云的特征。 常用的特征描述算法有:法线和曲率计算、特征值分析、PFH、FPFH、3D Shape Context、Spin Image等。 PFH:点特征直方图描述子,FPFH:跨苏点特征直方图描述子,FPFH是PFH的简化形式。这里不提供具体描述了,具体细节去谷歌吧。 4. 点云配准 点云配准的概念也可以类比于二维图像中的配准,只不过二维图像配准获取得到的是x,y,alpha,beta等放射变化参数,二三维点云配准可以模拟三维点云的移动和对其,也就是会获得一个旋转矩阵和一个平移向量,通常表达为一个4×3的矩阵,其中3×3是旋转矩阵,1*3是平移向量。严格说来是6个参数,因为旋转矩阵也可以通过罗格里德斯变换转变成1*3的旋转向量。 常用的点云配准算法有两种:正太分布变换和著名的ICP点云配准,此外还有许多其它算法,列举如下: ICP:稳健ICP、point to plane ICP、point to line ICP、MBICP、GICP NDT 3D、Multil-Layer NDT

相关主题