搜档网
当前位置:搜档网 › PKPM相关参数设定

PKPM相关参数设定

PKPM相关参数设定
PKPM相关参数设定

一总信息A)水平力与整体坐标角:

B)1.一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。

C)2.根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用,若程序提供多方向地震作用功能时,应选用此功能。

D)砼容重:

E)钢筋砼计算重度,考虑饰面的影响应大于25,不同结构,构件的表面积与体积比不同,饰面的影响不同,一般按结构类型取值:

F)结构类型框架结构框剪结构剪力墙结构

G)重度 26 27 28

H)钢材容重:一般取78,如果考虑饰面设计者可以适量增加。

I)裙房层数:

J)1:高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。

K)2:层数是计算层数,等同于裙房屋面层层号。

L)转换层所在层号:

M)1:该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。(层号为计算层号)

N)地下室层数:

O)1:程序据此信息决定底部加强区范围和内力调整。

P)2:当地下室局部层数不同时,以主楼地下室层数输入。

Q)3:地下室一般与上部共同作用分析;

R)4:地下室刚度大于上部层刚度的2倍,可不采用共同分析;

S)5:地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。当相对刚度为负值,地下室完全嵌固

T)6:根据程序编制专家的解释,填3大概为70%~80%的嵌固,填5就是完全嵌固,填在楼层数前加“-”,表示在所填楼层完全嵌固。到底怎样的土填3或填5,完全取决于工程师的经验。

U)墙元细分最大控制长度:

V)1:可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或。

W)墙元侧向节点信息:

X)1:内部节点:一般选择内部节点,当有转换层时,需提高计算精度时,可以选取外部节点。

Y)2:外部节点:按外部节点处理时,耗机时和内存资源较多。

Z)恒活荷载计算信息:

AA)1:一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。

BB)2:模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。

于是就有了下一种竖向荷载加载法。

CC)3:模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不和理情况。由于竖向构件的刚度放大,使得水平梁的两端的竖向位移差减少,从而其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近手工计算。

DD)但是我认为这种方法人为的扩大了竖向构件与水平构件的线刚度比,所以它的计算方式值得探讨。所以,专家建议:在进行上部结构计算时采用“模拟施工方法1”;在基础计算时,用“模拟施工方法2”的计算结果。这样得出的基础结果比较合理。(高层建筑)

建议采用“模拟施工加载3”;分层刚度,分层加载。

J)结构体系:

规范规定不同结构体系的内力调整及配筋要求不同;同时,不同结构体系的风振系数不同;结构基本周期也不同,影响风荷计算。宜在给出的多种体系

中选最接近实际的一种,当结构体系定义为短肢剪力墙时,对墙肢高度和厚度之比小于8的短肢剪力墙,其抗震等级自动提高一级。

二风荷载信息

地面粗糙类别:

A类:近海海面和海岛、海岸、湖岸及沙漠地区。()

B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的乡镇和城市郊区。

C类:指有密集建筑群的城市市区。

D类:指有密集建筑群且房屋较高的城市市区。

体型系数:

修正后的基本风压:对于高层建筑应按基本风压乘以系数采用。

1) 风荷载作用面的宽度,多数程序是按计算简图的外边线的投影距离计算的,因此,当结构顶层带多个小塔楼而没有设置多塔楼时,应注意修改风荷载文件,从风荷载中减去计算简图的外边线间无建筑面的空面面积上的风载,否则会造成风载过大,特别是风载产生的弯矩过大。

2) 顶层女儿墙高度大于1米时应修正顶层风载,在程序给出的风荷上加上女儿墙风荷。

3) 当计算坐标旋转时,应注意风荷计算是否相应作了旋转处理。

4) 大多数程序风载从嵌固端算起,当计算嵌固端在地下室时,应将风荷载修正为从正负零算起。

5) 用SATWE进行多塔楼分析时,程序能自动对每个塔楼取为一独立刚性块分析,但风荷载按整体投影面计算,因此一定要进行多塔楼定义,否则风荷载会出现错误。

结构的基本周期3.2.6

三地震信息

结构规则性性息:

根据结构的规则性选取,按《抗震规范》3.4.2条确定。

扭转耦联信息:

1)对于耦联选项,建议总是采用;

2)质量和刚度分布明显不对称的结构,楼层位移比或层间位移比超过时,应计入双向水平地震作用下的扭转影响。

3)偶然偏心:验算结构位移比时,总是考虑偶然偏心

A)位移比超过时,则考虑双向地震作用,不考虑偶然偏心。

B)位移比不超过时,则考虑偶然偏心,不考虑双向地震作用。

例: *** 一31层框支结构,考虑双向水平地震力作用时,其计算剪重比增量平均为%;

*** 规则框架考虑双向水平地震作用时,角柱配筋增大10%左右,其他柱变化不大;

*** 对于不规则框架,角、中、边柱配筋考虑双向地震后均有明显的增大;

*** 通过双向地震力、柱按单偏压计算和双向地震力、双偏压计算比较可知,后者计算柱的配筋较前者有明显的增大。建议:若同时勾选双向地震力、柱双向配筋时,要十分谨慎。

3)计算单向地震力,应考虑偶然偏心的影响。5%的偶然偏心,是从施工角度考虑的。

****计算考虑偶然偏心,使构件的内力增大5%~10%;

****计算考虑偶然偏心,使构件的位移有显着的增大,平均为%。

注:对于不规则的结构,应采用双向地震作用,并注意不要与“偶然偏心”同

时作用。“偶然偏心”和“双向地震力”应是两者取其一,不要都选。

建议的选用方法:

****当为多层(≤8层,≤30m),考虑扭转耦联与非扭转耦联均可;

****当为一般高层,可选用耦联+偶然偏心;

****当为不规则高层、满足抗规2条以上不规则性时,或位移比接近限值,

考虑双向地震作用。

计算振型个数:

1) 按侧刚计算时:单塔楼考虑耦联时应大于等于9;复杂结构应大于等于15;N 个塔楼时,振型个数应大于等于N×9。(注意各振型的贡献由于扭转分量的影响而不服从随频率增加面递减的规律)一般较规则的单塔楼结构不考虑耦联时取振型数大于等于3就可,顶部有小塔楼时就大于等于6。 0.

2) 按总刚计算时;采用的振型数不宜小于按铡刚计算的二倍,存在长梁或跨层柱时应注意低阶振型可能是局部振型,其阶数低,但对地震作用的贡献却较

小。

3) 规范要求,地震作用有效质量系数要大于等于;基底的地震剪力误差已很小,可认为取的振型数已满足。

四活载信息:

考虑活荷不利布置的层数从第 1 到6层.... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8

五调整信息:

中梁刚度增大系数: BK = ......《高规》5.2.2条;装配式楼板取;现浇楼板取值,

一般取

梁端弯矩调幅系数:梁活荷载内力放大系数: BM = ......放大梁跨中弯矩,取值;已考虑活荷载不利布置时,宜取

连梁刚度折减系数:梁扭矩折减系数:全楼地震力放大系数: RSF = ......用于调整抗震安全度,取值,一般取

调整起始层号:调整终止层号:顶塔楼内力放大起算层号: NTL = 0......按突出屋面部分最低层号填写,无顶塔楼填0

顶塔楼内力放大: RTL = ......计算振型数为9-15及以上时,宜取(不调整);计算振型数为3时,取

九度结构及一级框架梁柱超配筋系数是否调整与框支柱相连的梁内力

六设计信息:

结构重要性系数: RWO = ......《砼规》3.2.2柱计算长度计算原则: 有侧移............一般按[有侧移],用于钢结构

梁柱重叠部分简化:是否考虑 P-Delt 效应:

1)据有关分析结果,7度以上抗震设防的建筑,其结构刚度由地震或风荷载作用的位移限制控制,只要满足位移要求,整体稳定自然满足,可不考虑P-DELT 效应。

2)对6度抗震或不抗震,且基本风压小于等于㎏/M2的建筑,其结构刚度由稳定下限要求控制,宜考虑。

3)考虑后结构周期一般会加长。

4)考虑后应按弹性刚度计算的,因此,柱计算长度系数应按正常方法计算

否…柱配筋计算原则: 按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算

钢构件截面净毛面积比: RN = .....用于钢结构

梁保护层厚度 (mm): BCB = .....室内正常环境,砼强度>C20时取≥25mm柱保护层厚度 (mm): ACA = .....室内正常环境取≥30mm七配筋信息:

梁主筋强度 (N/mm2): IB = 300......设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1柱主筋强度 (N/mm2): 墙主筋强度 (N/mm2):梁箍筋强度 (N/mm2): 柱箍筋强度 (N/mm2):墙分布筋强度 (N/mm2):梁箍筋最大间距(mm): 柱箍筋最大间距 (mm): 墙水平分布筋最大间距 (mm):墙竖向筋分布最小配筋率 (%):八荷载组合:

恒载分项系数: CDEAD= .....一般情况下取,详《荷规》3.2.5条1款(强条)活载分项系数: 风荷载分项系数: 水平地震力分项系数: 竖向地震力分项系数:特殊荷载分项系数: 活荷载的组合系数:风荷载的组合系数:活荷载的重力荷载代表值系数:

剪力墙底部加强区信息.................................

剪力墙底部加强区层数 IWF= 1 .......取1/8剪力墙墙肢总高与底部二层高度

的较大值,《抗规》

SATWE计算控制参数:

层刚度比计算:

1)剪切刚度:计算嵌固层刚度和纯框架结构层间刚度时采用,带斜撑结构不宜采用;底部大空间为一层时可采用。

2)剪弯刚度:适用计算任何结构的刚度计算,建议采用;底部大空间为二层时可以采用。

3)按层地震剪力与层地震位移差之比计算(抗震规范方法):该法概念模糊,结构完全相同的层,放在不同层位移时的刚度不同,这与层刚度的定义不符,建议一般不用。(系统默认是第三种计算方法,设计者应注意改正);(也有人认为第三种均可采用)

总刚与侧刚问题:

1)按总刚计算耗机时和内存资源较多。

2)有弹性楼板设置时必须按总刚计算。

3)无弹性楼板时宜按侧刚计算。

4)规范控制的层刚度比和位移比,要求在刚性楼板条件下计算,因此,任何情况下均按侧刚算一次,以验算层刚度比和位移比。

计算结果的鉴别分析和调整:

1)合理性:

框架结构;T1=~(其中N为结构层数)

框剪结构:T1=~(其中N为结构层数)

剪力墙结构:T1=~(其中N为结构层数)

筒中筒结构:T1=~(其中N为结构层数)

并且有T2~(1/3~1/5)T1;T3~(1/5~1/7)T1

2)扭转周期应小于平动周期的

3)底部总剪力与总重量的比为: Q/W=%~%(7度、二类土)

Q/W=%~5%(8度、二类土)

4) 位移:

当剪力墙作为薄壁杆件计算时,最大层间相对位移取u/h小于等于1/1100;较佳取值取1/1600~1/2500.当剪力墙作为墙元模型(包括壳元、膜元等计算时;最大层间相对位移取满足规范要求为基准,较佳取值1/1200~1600。

5) 合理的含钢量:

梁:%~% 墙:%~%

柱:%~% 板:%~%

6) 最大层间位移角和水平位移不宜大于楼层平均位移值的倍,A级高度不应大于倍,B级高度不应大于倍。

7) 构刚度控制与调整:

刚度控制内容不满足时的调整方法

1 弹性层间位于移控制:△umax/h≤1/500~1/1000 调整层高,加强底部竖向构件刚度

2 层刚度比控制:Ki/Ki+1≤且

3 Ki/(Ki+1+ Ki+2+ Ki+3) ≤ 调整层高,加强或削弱相关层刚度或按《高规》1A1H0)/(G0A0h1)≥2;其中:[A0,

A1]=AW+(hci/hi)2Aci 增加地下室剪力墙或将嵌固层下移一层

5 整体稳定刚重比控制:EJd≥或GJ≥10GJ 加强竖向构件刚度

6 扭转位移控制:A类高度不宜△umax/△uuc ≥不尖△umax/△uuc ≥类高度不宜△umax/△uuc ≥不尖△umax/△uuc ≥ 调整平面布置,减少刚心与形心偏心距,注:若(△umax/h)x2比弹性层间位移角控制要求小,则可不考虑本项要求

7 扭转控制刚度:A类高度A类高度:T1/Tt≤类高度:T1/Tt≤ 找出原因采取相应措施

8 舒适度控制:amax≤(m/s2) (住宅、公寓)amax≤(m/s2) (办公、旅馆) 加强竖向构件刚度

采用薄壁杆元模型输入时要注意:

1)上下墙体的剪心、形心应尽可能对齐;局部开洞整体剪力墙化为无洞口剪力墙输入;局部无洞剪力墙化成整体开洞剪力墙输入。

2)带边柱剪力墙按无柱剪力墙输入;当柱断面较大时,可再单独输入柱,最后柱配筋=柱钢筋+墙端筋

3)一般与剪力墙正交梁端宜按铰支输入,当墙厚≥梁高时,可按弹性固结梁输入,按铰支输入时,与墙正交梁端的负筋不少于跨中的40%

4)地下室边墙壁不宜按整片墙输入,宜分段按墙柱输入,凡有梁相交部位设墙柱,墙柱截面取支承点两边各3倍墙厚,当有明柱时加输时柱。

5)抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相邻层上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。

6) A级高度的高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上的一层受剪承力的80%;不应小于其上一层受剪承载力的65%;B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。

7)各片剪力墙的等效刚度相差不要大于3倍。

8)多层或高层上部结构设置水箱和游泳池时,其底板应与楼面板分开。

9)框架-剪力墙结构,底层剪力墙截面面积AW和柱截面面积AC之和与高层楼面面积之比,对7度2类土情况,一般(AC+AW)/Af=3%~5%; AW/ Af=2%`3%。层数多高度大的框架-剪力墙结构,宜取上限值,且纵横两个方向的剪力墙均宜在上述范围内,框架-剪力墙结构中剪力墙厚度初步估计见下表:

抗震烈度 10层 15层 20层 25层 30层 35层 40层

7度 250 250 250 300 300 350 400

8度 250 250 300 350 400 450 500

9度 300 300 350 400 450 500 550

异形柱的构造:

1)异形柱的墙肢宽度B宜为200~300;一般取墙肢最小宽度bmin≥200mm. 2)截面的长度B一般取2b≤B≤4b;且H/4≤B≤H/4;H为柱的净高,最小长度Bmin =2bmin 。当异形柱作为角柱时,墙肢长度不宜小于600mm .

剪力墙类别划分:

λ=hw/bw λ>8 8≥λ>5 5≥λ>3 λ<3 4≥λ>2

剪力墙类别一般剪力墙短肢剪力墙小墙肢短肢剪力墙按柱设计异形柱

A级高度高层建筑的楼层层间抗侧力结构的承载力不宜小于其上一层的80%;不应小于其上一层的60%;B级高度的高层建筑的楼层层间抗侧力结构的承载力不应小于其上一层的75%.

错层结构:

当错层高度不大于框架梁的截面高度时,各部分楼板应作为独立楼层参加整体计算,不宜归并为一层计算,此时,每一个错层部分可视为独立楼层,独立楼层的楼板可视为在楼板平面内刚度无限大,相反,可作为同一楼层参加结构整体计算

错层处框架柱的截面宽度和高度均不得小于600,砼强度等级不得低于C30,抗震等级宜提高一级,竖向配筋率不宜小于%;箍筋全高加密,箍筋体积配箍率不宜小于%;错层处平面外受力的剪力墙,其截面厚度:非抗震设计时不应小于200。抗震设计时不应小于250,并均应设置与之垂直的墙肢或扶壁柱,抗震等级应提高一级,砼强度等级这应低于C30。水平和竖向分布钢筋的配筋率:非抗震设计时不应小于%;抗震设计时不应小于%。

错层在结构模型中的输入:

按每块楼板为一层的方法输入,这样两块楼板就被分成两层,分层时在没有楼板的地方就输入上下连通的独立柱和剪力墙,此时要注意洞口的输入,由于错层按两层或多层输入后,层分得很细,往往从洞口中窜过,为了使计算正确,应把洞口上的墙梁按普通梁来输入,在洞口的两端加两个节点,在构件定中定义墙梁,在墙梁的标高处输入墙梁

pkpm结构设计参数

P K P M结构设计参数 P K P M结构设计参数 1.风荷载 风压标准值计算公式为:W K=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压W o略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D 类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。

在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5O m、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(W o T12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期T g 的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5T g以内与89规范相同,从5T g起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。

PKPM(jccad参数设置)

JCCAD参数设置说明 第一版 2006年3月3日

地质资料 地质资料是基础设计计算的重要依据,可以用人机交互方式或填写数据文件方式输入地质资料有两类,一种是供有桩基础使用的,另一种是供无桩基础(弹性地基筏板)使用。两者的格式相同,不同仅在于有桩基础对每层土要求压缩模量、重度、状态参数、内摩擦角、内聚力五个参数,而无桩基础只要求压缩模量一个参数。 建立*.dz文件主要内容包括以下几点: (1) 每个勘探孔柱状图的土层分布及各土层的物理力学参数,物理力学参数包括土的重Gv(用于沉降计算)、相应压力状态下的压缩模量Es(用于沉降计算)、摩擦角φ(用于沉降及支护结构计算)、内聚力c(用于支护结构计算)及计算桩基承载力的状态参数(对于各种土有不同的含义)。 (2) 所有孔点在任意坐标系下的位置坐标,在桩基设计时可通过平移与旋转将勘探孔平面坐标转成建筑底层平面的坐标。 (3) 以勘探孔点作为节点顺序编号,将节点连线划分成多个不相重叠的三角形单元,并将三角形单元编号。程序将以这种三角形单元为控制网格,利用形函数插值的方法得到控制网格内部和附近的地质土层分布。 土层参数 压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义

桩基础设计应该使用Ez(自重压力~……),天然浅基础应使用 Es0.1-Es0.2。 土层布置 土名称、厚度、极限侧摩、极限桩端、压缩模量、重度、摩擦角、粘聚力、状态参数、状态参数含义,标高及图幅(坐标系:相对坐标系,单位米。标高与结构标高相同) 孔点输入 输入孔位:打开坐标,将孔点的大体形状输入即可 修改参数:按照勘查报告中的相关数据输入即可 网格修改 点柱状图 选中可以进行桩基承载力与沉降验算。 土剖面图 画等高线

最新PKPM设计参数分析详解

P K P M设计参数分析详 解

第7章 SATWE应用详解 在PKPM系列设计软件中,用于结构分析计算的主要有SATWE、TAT、PK、PMSAP,目前结构设计人员最常用的是有限元分析软件SATWE。本章主要详细叙述SATWE 的使用方法,包括计算参数的取值设置,特殊荷载的设定,计算分析方法的选择,计算结果分析,控制参数的调整,以及结构设计优化等。之所以突出介绍SATWE,其原因如下: 1.SATWE软件使用普遍,用户广泛。 2.SATWE软件功能强大,采用墙元模型,可以完成复杂多高层结构的计算 分析工作,而且操作简单,适应性强。 3.SATWE软件参数较多,可以设置的项目也很多,计算输出的内容十分丰 富,一旦学会了SATWE软件的使用,再去学PK、TAT、PMSAP等就是一 件非茶馆容易的事了。 第7.1节设计参数设置详解 PM建模完成后就进入结构计算分析阶段,SATWE软件可以直接读取建模数据,但是在计算之前还需要做一些前期处理工作,例如补充设置计算分析参数,定义特殊构件和特殊荷载等。点击选择SATWE软件的第一项进入“接PM生成SATWE数据”屏幕弹出图示对话框,如图所示。 软件的参数设置是否正确直接关系到软件分析结果的准确性,这也是学好用好软件的关键一步。本节主要介绍SATWE软件设计参数的取值设置。详细叙述分别如下: 7.1.1总信息 结构总信息共有17个参数,其含义及取值原则如下:

7.1.1.1水平力与整体坐标的夹角(度) 这一参数主要是为了考虑水平力(地震最不利作用与最大风力作用)方向与模型坐标主轴存在较大夹角的影响。一般设计人员实现很难预估算出结构的最不利地震作用方向,因此可以先取初始值00,SATWE计算后会在计算书中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,就应将该角度输入重新计算,以考虑最不利地震作用个方向的影响。 7.1.1.2混凝土容重(KN/m3) 程序钢筋混凝土容重初始值为25.0 KN/m3,以用于一般工程,考虑抹灰装修荷载可以取到26~28 KN/m3。 7.1.1.3钢材容重(KN/m3) 程序钢材容重初始值为78.0 KN/m3,适合于一般工程,考虑钢构件表面装饰和防火涂层重量时,应按实际情况修改此参数。 7.1.1.4裙房层数 对带裙房的高层结构应输入裙房(含地下室)层数,作为带裙房的塔楼结构剪力墙底部加强区高度的判断依据。初始值为0。 7.1.1.5转换层所在层号 为了实现规范对转换构件地震内力放大的规定,如结构有转换层则必须输入转换层号,程序不能自动搜索转换构件和自动判断转换层,须由设计人员指定,程序允许输入多个转换层号,数字之间以逗号或者空格隔开,初始值为0。注意如果结构带有地下室,则转换层号应从地下室起算。 7.1.1.6地下室层数

PKPM如何调整参数和选用(完整版)讲解

2010版SATWE计算参数选用 一、2010版计算参数的选用(PKPM及SATWE): 免责声明:炒饭个人总结,仅用作参考。以下内容需与PKPM2010版satwe 说明书结合使用。参数在PKPM中如何实现需参考satwe说明书。 1、总信息: A、“水平力与整体坐标夹角”,此参数一般不做修改。而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。 B、PM里的“混凝土容重”框架取26,剪力墙取27。(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。 C、“钢材容重”暂时默认78,未研究。 D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM 总是将裙房以上一层作为加强区判定的一个条件。框架结构均可输入0,其他结构未研究。此参数包含地下室层数。(如3层地下室,4层裙房,此参数应输入7。)E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。 F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。 G、“地下室层数”按实际输入。 H、“墙元细分最大控制长度”取“1”。影响计算精度,对含剪力墙的结构有影响。

I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。 J、“地下室强制采用刚性楼板假定”勾选。 K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。 L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。 M、“弹性板与梁变形协调”勾选。梁细分后弯矩变的平缓,计算结果更加合理。 N、“结构材料信息”如实填写 O、“结构体系”如实填写 P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。但本人尚未弄明白。 Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。 R、“地震作用计算信息”一般选择计算水平地震作用。结合抗规5.1.1和高规4.3.2确定是否计算竖向地震作用。高规比抗规对此条的要求严一个等级。 S、“规定水平力”一般选“规范方法”。规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。

PKPM SATWE参数设置讲解

SATWE参数设置 一:总信息 1水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大 于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别 转换层,需要人工指定。对于高位转换的判断,转换层位置以嵌固端起算,即 以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数 +1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加 到薄弱层号中,如不打勾,则需要用户手动添加。此项打勾与在“调整信息” 页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建 议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定 时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位 移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼 缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程 序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上 的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的 实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息: 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;

PKPM 设计参数

楼层组装—设计参数 a.总信息 1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。 2.结构主材(钢筋混凝土,砌体,钢和混凝土)。 3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。4.底框层数,地下室层数按实际选用。 5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。 7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。 b.材料信息 1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。 2.钢材容重取 78。 3.梁柱主筋类别,按设计需要选取。优先采用三级钢,可以节约钢材。 SATWE设计参数 a.总信息 1.水平力与整体坐标夹角(度),通常采用默认值。(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数) 2.混凝土容重取 26-27,钢材容重取 78。 3.裙房层数,转换层所在层号,地下室层数,均按实际取用。(如果有转换层必须指定其层号)。 4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。 5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。 6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。在为配筋而进行的工程计算中,对于多层,由于剪力墙较少,应选择“出口”,对于高层,由于剪力墙较多,工程规模较大,可选“内部”。 7.结构材料信息(钢筋混凝土结构,钢与混凝土混合结构,有填充墙钢结构,无填充墙钢结构,砌体结构),根据结构材料的不同进行选择。 8.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,板柱剪力墙),根据结构体系的不同进行选择。 9.恒活荷载计算信息[不计算恒活荷载(不计算竖向力),一次性加载(按一次加载方式计算竖向力),模拟施工加载1,模拟施工加载2]。 “模拟施工加载1”方式较好地模拟了在钢筋混凝土结构施工过程中,逐层加载,逐层找平

pkpm及SATWE参数设置个人总结

一、pkpm参数设置 1、材料信息的定义 本层信息里设置混凝土钢筋的强度等级,局部不同的可以在材料强度里特殊定义(也可以在后续SATWE里定义特殊构件的时候定义) 2、设计参数 注意:

(1)、有地下室的按地下室情况如实填写,当无地下室的时候,第一层为地梁,柱子像下伸,这一层计算的时候也定义为地下室(2)、计算指标的时候地下室一般不组装,计算地下室的梁柱配筋的时候再组装 (1)、混凝土容重:如果输楼板荷载的时候没有考虑抹灰找平层等,此处一般输27,若输荷载时考虑了,则可输25; (2)、钢截面净毛面积比值:钢构件截面净面积与毛面积的比值。净面积是构件去掉螺栓孔之后的截面面积,毛面积就是构件总截面面积。软件默认取值为0.5,经验值0.85,轻钢结构最大可以取到0.95,框架的可以取到0.9(当然这些和钢材的厚度负差、钢构件上面的开孔面积、焊接质量等等都有关系)

(1)计算阵型个数,取3的倍数,一般取楼层数的3倍;也可以在后续SATWE参数里不按阵型个数计算,按达到有效质量系数多少来计算(规范规定至少90%) (2)周期折减系数,考虑隔墙对刚度的影响,隔墙越多,对刚度贡献越大,周期越小,折减系数就越小,根据《高规》第4章最后一页确定 其他参数如实填写

二、SATWE参数设置(V3.2为例) 前面pkpm设置了的参数会自动读取到SATWE里,因此可以在这里设置前面未设置的参数,检查前面已经设置了的参数。 1、总信息 (1)水平力与整体坐标夹角:第一次计算不输入,计算后,地震作用最大的方向角度大于15°后,填入该度数再重新计算。

(2)如实填写

pkpm中要检查的参数

高层建筑结构设计必须检查的计算结果输出信息 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。(A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%,B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。注:楼层层间抗侧力结构受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。)见wmass.out 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。 新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。 新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80% 新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D 的规定。 D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2 D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效 侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。 上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择:(1)高规附录E.0.1建议的方法——剪切刚度Ki=GiAi/Hi (2)高规附录E.0.2建议的方法——剪弯刚度Ki=Vi /△i (3)抗震规范3.4.2和3.4.3条文说明中建议的方法 Ki=Vi/△ui 选用方法如下: (1)对于多层(砌体、砖混底框),宜采用刚度1; (2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2; (3)多数结构宜采用刚度3。(所有的结构均可用刚度3) 竖向刚度不规则结构的程序处理: 抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数; 新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其上三层平均值的80%时,该楼层地震剪力应乘1.15增大系数; 新抗震规范3.4.3条规定,竖向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。 1)针对这些条文,程序通过自动计算楼层刚度比, 来决定是否采用1.15的楼层剪力增大系数;并且允许用户强制指定薄弱层位置,对用户指定的薄弱层也采用1.15的楼层剪力增

PKPM计算参数

PKPM计算参数 一、总信息 1.水平力与整体坐标夹角: 一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,理应分别按各抗侧力构件方向角算一次,但实际上按0、45度各算一次即可;当程序给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值。 根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用。当计算出来的角度大于15度时,应返填入此项。 2.砼容重:25 结构类型框架结构框剪结构剪力墙结构 重度 25 2 6 27 3.钢材容重:一般取78,如果考虑饰面设计者可以适量增加。 4.裙房层数:

高规第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施,因此该层数必须给定。 层数是计算层数,等同于裙房屋面层层号。 5.转换层所在层号: 该指定只为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。(层号为计算层号) 6.地下室层数: 程序据此信息决定底部加强区范围和内力调整。 当地下室局部层数不同时,以主楼地下室层数输入。 地下室一般与上部共同作用分析; 地下室刚度大于上部层刚度的2倍,可不采用共同分析; 地下室与上部共同分析时,程序中相对刚度一般为3,模拟约束作用。当相对刚度为0,地下室考虑水平地震作用,不考虑风作用。当相对刚度为负值,地下室完全嵌固。 7.墙元细分最大控制长度: 可取1~5之间的数值,一般取2就可满足计算要求,框支剪力墙可取1或1.5。 8.墙元侧向节点信息: 内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点。对于多层结构,应选此项。 外部节点:按外部节点处理时,耗机时和内存资源较多。对于高层结构,可选此项。 9.恒活荷载计算信息: 一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法。因为施工的层层找平对多层结构的竖向变位影响很小,所以不要采用模拟施工方法计算。 模拟施工方法1加载:就是按一般的模拟施工方法加载,对高层结构,一般都采用这种方法计算。但是对于“框剪结构”,采用这种方法计算在导给基础的内力中剪力墙下的内力特别大,使得其下面的基础难于设计。于是就有了下一种竖向荷载加载法。 模拟施工方法2加载:这是在“模拟施工方法1”的基础上将竖向构件(柱、墙)的刚度增大10倍的情况下再进行结构的内力计算,也就是再按模拟施工方法1加载的情况下进行计算。采用这种方法计算出的传给基础的力比较

PKPM设置参数

(一) 前处理注意事项 1、按构件原型输入:按柱、异形柱、梁、墙(含开洞)构件原型输入,没有楼板的房间要开洞,不要把TAT薄壁柱理论对结的简化带入。 2、轴网输入:删除各层无用的网点,利用偏心布置构件功能,消除短梁、短墙、柱内多节点。PMCAD的数据检查要通过。SATWE数据报告提示的问题要消除。 3、柱、梁截面形式及材料:附录A中的15种截面类型,程序可计算自重。范例外的自重需用户输入。 4、板―柱结构输入:柱网需输入截面为100X100的虚梁。 5、厚板转换层输入:柱网需输入截面为100X100的虚梁。层高以板厚的1/2划分。 6、错层结构输入: A、框架错层:在PM中调整梁端高,含斜梁。 B、剪力墙错层:由于PM以楼板划分层,可在错层中局部布板。 C、多塔层高不同:把形成的塔虚层中楼板去掉。 关于整理SATWE设计参数便览的说明 设计参数的合理确定至关重要,以便览的方式整理其目的是在SATWE的操作中,可据本便览比较快的定下来。SATWE的设计参数,用户手册有一些说明,但分散在多处且过于简单,很不好用。论坛里也有许多帖子,但总觉得系统性、实用性有些不足。 SATWE前处理----接PM生成SATWE数据菜单共13项,重点是1、2两项。 由于水平有限在整理中肯定会出现不足和错误,欢迎斧正。更欢迎参与。 SATWE参数便览之总信息 1、水水平力与整体坐标夹角(度):采用隐含值0,经计算后,当大于15度时,填入计算 值重算。 2、混凝土容重:隐含值25。构件自重计算梁板、梁柱重叠部分都未扣除,框架结构可行,剪力墙、板柱结构偏小。 3、钢材容重:隐含值78。可行。 4、裙房层数:指地上的周边都有的群房。当主体一面或多面无裙房时,风荷载需个案处理。 5、转换层所在层号:按自然层号填输,含地下室的层数。 6、地下室层数:按地下层数填输,当一面或多面临空时,填土侧压力需个案处理。 7、墙元细分控制最大控制长度:墙元长度太大则计算精度无法保证,可采用隐含值。 8、对所有楼层采用刚性楼板假定:位移计算时,不论是否开大洞或不规则,必须是刚性板假定。内力计算时,则在任何情况下均不能设为刚性板。 9、墙元侧向节点信息:一般工程选“出口”,剪力墙数量多的高层结构宜选“内部”。选“内部”时,计算精度会有一点点降低,但速度要快很多。 10、结构材料信息:共5个选项:钢筋砼结构;钢与砼混合结构;有填充墙钢结构;无填充墙钢结构;砌体结构。按含义选取,砌体结构用于底框结构。 11、结构体系:按结构布置的实际状况确定。共分:框架结构、框剪结构、框筒结构、筒中筒结构、板柱剪力墙结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砖混底框结构、共9种类型。确定结构类型即确定与其对应的有关设计参数。

PKPM参数设置

PKPM参数设置 有关PKPM软件SATWE的总信息以下是SATWE总信息中各参数如何取值,规范出处,对设计很有参考价值,当然有些参数还需要与当地的实际情况和工程的具体实际结合,以达到更合理的设计: 总信息 .............................................. 结构材料信息: 钢砼结构................ 按主体结构材料填写 混凝土容重 (kN/m3): Gc = 27.00.............. 应考虑构件装修重量,建议取27kN/m3 钢材容重 (kN/m3): Gs = 78.00.............. 一般取78kN/m3(没有计入构件装修重量)水平力的夹角 (Rad): ARF = 0.00.............. 一般取0(地震力.风力作用方向,反时针为正);当结构分析所得的[地震作用最大的方向]>15度时, 宜将其角度输入补充验算地下室层数: MBASE= 0................ 无地下室时填0 竖向荷载计算信息: 按一次性加荷计算方式.... 多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2] 风荷载计算信息: 计算X,Y两个方向的风荷载...选[计算风荷载] 地震力计算信息: 计算X,Y两个方向的地震力...选[计算水平地震力],《抗规》5.1.1条(强条) 特殊荷载计算信息: 不计算.................. 一般情况下不考虑 结构类别: 框架结构................ 按结构体系选择 裙房层数: MANNEX= 0............... 无裙房时填0 转换层所在层号: MCHANGE= 0.............. 无转换层时填0 墙元细分最大控制长度(m) DMAX= 2.00............ 一般工程取2.0,框支剪力墙取1.5或1.0 墙元侧向节点信息: 内部节点................ 剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》 是否对全楼强制采用刚性楼板假定是............. 计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否] 风荷载信息 .......................................... 修正后的基本风压 (kN/m2): WO = 0.45 .......... 取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录 D.4附表D.4 地面粗糙程度: B 类.................... 有密集建筑群的城市市区选[C]类;乡村、乡镇、市郊等选类,D类指有密集建筑群且房屋较高的城市市区;A 类指近海海面和海岛、海岸、湖岸及沙漠地区;详《荷规》7.2.1条 结构基本周期(秒): T1 = 0.06............... 宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08-0.10)n, n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;

(整理)PKPM设计基础时的参数分析和最小配筋率使用注意事项.

PKPM设计基础时的参数分析和最小配筋率使用注意 独立基础的最小配筋率问题比较复杂,有以下资料供参考: 1.当独立基础底板厚度有规定:挑出长度与高度比值小于 2.5。因此不能当做一般的卧于地基上的板来看待2.满足1的要求是基础底面反力可以看作是线性的。也就是说不考虑基础底板的弯曲或剪切变形。 3.基础底版有最小配筋要求即10@200,这比原来的8@200已经提高。 4.基础底版是非等厚度板,计算配筋率只能按全面积计算,不能按单位长度计算。 本人认为独立基础底板配筋不用按最小配筋率控制。

JCCAD程序中作了选项,如果输入最小配筋率则会按全截面演算最小配筋率。当进行等强代换后程序还会重新演算最小配筋率。 我院总工要求结构设计人员的一些注意事项 6、对小塔楼的界定应慎重,当塔楼高度对房屋结构适宜高度有影响时,小塔楼应报院结构专业委员会确定 7、施工图涉及到钢网架、电梯及其它设备予留的孔洞、机坑、基础、予埋件等一定要写明:“有关尺寸在浇筑混凝土之前必须得到设备厂家签字认可方可施工。” 8、砌体结构不允许设转角飘窗。 9、钢结构工程设计必须注明:焊缝质量等级,耐火等级,除锈等级,及涂装要求。 10、砌体工程设计必须注明设计采用的施工质量控

制等级。(一般采用B级)。 11、砌体结构不宜设置少量的钢筋混凝土墙。 12、砌体结构楼面有高差时,其高差不应超过一个梁高(一般不超过500mm)。超过时,应将错层当两个楼层计入总楼层中。 二.结构计算 13、结构整体计算总体信息的取值: (1)混凝土容重(KN/m3)取26~27,全剪结构取27,若取25,对于剪力墙需输入双面粉层荷载。(2)地下室层数,取实际地下室层数,当含有地下室计算时,不指定地下室层数是不对的,请审核人把关 (3)计算振型数,取3的倍数,高层建筑应至少取9个,考虑扭转耦联计算时,振型应不少于15个,对多塔结构不应少于塔数×9。计算时要检查Cmass-x及

PKPM-SATWE参数信息设置

SATWE 计算参数选择 总信息 1水平力与整体坐标夹角(度):0 初始值为0,satwe可以自动计算出这个最不利方向角,并在wzq.out中输出。如果这个角大于15度,可根据把这个角度作为地震作用的方向角重新进行计算,以体现最不利地震作用的影响。 地震沿着不同的方向作用,结构地震反应的大小一般也不同。结构地震反应是地震作用方向角的函数(逆时针为正)。 2混凝土容重:26kN/m2 在自重荷载有利的情况下,要取25kN/m2 3钢材容重:78 kN/m2 4裙房层数:按实际情况。 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。 5转换层所在层号:按实际情况。 抗规3.4.3规定;高规10.2.6规定 6地下室层数:按实际情况。 7墙元细分最大控制长度:1 程序限定1.0-5.0之间,隐含值为2.0,该值对分析精度略有影响,但不敏感,对于一般工程,可取隐含值,对于框支剪力墙结构,可取的略小一些,取1.5或1.0。 8对所有楼板采用刚性楼板假定: 位移计算(周期计算)必须在刚性楼板假定条件下计算得到,而构件设计(配筋)应采用弹性楼板计算。9后面三个基本按默认

10结构体系:按实际情况。 剪力墙结构与框剪结构细分要看规定水平力框架柱及短肢墙地震倾覆力矩百分比(抗规)是否大于50% 11恒活荷载计算信息:一般选择“模拟施工方法3” 当计算框架-剪力墙等柱墙混用的结构的基础时选择“模拟施工方法2”。如有竖吊构件(如吊柱),必须选择“一次性加载。 5.1.9、高层建筑进行重力荷载作用效应分析时,柱、墙轴向变形宜考虑施工过程的影响。施工过程的模拟可根据需要采用适当的简化方法。 “模拟施工方法1”加载:就是按一般的模拟施工方法,对于高层结构一般都采用这种方法计算。但这是在"基础嵌固约束"假定前提下的计算结果,未能考虑基础的不均匀沉降对结构构件内力的影响。若结构地基无不均匀沉降,上述分析结果更能较准确地反映结构的实际受力状态,但若结构地基有不均匀沉降,上述分析结果会存在一定的误差,尤其对于框剪结构,外围框架柱受力偏小,而剪力墙核心筒受力偏大,并给基础设计带来一定的困难。 “模拟施工方法2”加载:在模拟施工方法1的基础上将竖向构件(墙、柱)的侧向刚度增大10倍的情况下,再进行结构计算,采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不合理的情况,由于竖向刚度放大,使水平梁的两端的竖向位移差减少,从而使其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近于手算。 12风荷载计算信息:选择“计算风荷载”。 13地震作用计算信息:一般选择“计算水平地震力”。 当满足下面规定时,选择“计算水平与竖向地震力”。多层建筑: 《抗规》5.1.1.4、8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。 高层建筑: (强规)3.3.2、高层建筑结构应按下列原则考虑地震作用:…… 3、8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用; 4、9度抗震设计时应计算竖向地震作用。

pkpm中结构类型及设计参数整理

目录 1.结构类型 (1) 2.设计参数控制 (2) 2.1受压构件的长细比: (2) 2.2受拉构件的长细比 (3) 2.3柱顶位移和柱高度: (5) 2.4钢梁的挠度和跨度: (6) 2.5单层厂房排架柱计算长度折减系数: (8) 2.6多台吊车组合时的荷载折减系数: (11) 2.7门式刚架梁按压弯构件验算平面内稳定性 (12) 2.8摇摆柱内力放大系数 (12) 2.9当实腹梁与作用有吊车的柱刚接时,该柱按照柱上端为自由的阶形柱确定计算 长度系数 (13) 2.10轻屋盖厂房按“低延性,高弹性承载力性能化”设计 (14) 3.1 关于净截面、毛截面、有效截面、有效净截面的理解及其应用: (15) 1.结构类型 1)单层钢结构厂房,不适用于《门规》的单层钢结构厂房,程序将按照《抗规》内容进行

控制。 2)门式刚架轻型房屋钢结构,选择此选项时,不再按《抗规》9.2章内容控制,仅执行《门规》。 3)多层钢结构厂房,按《抗规》附录H.2进行计算与控制。 4)钢框架结构,按《抗规》内容进行控制。 a.“门式刚架轻型房屋钢结构”,其中“门式”,主要有两种形式:双坡、单坡。门式刚架不仅仅只针对轻钢,也包括普钢。轻钢门规仅仅是门式刚架 结构中的轻钢部分。 b.轻钢的界定:“主承重结构为单跨或多跨实腹式门式刚架”、“单跨或多跨实腹式门式刚架”、“轻钢屋盖和轻钢外墙”、“起重量不大于20t的A1~A5工 作级别桥式吊车或没有吊车(当然也可以是单梁吊车)”、“悬挂吊车起重量 不超过3t”、“单层”、“跨度一般不宜超过36m”、“高度一般不宜超过12m”、 “柱距一般不宜超过9m”。后面三条,一般超过36米就不宜在选用轻钢规 范设计了。刚架高度、柱距可根据实际情况选择规范,并不是限定的那么 严格。 c.门式轻钢,多用于生产车间、仓库、厂房钢结构。设计时,首先要确定规范的采用,不能一概而论的所有门式的就都是轻钢。一些大吨位吊车,格 构柱等的门式结构为重(普)钢结构,需按《钢结构设计规范》来采用。 d.钢架排架的最明显区别: 排架结构:柱底与基础刚接、梁和柱顶铰接;钢架结构:柱底与基础刚接,梁和柱顶刚接。 e.冷弯薄壁性钢结构:用各种冷弯型钢制成的结构。冷弯薄壁型钢由厚度为 1.5~6毫米的钢板或带钢,经冷加工(冷弯、冷压或冷拔)成型,同一截面 部分的厚度都相同,截面各角顶处呈圆弧形。 2.设计参数控制 2.1受压构件的长细比: 受压构件长细比的规律:1、主要构件要求严、次要构件要求松;2、一定范围内:受压力/FyA 比值越大时,长细比越严格(当比值小于等于50%时,允许长细比可适当放大《钢规》5.3) 《轻钢》规定不宜大于表3.5.2-1规定的限值 表3.5.2-1 受压构件的长细比限值 《冷弯薄壁》受压构件的长细比不宜超过表4.3.3中所列数值; 表4.3.3 受压构件的容许长细比

pkpm参数设置的问题

1.风荷载 风压标准值计算公式为:WK=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压Wo 略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D 类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5Om、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。 6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(WoT12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 PKPM结构设计参数2 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期Tg的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5Tg以内与89规范相同,从5Tg起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的

Pkpm参数表

PKPM参数表 一.计算配筋时模型: 1.框剪结构(40F/2D塔楼) 1)PM本层信息:砼等级暂按C30输入,在多塔中修改,梁纵向钢筋 采用4级钢,其余三级钢。 2)PM设计参数:结构体系按框剪输入,梁柱钢筋的混凝土保护层厚 度为20mm,地下室层数为2,框架梁端负弯矩调幅系数0.8。 3)SATWE分析和设计参数补充定义 a.总信息混凝土容重26;裙房层数6;嵌固端所在层号3;地下 室层数2;恒活载计算信息:模拟施工3;不勾选“强制刚性楼板假 定”;勾选“地下室强制刚性楼板假定”;勾选“墙梁跨中节点作为 刚性楼板从节点”;不勾选“计算墙倾覆力矩时只考虑腹板和有效翼 缘”;勾选“弹性板与梁变形协调”;计算水平风荷载;计算水平地 震作用。 b.风荷载信息XY方向结构基本周期近似取地震作用计算周期; 承载力设计时风荷载效应放大系数1.1;风荷载体型系数1.4;勾选 “考虑顺风向风振影响”;勾选“考虑横风向风振影响”;不勾选 “考虑扭转风振影响”; c.地震信息不规则、第三组、0.15g、暂按“II类”场地、框架一 级、剪力墙一级、抗震构造措施抗震等级不改变、中震或大震设计 不考虑;勾选“考虑偶然偏心”;勾选“考虑双向地震作用”;相对 偶然偏心采用默认值0.05;计算振型个数以达到质量系数97%以上 为准;周期折减系数0.85;斜交抗侧力构件方向附加地震数0; d.活载信息墙柱、传给基础活载勾选“折减”;折减系数为默认 值; e.调整信息梁端负弯矩调幅系数0.8;实配钢筋超配系数1.05; 梁活载内力放大系数1.0;连梁刚度折减系数0.65;勾选“梁刚度放 大系数按2010规范取值”;抗规5.2.5调整应根据计算结果需要调整 时自定义调整系数使地下室调整系数为1;薄弱层选择“按抗规和 高规从严判断”;0.2V0调整起始调整从3层开始,终止层数为42 层,即地下室不调整;其他为默认值。 f.设计信息勾选“按高规和高钢规进行构件设计”、“框架梁端配 筋考虑受压”、“梁柱重叠部分简化为刚域”、“柱配筋按单偏压计算”, 其余按默认值。 g.配筋信息边缘构件箍筋强度360,按三级钢,其余默认值。 4)特殊构件补充定义定义角柱、次梁计算端部明显出现较大负筋时点铰(平法中按铰接锚固)。 5)多塔定义立面上定义墙柱等混凝土等级,最高为C55。 2.剪力墙结构(31F/1D塔楼),仅列举与框剪结构不同之处 2)PM设计参数:结构体系按剪力墙输入,地下室层数为1。 3)SATWE分析和设计参数补充定义 a.总信息混凝土容重27;裙房层数0;嵌固端所在层号3;地下 室层数2;恒活载计算信息:模拟施工3;不勾选“强制刚性楼板假

相关主题