搜档网
当前位置:搜档网 › MATLAB实验报告

MATLAB实验报告

MATLAB实验报告
MATLAB实验报告

MATLAB 实验报告

学院:

班级:

姓名:

学号:

实验一M-文件结构编写与调用

一、实验目的

在学习MATLAB的过程中,M文件的编写至关重要,因此,我们学习这门课程,必须熟悉的掌握Matlab文件类型及其编写方法、程序结构的编写,并且从程序编写的步骤中深刻的了解流程控制方法,函数文件的编写与综合应用。

二、实验题目及要求

建立m文件,求,在xoy平面内选择一个区域,然后绘制其三维表面图形。

三、实验过程与步骤

(1)设计思路

a、首先我们从实验题目及要求中可以了解到需要回执一个三维表面图形,那就应该准备横坐标与纵坐标的数据,这样就可以产生一个X轴为-4,中止于4,步距为2,Y轴起始于-2,中止于2,步距为1的网格分割。

b、指定图形的窗口和子图的位置。也就是说,我们可以使用Figure命令指定图形窗口,默认时打开Figure1窗口,或者可以使用subplot命令指定当前子图。

c、绘制相应的曲线。当坐标轴的数据设置以后,即可绘制曲线。

d、后期修饰。当曲线绘制完毕以后,为了整体的布局美观,需要加注一些坐标轴刻度、分格线的设置;图名、坐标名、图例、文字说明等一些的图形注释,从而美化图形。

(2)指令输入

根据题目所示,我们需要在Matlab中输入如下指令,界面如图所示:

三、实验结果

(1)当上述指令输入进去后,得到如下图所示的曲线图:

(2)当进行属性设置以后,我们可以获得更美观的三维表面图形,界面如下图所示:

实验二 Guide的使用入门

一、实验目的

GUI开发环境是MATLAB R2010a为设计图形用户界面提供的一个集成设计和开发环境,此实验为了了解更多关于GUI界面的知识,以便我们能使用更加丰富的图形设计工具,创建更丰富的图形用户界面,实现友好地人机交互。二、实验题目及要求

利用GUI界面算出两个数相加而得到相应的数据结果

三、实验过程及步骤

(1)、首先打开MATALAB,然后选择“File”中的“GUI”,从而可以创建一个空白页面。

(2)、进入GUI 开发环境以后添加两个编辑文本框,6 个静态文本框,和一个按钮,同时进行相应的属性设置以后布置如下图所示;

(3)当布置好各种相应的控件以后,现在就可以为这些控件编写程序来实现两数相加的功能。

a、静态文本框一的程序代码为:

input = str2num(get(hObject,'String'));

if (isempty(input))

set(hObject,'String','0')

end

guidata(hObject, handles);

b、静态文本框二的程序代码同上。

c、按钮的程序代码为:

a = get(handles.edit1,'String');

b = get(handles.edit2,'String');

total=str2num(a) + str2nu(b);

c = num2str(total);

set(handles.text3,'String',c);

guidata(hObject, handles);

(4)将上述中的代码写入M文件编辑器中即可,例如按钮的M文件编辑器的窗口显示如下:

四、实验结果

当完成上述步骤以后,即能够运行程序,同时输入数据1为18,数据2为16,可以得到结果(34),界面如下图所示:

实验三Simulink系统仿真

一、实验目的

Simulink是MATLAB的仿真工具箱,是快速,准确的仿真工具,此实验能够让我们熟悉的掌握Simulink常用输入、输出、运算模块及Simulink模型的建立和系统仿真方法。

二、实验题目及要求

创建一个二阶系统的仿真模型,并观察其输出波形。

要求:输入信号源使用阶跃信号,系统使用开环传递函数1/s*s+0.6s,接受模块使用示波器来构成模型。

三、实验过程及步骤

(1)首先创建一个空白模型页,在空白页中添加相应的模块,在“Sources”模块库选择“Step”模块,在“Continuous”模块库选择“Transfer Fcn”模块,在“Math Operations”模块库选择“Sum”模块,在“Sinks”模块库选择“Scope”。

(2)连接各个模块,从信号线引出分支点,同时添加注释,从而构成闭环系统。则显示图如下:

(3)设置模块的参数。打开“Sum”模块参数设置对话框,如图7.26 所示。将“Icon shape”设置为“rectangular”,将“List of signs”设置为“|+-”,其中“|”表示上面的入口为空。“Transfer Fcn”模块的参数设置对话框中,将分母多项式“Denominator”设置为“[1 0.6 0]”。将“Step”模块的参数

设置对话框中,将“Step time”修改为0。其中“Sum”模块的参数设置框如下所示:

四、实验结果

在仿真之前需要选择菜单“Simulation”——“Simulation parameters…”命令,在“Solver”页将“Stop time”设置为15,打开示波器的 Y 坐标设置对话框,将Y 坐标的“Y-min”改为0,“Y-max”改为2,将“Title”设置为“二阶系统时域响应”,即单击“Start simulation”按钮,仿真图如下:

MATLAB实验报告

MATLAB程序设计语言 实 验 报 告 专业及班级:电子信息工程 姓名:王伟 学号:1107050322 日期 2013年6月20日

实验一 MATLAB 的基本使用 【一】 实验目的 1.了解MATALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境; 2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力; 3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。 【二】 MATLAB 的基础知识 通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取 五. MATLAB 的数值计算功能 六. 程序流程控制 七. M 文件 八. 函数文件 九. MATLAB 的可视化 【三】上机练习 1. 仔细预习第二部分内容,关于MATLAB 的基础知识。 2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍 3. 已知矩阵???? ??????=??????????=123456789,987654321B A 。求A*B ,A .* B ,比较二者结果是否相同。并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以 及最大值。 程序代码: >> A=[1 2 3;4 5 6;7 8 9]; >> B=[9 8 7;6 5 4;3 2 1]; >> A*B ans =

30 24 18 84 69 54 138 114 90 >> A.*B ans = 9 16 21 24 25 24 21 16 9 两者结果不同 >> [m,n]=size(A) m = 3 n = 3 >> b=sum(A) b = 12 15 18 >> a=length(A) a = 3 >>max(A) ans =

MATLAB实验报告50059

实验一MATLAB操作基础 实验目的和要求: 1、熟悉MATLAB的操作环境及基本操作方法。 2、掌握MATLAB的搜索路径及设置方法。 3、熟悉MATLAB帮助信息的查阅方法 实验内容: 1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试 验用help命令能否查询到自己的工作目录。 2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。 例1-1

例1-2 例1-3 例1-4

3、利用帮助功能查询inv、plot、max、round等函数的功能。 4、完成下列操作: (1)在matlab命令窗口输入以下命令: x=0:pi/10:2*pi; y=sin(x); (2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。 主要教学环节的组织: 教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。 思考题: 1、如何启动与退出MA TLAB集成环境? 启动: (1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动 MATLAB系统。 (2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。 (3)在桌面上建立快捷方式后。双击快捷方式图标,启动MA TLAB。 退出: (1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。 (2)在MA TLAB命令窗口中输入exit或quit命令。 (3)单击MATLAB主窗口的关闭按钮。 2、简述MATLAB的主要功能。 MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符 号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。 3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?

matlab实验报告

数学实验报告 班级: 学号: 姓名: 实验序号:1 日期:年 月 日 实验名称:特殊函数与图形 ◆ 问题背景描述:绘图是数学中的一种重要手段,借助图形,可以使抽象的对象得到 明白直观的体现,如函数的性质等。同时,借助直观的图形,使初学者更容易接受新知识,激发学习兴趣。 ◆ 实验目的:本实验通过绘制一些特殊函数的图形,一方面展示这些函数的特点属性, 另一方面,就 Matlab 强大的作图功能作一个简单介绍。 实验原理与数学模型: 1、 球2222x y z R ++= ,x=Rsin φcos θ, y= Rsin φsin θ, z= cos φ, 0≤θ≤2π , 0≤φ≤π 环面 222222222()4(),(cos )cos ,x y z a r a x y x a r φθ+++-=+=- (cos )sin ,sin ,02,02y a r z r φθφφπθπ=-=≤≤≤≤ 2、 平面摆线:2 22 31150,(sin ),(1cos ),0233 x y x a t t y a t t π+-==-=-≤≤ 3、 空间螺线:(圆柱螺线)x=acost , y=asint , z=bt ;(圆锥螺线)22 cos ,sin ,x t t y t t z t === 4、 椭球面sin cos ,sin sin ,cos ,02,0x a y b z c φθφθφθπφπ===≤<≤≤ 双叶双曲面3 tan cos ,tan sin ,sec ,02,22 x a y b z c π φθφθφθπφπ===≤<- << 双曲抛物面2 sec ,tan 2 u x au y bu z θθ=== 实验所用软件及版本:mathematica(3.0) 主要内容(要点): 1、 作出下列三维图形(球、环面) 2、 作出下列的墨西哥帽子 3、 作出球面、椭球面、双叶双曲面,单叶双曲面的图形 4、 试画出田螺上的一根螺线 5、 作出如图的马鞍面

matlab实验报告

MATLAB 数学实验报告 指导老师: 班级: 小组成员: 时间:201_/_/_

Matlab 第二次实验报告 小组成员: 1 题目:实验四,MATLAB 选择结构与应用实验 目的:掌握if 选择结构与程序流程控制,重点掌握break,return , pause语句的应用。 问题:问题1:验证“哥德巴赫猜想” ,即:任何一个正偶数(n>=6)均可表示为两个质数的和。要求编制一个函数程序,输入一个正偶数,返回两个质数的和。 问题分析:由用户输入一个大于6 的偶数,由input 语句实现。由if 判断语句判断是否输入的数据符合条件。再引用质数判断函数来找出两个质数,再向屏幕输出两个质数即可。 编程:function [z1,z2]=gede(n); n=input('please input n')

if n<6 disp('data error'); return end if mod(n,2)==0 for i=2:n/2 k=0; for j=2:sqrt(i) if mod(i,j)==0 k=k+1; end end for j=2:sqrt(n-i) if mod(n-i,j)==0 k=k+1; end end if k==0 fprintf('two numbers are') fprintf('%.0f,%.0f',i,n- i) break end

end end 结果分析 如上图,用户输入了大于6的偶数返回两个质数5和31,通过 不断试验,即可验证哥德巴赫猜想。 纪录:if判断语句与for循环语句联合嵌套使用可使程序结构更加明晰,更快的解决问题。 2题目:实验四,MATLAB选择结构与应用实验 目的:用matlab联系生活实际,解决一些生活中常见的实际问 题。

Matlab数学实验报告一

数学软件课程设计 题目非线性方程求解 班级数学081 姓名曹曼伦

实验目的:用二分法与Newton迭代法求解非线性方程的根; 用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 编程实现二分法及Newton迭代法; 学会使用Matlab函数solve、fzero、fsolve求解非线性方程(组)的解。 通过实例分别用二分法及迭代法解非线性方程组并观察收敛速度。 实验内容: 比较求exp(x)+10*x-2的根的计算量。(要求误差不超过十的五次方) (1)在区间(0,1)内用二分法; (2)用迭代法x=(2-exp(x))/10,取初值x=0 。 试验程序 (1)二分法: format long syms x s=exp(x)+10*x-2 a=0; b=1; A=subs(s,a) B=subs(s,b) f=A*B %若f<0,则为由根区间 n=0; stop=1.0e-5; while f<0&abs(a-b)>=stop&n<=100; Xk=(a+b)/2; %二分 M= subs(s, Xk); if M* A<0 symbol=1 %若M= subs(s, Xk)为正,则与a二分 b= Xk else symbol=0 % 若M= subs(s, Xk)为负,则与b二分 a= Xk end n=n+1 end Xk n (2)牛顿迭代法; format long

syms x s= (2-exp(x))/10; %迭代公式 f=diff(s); x=0; %迭代初值 a=subs(f,x); %判断收敛性(a是否小于1) s=(2-exp(x))/10; stop=1.0e-5; %迭代的精度 n=0; while a<1&abs(s-x)>=stop&n<=100; x=s %迭代 s=(2-exp(x))/10; n=n+1 end 实验结果: (1)二分法: symbol =1 b =0.50000000000000 n =1 symbol =1 b =0.25000000000000 n =2 symbol =1 b =0.12500000000000 n =3 symbol =0 a =0.06250000000000 n =4 symbol =1 b =0.09375000000000 n =5 symbol =0 a =0.07812500000000 n =6 symbol =1 b =0.09054565429688 n =15 symbol =1 b =0.09053039550781 n =16 symbol =0 a =0.09052276611328 n =17 Xk =0.09052276611328 n =17 (2)迭代法 由x =0.10000000000000 n =1 x =0.08948290819244 n =2 x =0.09063913585958 n =3 x =0.09051261667437 n =4 x =0.09052646805264 n =5 试验结果可见用二分法需要算17次,而用迭代法求得同样精度的解仅用5次,但由于迭代法一般只具有局部收敛性,因此通常不用二分法来求得非线性方程的精确解,而只用它求得根的一个近似解,再用收敛速度较快的迭代法求得其精确解。

数学实验“几种常见的求积分近似解的方法”实验报告(内含matlab程序)

西京学院数学软件实验任务书

实验二十一实验报告 一、实验名称:Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 二、实验目的:进一步熟悉Romberg 积分法,Gauss 型积分法,高斯-勒让德积分法,高斯-切比雪夫积分法,高斯-拉盖尔积分法,高斯-埃尔米特积分法。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.Romberg 积分法: 龙贝格积分法是用里查森外推算法来加快复合梯形求积公式的收敛速度,它的算法如下,其中()i m T 是通过一系列逼近原定积分的龙贝格分值. 计算(0)1[()()]2 b a T f a f b -= + 对1,2,3,k n = ,计算下列各步: 21()(1)1 111 1(21)()[()]222k k k k k j b a j b a T T f a ---=---=++∑

对1,2,,m k = 和,1,2,,1i k k k =-- ,计算111 441 m i i i m m m m T T T --+-=- 随着计算的步骤的增加,()i m T 越来越逼近积分()b a f x dx ?。 2.Gauss 型积分法: 高斯积分公式的思想是用n 个不等距的节点123,,,n x x x x 对被积函数进行插值,然后对插值后的函数进行积分,其积分公式为: 1 1 1 ()()n k k k f x dx A f x -=≈∑? 如果积分区间不是[1,1]-,则需转换到此区间: 11()()222 b a b a b a b a f x dx f t dt ---+= +? ? 其中系数k A 、节点k x 与n 的关系如下表所示: 3.高斯-切比雪夫积分法: 第一类切比雪夫积分形式为: 1 1 ()()n k k k f x dx A f x -=≈∑? 其中k A n π= ,21cos 2k k x n π-= 4.高斯-拉盖尔积分法: 高斯-拉盖尔公式有两种形式: 1 ()()n x k k k e f x dx A f x +∞ -=≈∑?

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告 一、实验目的 1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。 2.学会运用MATLAB表示常用连续时间信号的方法 3.观察并熟悉一些信号的波形和特性。 4.学会运用MATLAB进行连续信号时移、反折和尺度变换。 5.学会运用MATLAB进行连续时间微分、积分运算。 6.学会运用MATLAB进行连续信号相加、相乘运算。 7.学会运用MATLAB进行连续信号的奇偶分解。 二、实验任务 将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。 三、实验内容 1.MATLAB软件基本运算入门。 1). MATLAB软件的数值计算: 算数运算 向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。 矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开; 矩阵的不同行之间必须用分号”;”或者ENTER分开。2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。 举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名” 2.MATLAB软件简单二维图形绘制 1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y) 2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表 示第p个区域,表达为subplot(mnp)或者subplot(m,n,p) 3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin]) 4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’) 5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’) 6).输出:grid on 举例1: 举例2:

matlab数学实验报告5

数学实验报告 制作成员班级学号 2011年6月12日

培养容器温度变化率模型 一、实验目的 利用matlab软件估测培养容器温度变化率 二、实验问题 现在大棚技术越来越好,能够将温度控制在一定温度范围内。为利用这种优势,实验室现在需要培植某种适于在8.16℃到10.74℃下能够快速长大的甜菜品种。为达到实验所需温度,又尽可能地节约成本,研究所决定使用如下方式控制培养容器的温度:1,每天加热一次或两次,每次约两小时; 2,当温度降至8.16℃时,加热装置开始工作;当温度达到10.74℃时,加热装置停止工作。 已知实验的时间是冬天,实验室为了其它实验的需要已经将实验室的温度大致稳定在0℃。下表记录的是该培养容器某一天的温度 时间(h)温度(℃)时间(h)温度(℃)09.68 1.849.31 0.929.45 2.959.13 3.878.981 4.989.65 4.988.811 5.909.41 5.908.691 6.839.18 7.008.5217.938.92 7.938.3919.048.66 8.978.2219.968.43 9.89加热装置工作20.848.22 10.93加热装置工作22.02加热装置工作10.9510.8222.96加热装置工作12.0310.5023.8810.59 12.9510.2124.9910.35 13.889.9425.9110.18 三、建立数学模型 1,分析:由物理学中的傅利叶传热定律知温度变化率只取决于温度

差,与温度本身无关。因为培养容器最低温度和最高温度分别是:8.16℃和10.74℃;即最低温度差和最高温度差分别是:8.16℃和10.74℃。而且,16.8/74.10≈1.1467,约为1,故可以忽略温度对温度变化率的影响2, 将温度变化率看成是时间的连续函数,为计算简单,不妨将温度变化率定义成单位时间温度变化的多少,即温度对时间连续变化的绝对值(温度是下降的),得到结果后再乘以一系数即可。 四、问题求解和程序设计流程1)温度变化率的估计方法 根据上表的数据,利用matlab 做出温度-时间散点图如下: 下面计算温度变化率与时间的关系。由图选择将数据分三段,然后对每一段数据做如下处理:设某段数据为{(0x ,0y ),(1x ,1y ),(2x , 2y ),…,(n x ,n y )},相邻数据中点的平均温度变化率采取公式: 温度变化率=(左端点的温度-右端点的温度)/区间长度算得即:v( 2 1i i x x ++)=(1+-i i y y )/(i i x x - +1). 每段首尾点的温度变化率采用下面的公式计算:v(0x )=(30y -41y +2y )/(2x -0x )v(n x )=(3n y -41+n y +2+n y )/(n x -2-n x )

matlab实验报告

实验一小球做自由落体运动内容:一小球竖直方向做自由落体,并无损做往返运动。程序: theta=0:0.01:2*pi x=cos(theta) y=sin(theta) l=1 v=1 while l<10 for t=1:10 y=y+(-1)^l*v*t plot(x,y,[-1,1],[-56,2],'.') axis equal pause(0.1) end l=l+1 end 结果:

-50 -40 -30 -20 -10 收获:通过运用小球自由落体规律,及(-1)^n 来实现无损往 返运动! 实验二 旋转五角星 内容:一个五角星在圆内匀速旋转 程序:x=[2 2 2 2 2 2] y=[0 4/5*pi 8/5*pi 2/5*pi 6/5*pi 0] y1=2*sin(y) x1=2*cos(y) theta=0:4/5*pi:4*pi

x2=2*cos(theta) y2=2*sin(theta) plot(x,y,x1,y1,x2,y2) axis equal theta1=theta+pi/10 x2=2*cos(theta1) y2=2*sin(theta1) plot(x2,y2) axis equal theta=0:4/5*pi:4*pi for rot=pi/10:pi/10:2*pi x=2*cos(theta+rot) y=2*sin(theta+rot) plot(x,y) pause(0.1) end 结果:

-2 -1.5-1-0.500.51 1.52 -2-1.5-1-0.500.511.5 2 收获:通过theta1=theta+pi/10,我们可以实现五角星在圆内匀速 旋转! 实验三 转动的自行车 内容:一辆自行车在圆内匀速转动 程序:x=-4:0.08:4; y=sqrt(16-x.^2); theta1=-pi/2:0.01*pi:3*pi/2; x3=0.5*cos(theta1); y3=0.5*sin(theta1); theta=-pi/2+0.02*pi for k=1:100

matlab实验报告

2015秋2013级《MATLAB程序设计》实验报告 实验一班级:软件131姓名:陈万全学号:132852 一、实验目的 1、了解MATLAB程序设计的开发环境,熟悉命令窗口、工作区窗口、历史命令等窗口的使用。 2、掌握MATLAB常用命令的使用。 3、掌握MATLAB帮助系统的使用。 4、熟悉利用MATLAB进行简单数学计算以及绘图的操作方法。 二、实验内容 1、启动MATLAB软件,熟悉MATLAB的基本工作桌面,了解各个窗口的功能与使用。 图1 MATLAB工作桌面 2、MATLAB的常用命令与系统帮助: (1)系统帮助 help:用来查询已知命令的用法。例如已知inv是用来计算逆矩阵,键入help inv即可得知有关inv命令的用法。 lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的

命令後,即可用help进一步找出其用法。 (2)数据显示格式: 常用命令:说明 format short 显示小数点后4位(缺省值) format long 显示15位 format bank 显示小数点后2位 format + 显示+,-,0 format short e 5位科学记数法 format long e 15位科学记数法 format rat 最接近的有理数显示 (3)命令行编辑:键盘上的各种箭头和控制键提供了命令的重调、编辑功能。 具体用法如下: ↑----重调前一行(可重复使用调用更早的) ↓----重调后一行 →----前移一字符 ←----后移一字符 home----前移到行首 end----移动到行末 esc----清除一行 del----清除当前字符 backspace----清除前一字符 (4)MATLAB工作区常用命令: who--------显示当前工作区中所有用户变量名 whos--------显示当前工作区中所有用户变量名及大小、字节数和类型 disp(x) -----显示变量X的内容 clear -----清除工作区中用户定义的所有变量 save文件名-----保存工作区中用户定义的所有变量到指定文件中 load文件名-----载入指定文件中的数据

MATLAB实验报告

数字信号处理及MATLAB 实验报告 班级: 学号: 姓名:

4.7.2 例4,2 设x(n)是由两个正弦信号及白噪声的叠加,试用FFT文件对其作频谱分析。程序清单 %产生两个正弦加白噪声 N=256; f1=.1;f2=.2;fs=1; a1=5;a2=3; w=2*pi/fs; x=a1*sin(w*f1*(0:N-1))+a2*sin(w*f2*(0:N-1))+randn(1,N); %应用FFT求频谱 subplot(2,2,1); plot(x(1:N/4)); title('原始信号'); f=-0.5:1/N:0.5-1/N; x=fft(x); y=ifft(x); subplot(2,2,2); plot(f,fftshift(abs(x))); title('频域信号'); subplot(2,2,3); plot(real(x(1:N/4))); title('时域信号');

例4.3 设x(n)为长度N=6的矩形序列,用MATLAB程序分析FFT取不同长度时x(n)频谱的变化。N=8,32,64,时x(n)的FFT MATLAB实现程序如下。 x=[1,1,1,1,1,1]; N=8; y1=fft(x,N); n=0:N-1; subplot(3,1,1);stem(n,abs(y1),'.k');axis([0,9,0,6]); N=32; y2=fft(x,N); n=0:N-1; subplot(3,1,2);stem(n,abs(y2),'.k');axis([0,40,0,6]); N=64; y3=fft(x,N); subplot(3,1,3);stem(n,abs(y3),'.k');axis([0,80,0,6]);

参考答案Matlab实验报告

实验一 Matlab基础知识 一、实验目的: 1.熟悉启动和退出Matlab的方法。 2.熟悉Matlab命令窗口的组成。 3.掌握建立矩阵的方法。 4.掌握Matlab各种表达式的书写规则以及常用函数的使 用。 二、实验内容: 1.求[100,999]之间能被21整除的数的个数。(rem) 2.建立一个字符串向量,删除其中的大写字母。(find) 3.输入矩阵,并找出其中大于或等于5的元素。(find) 4.不采用循环的形式求出和式 63 1 2i i= ∑ 的数值解。(sum) 三、实验步骤: ●求[100,199]之间能被21整除的数的个数。(rem) 1.开始→程序→Matlab 2.输入命令: ?m=100:999; ?p=rem(m,21); ?q=sum(p==0) ans=43 ●建立一个字符串向量,删除其中的大写字母。(find) 1.输入命令:

?k=input('’,’s’); Eie48458DHUEI4778 ?f=find(k>=’A’&k<=’Z’); f=9 10 11 12 13 ?k(f)=[ ] K=eie484584778 ●输入矩阵,并找出其中大于或等于5的元素。(find) 1.输入命令: ?h=[4 8 10;3 6 9; 5 7 3]; ?[i,j]=find(h>=5) i=3 j=1 1 2 2 2 3 2 1 3 2 3 ●不采用循环的形式求出和式的数值解。(sum) 1.输入命令: ?w=1:63; ?q=sum(2.^w) q=1.8447e+019

实验二 Matlab 基本程序 一、 实验目的: 1. 熟悉Matlab 的环境与工作空间。 2. 熟悉M 文件与M 函数的编写与应用。 3. 熟悉Matlab 的控制语句。 4. 掌握if,switch,for 等语句的使用。 二、 实验内容: 1. 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 2. 编程完成,对输入的函数的百分制成绩进行等绩转换,90~100为优,80~89为良,70~79为中,60~69为及格。 3. 编写M 函数文件表示函数 ,并分别求x=12和56时的函数值。 4. 编程求分段函数 2226;03 56;0532 1;x x x x y x x x x x x x +-<≠=-+≤<≠≠-+且且及其它,并求输入x=[-5.0,-3.0,1.0,2.0,2.5,3.0,3.5]时的输出y 。 三、 实验步骤: 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 1. 打开Matlab ,新建M 文件 2. 输入命令: 51022-+x

MATLAB实验报告

实验一 MATLAB 环境的熟悉与基本运算 一、实验目的及要求 1.熟悉MATLAB 的开发环境; 2.掌握MATLAB 的一些常用命令; 3.掌握矩阵、变量、表达式的输入方法及各种基本运算。 二、实验内容 1.熟悉MATLAB 的开发环境: ① MATLAB 的各种窗口: 命令窗口、命令历史窗口、工作空间窗口、当前路径窗口。 ②路径的设置: 建立自己的文件夹,加入到MATLAB 路径中,并保存。 设置当前路径,以方便文件管理。 2.学习使用clc 、clear ,了解其功能和作用。 3.矩阵运算: 已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A.*B ,并比较结果。 4.使用冒号选出指定元素: 已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3行的元素; 5.在MATLAB 的命令窗口计算: 1) )2sin(π 2) 5.4)4.05589(÷?+ 6.关系及逻辑运算 1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7.文件操作 1)将0到1000的所有整数,写入到D 盘下的文件 2)读入D 盘下的文件,并赋给变量num

8.符号运算 1)对表达式f=x 3 -1 进行因式分解 2)对表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并 3)求 3(1)x dz z +? 三、实验报告要求 完成实验内容的3、4、5、6、7、8,写出相应的程序、结果

浅析Matlab数学实验报告

数学实验报告 姓名: 班级: 学号: 第一次实验任务 过程: a=1+3i; b=2-i; 结果: a+b =3.0000 + 2.0000i a-b =-1.0000 + 4.0000i a*b = 5.0000 + 5.0000i a/b = -0.2000 + 1.4000i 过程: x=-4.5*pi/180; y=7.6*pi/180; 结果: sin(abs(x)+y)/sqrt(cos(abs(x+y))) =0.2098 心得:对于matlab 中的角度计算应转为弧度。 (1)过程: x=0:0.01:2*pi; y1=sin(x); y2=cos(x); y3=exp(x); y4=log(x); plot(x,y1,x,y2,x,y3,x,y4) plot(x,y1,x,y2,x,y3,x,y4) 结果: (2)过程:>> subplot(2,2,1) >> plot(x,y1) >> subplot(2,2,2) >> plot(x,y2) ./,,,,2,311b a b a b a b a i b i a ?-+-=+=计算、设有两个复数 6,7,5.4)

cos()sin(2=-=++y x y x y x ,其中、计算的图形。 下分别绘制)同一页面四个坐标系)同一坐标系下(、在( x y e y x y x y x ln ,,cos ,sin 213==== >> subplot(2,2,3) >> plot(x,y3) >> subplot(2.2.4) >> subplot(2,2,4) >> plot(x,y4) 结果: 心得:在matlab中,用subplot能够实现在同一页面输出多个坐标系的图像,应注意将它与hold on进行区别,后者为在同一坐标系中划出多条曲线。 5、随机生成一个3x3矩阵A及3x2矩阵B,计算(1)AB,(2)对B中每个元素平方后得到的矩阵C,(3)sinB,(4)A的行列式,(5)判断A是否可逆,若可逆,计算A的逆矩阵,(6)解矩阵方程AX=B,(7)矩阵A中第二行元素加1,其余元素不变,得到矩阵D,计算D。 过程:A=fix(rand(3,3).*10) ; B=fix(rand(3,3).*10);

matlab实验报告

Matlab实验报告 实验二图像处理 一、实验目的 (1)通过应用MA TLAB语言编程实现对图像的处理,进一步熟悉MATLAB软件的编程及应用; (2)通过实验进一步掌握图像处理的基本技术和方法。 二、实验内容及代码 ㈠.应用MA TLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换 首先,在matlab页面中的current directory下打开存放图像的文件夹。 1.显示各种图像 ⑴显示彩色图像: ①代码:>> mousetif=imread('tif.TIF'); >> image(mousetif) 显示截图: ②代码:>> mousetif=imread('tif.TIF'); >> imshow(mousetif) 显示截图:

③代码:mousetif=imread('tif.TIF'); subimage(mousetif) 显示截图: 显示截图:

⑵显示二值图像 ①代码:>> I=imread('单色bmp.bmp'); >> imagesc(I,[0 2]) 显示截图: ②代码:>> I=imread('单色bmp.bmp');

>> imshow(I,2) 显示截图: ③代码:>> I=imread('单色bmp.bmp'); >> subimage(I) 显示截图:

⑶显示灰度图像 ①代码:>> I1=imread('256bmp.bmp'); >> imagesc(I1,[0,256]) 显示截图: 代码:>> I1=imread('256bmp.bmp'); >> colormap(gray); >> subplot(1,2,1); >> imagesc(I1,[0,256]); >> title('灰度级为[0 256]的mouse.bmp图'); >> subplot(1,2,2); >> imagesc(I1,[0,64]); >> colormap(gray); >> title('灰度级为[0 64]的mouse.bmp图'); 显示截图:

matlab实验报告

实验报告 实验课程:MATLAB综合实验 学生姓名: 学号: 专业班级: 2012年 5 月 20 日 实验四模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、学习“模拟滤波器的逼近”; 2、系统函数的展开方法; 3、低通滤波器的结构与转换方法; 预习报告中回答以下问题: 1、实际中常用的滤波器电路类型有哪些,有何特点? 2、有源滤波器、无源滤波器的概念,优缺点和各自的应用场合? 3、绘出低通、带通、带阻、高通四种滤波器的理想频响曲线及实际频响曲线,两者 有何根本区别,产生原因? 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器图2一2高通滤波器 图2一3带通滤波器图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转 化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变

化的情况。用矢量形式表示: 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。 2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 五、实验前预习内容: 1、写出原理图中高、低通及并联后滤波器网络的电压移函数,计算截止频率,并画出幅 频特性及相频特性曲线; 2、测试频率特性时,测试点频率应如何选取。 六、实验内容及步骤: 将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。 1、RC 高通滤波器的频响特性的测量: 将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差 ,并将测量数据填入表一: 表一 得到幅频特性为: 2.RC 低通滤波器的频响特性的测量: 将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。根

matlab实验报告

Matlab实验报告 ——定积分的近似计算 学生姓名: 学号: 专业:数学与应用数学专业

数学实验报告 实验序号:1001114030 日期:2012年10月20日 班级应一姓名陈璐学号1001114030 实验名称:定积分的近似运算 问题背景描述: 利用牛顿—莱布尼茨公式虽然可以精确地计算定积分的值,但它仅适合于被积分函数的原函数能用初等函数表达出来的情形。如果这点办不到或不容易办到, 这就有必要考虑近似计算的方法。在定积分的很多应用问题中,被积函数甚至没 有解析表达式,可能只是一条实验记录曲线,或者是一组离散的采样值,这时只 能应用近似方法去计算相应的定积分。 实验目的: 本实验将主要研究定积分的三种近似计算算法:矩形法、梯形法、抛物线发。对于定积分的近似数值计算,Matlab有专门函数可用。 实验原理与数学模型: 1.sum(a):求数组a的和。 2.format long:长格式,即屏幕显示15位有效数字。 3.double():若输入的是字符则转化为相应的ASCII码;若输入的是整型数之则转化为 相应的实型数值。 4.quad():抛物线法求数值积分。格式:quad(fun,a,b)。此处的fun是函数,并且

为数值形式,所以使用*、/、^等运算时要在其前加上小数点。 5.trapz():梯形法求数值积分。格式:trapz(x,y)。其中x为带有步长的积分区间;y为数 值形式的运算。 6.fprintf(文件地址,格式,写入的变量):把数据写入指定文件。 7.syms 变量1变量2……:定义变量为符号。 8.sym('表达式'):将表达式定义为符号。 9.int(f,v,a,b):求f关于v积分,积分区间由a到b。 10.subs(f,'x',a):将a的值赋给符号表达式f中的x,并计算出值。若简单地使用subs (f),则将f的所有符号变量用可能的数值代入,并计算出值。 实验所用软件及版本:Matlab 7.0.1

MATLAB程序设计实验报告

MATLAB实验报告 一、实验名称 实验4图形绘制(1) 二、实验目的: 熟悉和掌握MA TLAB基本的二维图形绘制函数。 三、实验内容: 1.绘制简单的二维图形 2.一个坐标系绘制多幅图形 3.图形标识和坐标控制 4.交互式图形指令 四、回答问题: (本次实验未预留问题) 五、遇到的问题及解决: 遇到了求y=lnx时,输入“y=ln(x)”不被软件识别的问题,查看常用数学函数表后改为y=log(x)成功解决。 在求10x时不知道用什么函数,函数表里也查不到,在老师的点拨下用“y=10.^x”解决。 在绘图时发现默认线型不够明显,查表后使用尖三角、叉号代替默认线型。 六、体会: 本次实验我学会了利用MATLAB绘制图形的基本方法,以及相应的备注方法。 难点是了解各种函数的具体作用并熟练掌握。 体会是:多学多练,孰能生巧,日积月累,必有提高。

思考题: 1.在同一坐标系绘制t3,-t2,t2sint在[0,2π]内的曲线图。 x=0:pi/50:2*pi; y1=t.*t.*t; y2=-t.*t; y3=t.*t.*sin(t); plot(t,y1,'^k',t,y2,'.k',t,y3,'xk'); legend('\ity=t^3','\ity=-t^2','\itt^2*sint'); 2.在一幅图中画出4幅子图,分别绘制sin2x,tanx,lnx,10x的图形,并加上适当的图形注释。注意:把函数变成MATLAB对应的形式。 x=0:pi/50:2*pi; y1=sin(2*t); y2=tan(x); y3=log(x); y4=10.^x; subplot(2,2,1) plot(x,y1); legend('y=sin2x'); subplot(2,2,2) plot(x,y2) legend('y=tanx'); subplot(2,2,3) plot(x,y3)

MATLAB数学实验报告

Matlab 数学实验报告

一、实验目的 通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。 二、实验内容 2.1实验题目一 2.1.1实验问题 Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图 2.1.2程序设计 clear;clf; axis([0,4,0,4]); hold on for r=0:0.3:3.9 x=[0.1]; for i=2:150 x(i)=r*sin(3.14*x(i-1)); end pause(0.5) for i=101:150

plot(r,x(i),'k.'); end text(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end 加密迭代后 clear;clf; axis([0,4,0,4]); hold on for r=0:0.005:3.9 x=[0.1];

for i=2:150 x(i)=r*sin(3.14*x(i-1)); end pause(0.1) for i=101:150 plot(r,x(i),'k.'); end end 运行后得到Feigenbaum图

2.2实验题目二 2.2.1实验问题 某农夫有一个半径10米的圆形牛栏,长满了草。他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长? 2.2.2问题分析 如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。问题要求区域ABCD等于圆ABC 的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。先计算扇形ABCD的面积,2a÷π×πx2=2aπ2,再求AB的面积,用扇形ABE的面积减去三角形ABE的面积即可。

相关主题