搜档网
当前位置:搜档网 › 二次函数3

二次函数3

二次函数()02≠++=a c bx ax y 的图像和性质(一)

1、(2014?长沙)抛物线()5232

+-=x y 的顶点坐标是 ; 2、(2014?天津)抛物线322+-=x x y 的顶点坐标是 ;

3、(2014?牡丹江)抛物线()02≠++=a c bx ax y 经过点A (-3,0),对称轴是直线x=-1,则c b a ++= ;

4、(2014?珠海)如图,对称y 轴的于抛物线与轴平行x 轴交于(1,0),(3,0)两点,則它的对称轴为 ;

5、如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线k x y +=22

1与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 ;

6、(2014?长春)如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x=-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为 ;(用含a 的式子表示).

(3题)(5题)

(6题) 7、对于二次函数()()01122≠-+--=a a x a ax y ,有下列结论:

①其图象与x 轴一定相交;

②若a <0,函数在x >1时,y 随x 的增大而减小;

③无论a 取何值,抛物线的顶点始终在同一条直线上;

④无论a 取何值,函数图象都经过同一个点.其中所有正确的结论是 ;

8、已知二次函数222++=mx x y ,当x >2时,y 的值随x 值的增大而增大,则实数m 的取值范围是 ;

9、在平面直角坐标系中,点A 是抛物线()k x a y +-=23与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 ;

10、二次函数()4

922+--=x y 的图象与x 轴围成的封闭区域内(包括边界),(提示:必要时可利用下面的备用图画出图象来分析).横、纵坐标都是整数的点有 个;

11、抛物线y=-x 2

+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是 ;

(9)(10)

(11) 12、如图是二次函数y 1=ax 2+bx+c (a ≠0)和一次函数y 2=mx+n (m ≠0)的图象,当y 2>

y 1,x 的取值范围是 ;

13、已知二次函数()()122

-+-=a a x y (a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.如图分别是当1-=a ,0=a ,1=a ,2=a 时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是 ;

(12)

(13) 14、已知二次函数y=-x 2+2bx+c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取

值范围是( )

A 、1-≥b

B 、1-≤b

C 、1≥b

D 、1≤b

15、若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( )

A 、抛物线开口向上

B 、抛物线的对称轴是x=1

C 、当x=1时,y 的最大值为-4

D 、抛物线与x 轴的交点为(-1,0),(3,0)

16、若一次函数y=ax+b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y=ax 2+bx 的对称轴为( )

A 、直线x=1

B 、直线x=-2

C 、直线x=-1

D 、直线x=-4

17、设二次函数y=x 2+bx+c ,当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,那么c 的取值范围是( )

A 、3=c

B 、c ≥3

C 、1≤c ≤3

D 、c ≤3

18、如图,已知二次函数的图象过点A (0,-3),B (3,3),对称轴为直线x =2

1-,

点P 是抛物线上的一动点,过点P 分别作P M ⊥x 轴于点M ,P N ⊥y 轴于点N ,在四边形P M O N 上分别截取P C =31M P ,M D =31O M ,O E =31O N ,N F =3

1N P ;在抛物线上是否存在这样的点P ,使四边形C D E F 为矩形?若存在,请求出所有符合条件的P 点坐标;若不存在,请说明理由.

19、已知二次函数y =x 2+b x +c 的图象过点A (-3,0)和点B (1,0),且与y 轴交于点C ,D 点在抛物线上且横坐标是-2,抛物线的对称轴上有一动点P ,求出P A +P D 的最小值.

20、如图,已知抛物线y=x2+b x+c与x轴交于点A,B,A B=2,与y轴交于点C,对称轴为直线x=2,设P为对称轴上一动点,求△A P C周长的最小值;

21、如图,R t△A O B中,∠O A B=90°,以O为坐标原点,O A所在的直线为x轴建立平面直角坐标系,将△O A B沿O B折叠后,点A落在第一象限的点C处,已

知B点坐标是(23,2);一个二次函数的图象经过O、C、A三个点,直线O C

上是否存在点Q,使得△A Q B的周长最小?若存在请求出Q点的坐标,若不存在请说明理由;

函数-第3讲:二次函数图像、性质与解析式

一.二次函数的概念 (一)二次函数的定义 1、一般地,形如c bx ax y ++=2(c b a ,,为常数,0≠a )的函数称为x 的二次函数,其中 x 为自变量,y 为因变量,c b a ,,分别为二次函数的二次项、一次项和常数项系数. 【注意】抛物线的另一定义:在平面内,到一个定点F 和一条定直线l 距离相等的点的集合成为抛物线,F 称为抛物线的焦点。l 称为抛物线的准线。 2、任何二次函数都可以整理成c bx ax y ++=2(c b a ,,为常数,0≠a )的形式. 3、判断函数是否为二次函数的方法: (1)含有一个变量,且自变量的最高次数为2; (2)二次项系数不等于0; 【方法技巧】 第三节 二次函数的图象、性质与解析 【知识梳理】

(3)等式两边都是整式. 4、二次函数自变量x 的取值范围是全体实数. (二)二次函数图象的画法:五点绘图法 1、利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+ 2、确定其开口方向、对称轴及顶点坐标 3、在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、 以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点, 则取两组关于对称轴对称的点). 二.二次函数的图象性质 (一)二次函数2y ax =0a ≠()的性质 1、抛物线2 ax y =的顶点是坐标原点(0,0),对称轴是0=x (y 轴). 2、函数2ax y =的图象与a 的符号关系. (1)当0>a 时?抛物线开口向上?顶点为其最低点; (2)当0a 时?抛物线开口向上?顶点为其最低点; (2)当0a 时有最小值 a b a c 442 -

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

二次函数的图像及其三种表达式

二次函数的图像及其三种表达式 学生: 时间: 学习目标 1、熟悉常见的二次函数的图像; 2、理解二次函数的三种表达式 知识点分析 1、.二次函数的三种表达式 一般式:y=ax^2+bx+c (a ,b ,c 为常数,a ≠0) 顶点式:y=a(x-h)^2+k [抛物线的顶点P (h ,k )] 交点式:y=a(x-x1)(x-x2) [仅限于与x 轴有交点A (x1,0)和 B (x2,0)的抛物线] 2、一般地,自变量x 和因变量y 之间存在如下关系: y=ax^2+bx+c (a ,b ,c 为常数,a ≠0,且a 决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI 还可以决定开口大小,IaI 越大开口就越小,IaI 越小开口就越大.) 则称y 为x 的二次函数。 二次函数表达式的右边通常为二次三项式。 例题精讲 例题1已知函数y=x 2 +bx +1的图象经过点(3,2). (1)求这个函数的表达式; (2)画出它的图象,并指出图象的顶点坐标; (3)当x >0时,求使y ≥2的x 的取值范围. 例题2、一次函数y=2x +3,与二次函数y=ax 2 +bx +c 的图象交于A (m ,5)和B (3,n )两点,且当x=3时,抛物线取得最值为9. (1)求二次函数的表达式; (2)在同一坐标系中画出两个函数的图象; (3)从图象上观察,x 为何值时,一次函数与二次函数的值都随x 的增大而增大. (4)当x 为何值时,一次函数值大于二次函数值? 随堂练习 1.已知函数y=ax 2 +bx +c (a ≠0)的图象,如图①所示,则下列关系式中成立的是( ) A .0<- a b 2<1 B .0<-a b 2<2 C .1<-a b 2<2 D .-a b 2=1 图① 图② 2.函数y = 21x 2 +2x +1写成y =a (x -h)2+k 的形式是 A.y =21(x -1)2+2 B.y =21(x -1)2+2 1

3二次函数图像与性质(二)

课题:二次函数图像与性质(二) 复习目标 1、体验从实际问题中抽象出函数关系式的过程,进一步感受数学模型思想和数学应用价值; 2、能够运用二次函数的性质和图象解决实际问题。 复习难点 用二次函数的性质和图象解决实际问题。 复习过程 一、知识点回顾 1. 二次函数的解析式: (1)一般式: ;(2)顶点式: ; (3)交点式: . 2.二次函数c bx ax y ++=2通过配方可得2 24()24b ac b y a x a a -=++,其抛物线关于直线x = 对称,顶点坐标为( , ). ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 . 二、复习题组 题组一 1求抛物线 y=2x 2-4x+5 的对称轴和顶点坐标. 2 已知二次函数y=-x 2+4x- 3 ⑴求二次函数图象与坐标轴的交点坐标;⑵当-2≤x ≤0 时,求二次函数y=-x 2+4x-3的最大值和最小值.

3在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0) ⑴求该二次函数的关系式; ⑵ 将该二次函数图象向右平移几个单位长度,可使平移后所得图象经过坐标原点?请直接写出平移后所得图象与x 轴的另一个交点的坐标. 题组二 1. (2009湖北省荆门市)函数(2)(3)y x x =--取得最大值时,x =______. 2. (2009年淄博市) 请写出符合以下三个条件的一个函数的解析式 . ①过点(31 ),;②当0x >时,y 随x 的增大而减小;③当自变量的值为2时,函数值小于2. 3. 已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_________. 4. 已知二次函数y=ax 2+bx+c(a ≠0)图象的顶点P 的横坐标是4,? 图象交x 轴于点A(m,0)和点B,且m>4,那么AB 的长是( ). A.4+m B.m C.2m-8 D.8-2m 5.已知抛物线y=x 2+(2k+1)x-k 2+k, (1)求证:此抛物线与x 轴总有两个不同的交点. (2)设x 1、x 2是此抛物线与x 轴两个交点的横坐标,且满足x 12+x 22=-2k 2+2k+1. ①求抛物线的解析式. ②此抛物线上是否存在一点P ,使△P AB 的面积等于3,若存在,请求出点P 的坐标;若不存在,请说明理由。

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

26.1.3二次函数 的图象(三)

26.1.3二次函数 ()k h x a y +-=2 的图象(三) 九年级下册 编号05 【学习目标】1.会画二次函数的顶点式 ()k h x a y +-=2 的图象; 2.掌握二次函数 ()k h x a y +-=2 的性质; 【学习过程】 一、知识链接: 1.将二次函数2-5y x =的图象向上平移2个单位,所得图象的解析式为 。 2.将抛物线 2y x =-的图象向左平移 3个单位后的抛物线的解 析式为 。 二、自主学习 在右图中做出 ()2 12y x =--的图象: 观察:1. 抛物线 ()2 12y x =--开口向 ; 顶点坐标是 ;对称轴是直线 。 2. 抛物线 ()2 12y x =--和2 y x =的形状 ,位 置 。(填“相同”或“不同”) 3. 抛物线 ()2 12y x =--是由2 y x =如何平移得到的?答: 。 三、合作交流 平移前后的两条抛物线a 值变化吗?为什么? 答: 。 四、知识梳理 结合上图和课本第9页例3归纳: (一)抛物线2()+y a x h k =-的特点: 1.当0a >时,开口向 ;当0a <时,开口 ; 2. 顶点坐标是 ; 3. 对称轴是直线 。 (二)抛物线2()+y a x h k =-与2y ax =形状 ,位置不同,2()+y a x h k =-是由2 y ax =平 移得到的。 二次函数图象的平移规律:左 右 ,上 下 。 (三)平移前后的两条抛物线a 值 。 五、跟踪训练 1.二次函数 2)1(212+-= x y 的图象可由22 1 x y =的图象( ) A.向左平移1个单位,再向下平移2个单位得到 x y y = x 2 -1-2-3-412345-1 -2-3 1 2345678910 O

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

二次函数的图象和性质3(含答案)

2010年全国各地数学中考试题分类汇编17 二次函数的图象和性质3 一、选择题 1.(2010湖北鄂州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个 A .1 B.2 C.3 D. 4 【答案】C 2.(2010湖北省咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、 B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2y D .不能确定 【答案】A 3.(2010北京) 将二次函数y =x 2 -2x +3,化为y =(x -h )2 +k 的形式,结果为( ) A .y =(x +1)2 +4 B .y =(x -1)2 +4 C .y =(x +1)2+2 D . y =(x -1)2 +2 【答案】D 4.(2010山东泰安)下列函数:①3y x =-;②21y x =-;③()1 0y x x =-<;④2 23y x x =-++,其中y 的值随x 值增大而增大的函数有( ) A 、4个 B 、3个 C 、2个 D 、1个 【答案】B 5.(2010四川乐山).设a 、b 是常数,且b >0,抛物线y=ax 2+bx +a 2 -5a -6为下图中四个图象之一,则a 的值为( ) A. 6或-1 B. -6或1 C. 6 D. -1 【答案】D y x O y x O y x O 1 -1 y x O 1 -1

初中数学之二次函数最值问题

初中数学之二次函数最值问题 一、选择题 1.(2008年山东省潍坊市)若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 2.(2008浙江杭州)如图,记抛物线的图象与正半轴的交点为,将线段分成等份.设分点分别为,,,,过每个分点作轴的垂线,分别与抛物线交于点,,…,,再记直角三角形,,…的面积分别为,,…,这样就有,,…;记,当越来越大时,你猜想最接近的常数是()A.B.C.D. 3.(08绵阳市)二次函数y = ax2 + bx + c的部分对应值如下表: 利用二次函数的图象可知,当函数值y<0时,x的取值范围是(). A.x<0或x>2 B.0<x<2 C.x<-1或x>3 D.-1<x <3 4.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论: ①当时,函数值最大; ②当时,函数随的增大而减小; ③存在,当时,函数值为0. 其中正确的结论是() A.①②B.①③C.②③D.①②③

5.(2008 湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的 小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大() A. 7 B. 6 C. 5 D. 4 6.(2008泰安)如图所示是二次函数的图象在轴上方的一部分,对于这段图象与轴所围成的阴影部分的面积,你认为与其最.接近的值是() A.4 B.C.D. 7.(2008山东泰 安)函数的图象如 图所示,下列对该 的是() 函数性质的论断不可能正确 ..... A.该函数的图象是中心对称图形 B.当时,该函数在时取得最小值2 C.在每个象限内,的值随值的增大而减小 D.的值不可能为1 8.若一次函数的图像过第一、三、四象限,则函数() A.有最大值 B..有最大值 C.有最小值 D.有最小值 二、填空题 1.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元

二次函数的图象与性质(3)

二次函数的图象与性质(3) [本课知识要点] 会画出2 )(h x a y -=这类函数的图象,通过比较,了解这类函数的性质. [创新思维] 我们已经了解到,函数k ax y +=2的图象,可以由函数2 ax y =的图象上下平移所得,那 么函数 2)2(21-= x y 的图象,是否也可以由函数 221 x y =平移而得呢?画图试一试,你能从中发现什么规律吗? [实践与探索] 例1.在同一直角坐标系中,画出下列函数的图象. 221x y = ,2)2(21+=x y ,2)2(21-=x y ,并指出它们的开口方向、对称轴和顶点坐标. 描点、连线,画出这三个函数的图象,如图26.2.5所示. 它们的开口方向都向上;对称轴分别是y 轴、直线x= -2和直线x=2;顶点坐标分别是 (0,0),(-2,0),(2,0). 回 对于抛物线 2)2(21 += x y ,当x 时,函数值y 随x 的增大而减小;当x 时,函数值y 随x 的增大而增大;当x 时, 函数取得最 值,最 值y= . x … -3 -2 -1 0 1 2 3 … 221x y = … 29 2 21 0 21 2 29 … 2)2(21+=x y … 21 0 21 2 225 8 225 … 2)2(21 -= x y … 225 8 29 2 21 0 21 …

探索 抛物线 2)2(21+= x y 和抛物线2)2(21-=x y 分别是由抛物线221x y =向左、向右平 移两个单位得到的.如果要得到抛物线2)4(21-= x y ,应将抛物线 221 x y =作怎样的平移? 例2.不画出图象,你能说明抛物线23x y -=与2 )2(3+-=x y 之间的关系吗? 解 抛物线23x y -=的顶点坐标为(0,0);抛物线2 )2(3+-=x y 的顶点坐标为(-2,0). 因此,抛物线23x y -=与2 )2(3+-=x y 形状相同,开口方向都向下,对称轴分别是y 轴 和直线2-=x .抛物线2)2(3+-=x y 是由2 3x y -=向左平移2个单位而得的. 2 )(h x a y -=(a 、h 是常数,a ≠0)的图象的开口方向、对称轴、顶点坐标归纳如下: [当堂课内练习] 1.画图填空:抛物线2 )1(-=x y 的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线2 x y =向 平移 个单位得到的. 2.在同一直角坐标系中,画出下列函数的图象. 22x y -=,2)3(2--=x y ,2)3(2+-=x y ,并指出它们的开口方向、对称轴和顶点坐 标. [本课课外作业] A 组 1.已知函数221x y -=,2)1(21+-=x y , 2 )1(21--=x y . (1)在同一直角坐标系中画出它们的图象; (2)分别说出各个函数图象的开口方向、对称轴和顶点坐标; (3)分别讨论各个函数的性质. 2.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线2 21x y -=得到抛物线2)1(21+-=x y 和2 )1(21 --=x y ?

二次函数图像与性质(3)

二次函数的图像与性质(3) 九年级数学张黎教学目标: 1.能正确说出y=a(x-h)2+k的图像的开口方向、对称轴和顶点坐标 2.让学生经历y=a(x-h)2+k性质的探究过程,理解其性质及 与y=ax2图像的关系 3.经历探索二次函数y=a(x-h)2+k与y=ax2的图像关系的过 程,养成学生观察、思考、归纳的思维习惯 教学重点: 理解y=a(x-h)2+k与y=ax2的图像关系 教学难点: 1.理解y=a(x-h)2+k与y=ax2的图像关系 2.能正确说出y=a(x-h)2+k的开口方向、对称轴和顶点坐标教学工具:几何画板 教学方法:讨论式、启发式等 教学过程: 一、导入语 同学们好,上节课我们学习了将形如y=ax2(a≠0)的抛物线经过上下平移,掌握了其规律是上加下减,并探索出了平移后图

像的性质,那若经过左右平移呢?其规律又是什么?经左右平移后的图像又有何性质呢?带着这些问题让我们共同走进本节课??????二次函数的图像与性质 二、交流讨论,共探新知 1、请大家观察y=2x2与y=2(x+3)2的图像 议一议 想一想 ⑴两条抛物线的图像有什么相同点与不同点? ⑵y=2(x+3)2的图像可以看作是由y=2x2的图像经过怎样的平 移而得到? 几何画板动态演示平移情况

(3)观察这两个函数关系式,你发现的平移前后的关系式有何变化吗?你发现了什么? 2.请大家观察抛物线y=2x 2与y=2(x-4) 2图像 想一想 ⑴ 两条抛物线的图像有什么相同点与不同点? ⑵ y=2(x+3) 2的图像可以看作是由y=2x 2的图像经过怎样的平移而得到? 几何画板动态演示平移情况 左 加 y=2(x +3)2 向左平移3个单位长度 y=2x 2 议一议

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一

若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值. 讲义参考答案

二次函数3、4课时练

二次函数y=a(x-h)2+k的图象和性质 (一)、知识小结:1.二次函数y=ax2+k的图象是一条_____.它与抛物线y=ax2的_____相同,只是_____不同,它的对称轴为_____轴,顶点坐标为_____. 2.二次函数y=ax2+k的图象可由抛物线y=ax2_____得到,当k>0时,抛物线y=ax2向上平移_____个单位得y=ax2+k;当k<0时,抛物线y=ax2向_____平移|k|个单位得y=ax2+k. (二)、知识反馈与训练:1、如果抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( )A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3 2、已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是( )A.a>0B.a<0C.a≥0D.a≤0 3、若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( )A.a +c B.a-c C.-c D.c 4、已知抛物线y=-x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为_____. 5、若抛物线y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=_____,c=_____. 6、如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于A,过点A作与x 轴平行的直线交抛物线y=1 3x2于点B,C,则BC的长度为_____. 7、廊桥是我国古老的文化遗产,如图所示是一座抛物线形廊桥的示意图.已知抛 物线对应的函数关系式为y=-1 40x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点 E,F处要安装两盏警示灯,求这两盏灯的水平距离.(5≈2.24,结果 精确到1米) 二次函数y=a(x-h)2的图象和性质 (一)知识小结:1.二次函数y=a(x-h)2的图象是_____,它与抛物线y=ax2的_____相同,只是_____不同;它的对称轴为直线_____,顶点坐标为_____. 2.二次函数y=a(x-h)2的图象可由抛物线y=ax2_____得到,当h>0时,抛物线y=ax2向_____平移h个单位得y=a(x-h)2; 当h<0时,抛物线y=ax2向_____平移|h|个单位得y=a(x-h)2. (二)知识反馈与训练:1.将抛物线y=-x2向左平移2个单位后,得到的抛物线的解析式是( )A.y =-(x+2)2B.y=-x2+2 C.y=-(x-2)2D.y=-x2-2 2.抛物线y=-3(x+1)2不经过的象限是( ) A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限 3、顶点为(-6,0),开口向下,形状与函数y=1 2x2的图象相同的抛物线的解析式是( ) A.y=1 2(x-6)2B.y= 1 2(x+6)2 C.y=- 1 2(x-6)2D.y=- 1 2(x+6)2 4、平行于x轴的直线与抛物线y=a(x-2)2的一个交点坐标为(-1,2),则另一个交点坐标为( ) A.(1,2) B.(1,-2) C.(5,2) D.(-1,4) 5、在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致为( ) 6、已知二次函数y=a(x-h)2的图象是由抛物线y=-2x2向左平移3个单位长度得到的,则a=_,h=

(完整版)初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 二次函数的基本形式()2 y a x h k =-+的性质: a 的绝对值越大,抛物线的开口越小。 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成

m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值2 44ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 七、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a

初三数学二次函数知识点汇总

★二次函数知识点汇总★ 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a b (即a 、b 同号)时,对称轴在y 轴左侧; ③0c ,与y 轴交于正半轴;③0

二次函数求最值方法总结

二次函数求最值方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

XX 教育辅导教案 学生姓名 性别 年级 学科 数学 授课教师 上课时间 年 月 日 第( )次课 共( )次课 课时: 课时 教学课题 二次函数求最大值和最小值 教学目标 利用二次函数的图像和性质特点,求函数的最大值和最小值 教学重点 与难点 含有参数的二次函数最值求解。 课堂引入: 1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题 方法的重要性(初高中衔接、高中必修一重点学习内容)。 2) 当22x -≤≤时,求函数223y x x =--的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫) 二次函数求最值方法总结: 一、设)0(2≠++=a c bx ax y ,当n x m ≤≤时,求y 的最大值与最小值。 1、当0>a 时,它的图象是开口向上的抛物线,数形结合可求得y 的最值: 1) 当n a b m ≤-≤2时,a b x 2-=时,y 取最小值:a b a c y 442min -=;y 的最大值在m x =或n x =处取到。 2) 若m a b <-2,二次函数在n x m ≤≤时的函数图像是递增的,则m x =时,y 取最小值;则n x =时,y 取最大值。 若n a b >- 2,二次函数在n x m ≤≤时的函数图像是递减的,则n x =时,y 取最小值;则m x =时,y 取最大值。

【变式训练】 变式1、当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,1max -=y ,当2x =时,5min -=y . 【例题解析】 例2、当1t x t ≤≤+时,求函数21522 y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522 y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+?≤≤时: 当1x =时,2min 1511322 y =?--=-; (3) 当对称轴在所给范围右侧.即110t t +

二次函数3

二次函数3 学习目标:能熟练地利用配方法求二次函数图象的对称轴和顶点坐标。 学习重点:利用配方法求二次函数图象的对称轴和顶点坐标。 学习难点:利用配方法求二次函数图象的对称轴和顶点坐标。 学习过程: 一、课前热身 1、写出下列二次函数图象的开口方向、对称轴和顶点坐标: ⑴ y=2x 2 (2) y =-12 x 2-1 (3) y =-12 (x +1)2 ⑷ y =-12 (x -1)2-1 (5) y=12 (x -6)2 +3 2、将二次函数2 (2)3y x =--化成一般形式y =ax 2+bx +c ,结果是 二、新授引入: 当一个二次函数所给的关系式是顶点式的时候,我们都可以很熟练的求出它们的开口方向,对称轴,顶点坐标。那么当一个二次函数所给的关系式是一般形式时,我们又如何求它的开口方向,对称轴,顶点坐标呢? 例如:如何求二次函数241y x x =-+的图象的开口方向、对称轴和顶点坐标? 通过课前热身2我们可以发现,其实241y x x =-+可以转化成2(2)3y x =--。 也就是把一般形式转化成了顶点式。那么如何把一个二次函数的一般式转化成顶点式,这就是本节课所要探索的主要内容。 三、探索过程: 1、用配方法解一元二次方程2 410x x -+= 2222212414212322,2x x x x x x x -=--+=-+=-=∴==…………………①常数项移到方程右边 ………②两边加上一次项系数一半的平方 (x-2)?………………③写成完全平方形式 ④直接开平方 ……⑤求出结果

在刚才的配方法解方程里其实已经告诉我们如何把一般式转化成顶点式。 2.把下列二次函数化成顶点式,并求出它们的开口方向,对称轴,顶点坐标。 (1)261y x x =+- (2)2 241y x x =-+- 四、巩固练习:求下列二次函数的开口方向,对称轴,顶点坐标。 (1)221y x x =+- (2)2 241y x x =-+ (3)2y 3x 2x?=+ (4)2y x 2x =-- (5)2y 2x 8x 8=-+- (6)21432 y x x = -+

相关主题