搜档网
当前位置:搜档网 › 反三角函数的图象与性质_简单的三角方程

反三角函数的图象与性质_简单的三角方程

反三角函数的图象与性质_简单的三角方程
反三角函数的图象与性质_简单的三角方程

反三角函数的图象与性质 简单的三角方程 人教版

【同步教育信息】

一. 本周教学内容:

反三角函数的图象与性质,简单的三角方程。

二. 重点、难点:

1. 反正弦函数:把,,的反函数叫做反正弦函数,记作y x x y

=∈-??????sin π

π2

2[][]=∈--=--a r c s i n a r c s i n ()a r c s i n x x x x ,,,该函数是奇函数,即,且在,1111上为增函数。

[]2. 反余弦函数:把,,的反函数叫做反余弦函数,记作y x x y =∈=cos 0π[]a r c c o s x x ,,,该函数是非奇非偶函数,有∈-11 []

a r c c o s ()a r c c o s -

=--x x π;且在,上为减函数。11

322.反正切函数:把,,的反函数叫做反正切函数,记作y tgx x y =∈-?? ??

?=

π

πa r c t g x x R a r c t g x a r c t g x R ,,该函数是奇函数,即,且在上为增函数。∈-=-()

40.()反余切函数:把,,的反函数叫做反余切函数,记作y ctgx x y =∈=πa r c c t g x x R ,,该函数为非奇非偶函数,有∈ a r c c t gx a r c c t g x R (

)-=-π,且在上为减函数。 5. 反三角函数式的恒等式:

[][]s i n (a r c s i n )s i n (a r c c o s )x

x x x x x =∈-=-∈-,,,,111112 [

]

[]cos(arccos )cos(arcsin )x x x x x x =∈-=-∈-,,,,11

1112

a r c s i n (s i n )α

ααπ

π=∈-????

??,,22 []

a r c c o s (c o s )α

ααπ=∈,,0

另外:;,arcsin arccos x x arctgx arcctgx +=

+=

π

π

2

2

[注](1)反三角函数是三角函数在主值区间(含有锐角的一个单调区间)上的反函数,它表示三角函数主值区间上的角。

(2)解三角方程时常用反三角函数表示角。

(3)注意反三角函数的三角运算,以及三角函数的反三角运算,这就需要熟练掌握以上三角恒等式。 6. 简单的三角方程:

(1)应掌握最简单的三角方程的解法,即形如sinx=a ,cosx=a ,tgx=a ,ctgx=a 的方程的解法,主要借助了图象或三角函数线先确定一个周期上的角的代表,而后利用该函数的周期性特点,再写出符合方程的所有角。 (2)对于比较复杂的三角方程,通过换元,因式分解,齐次化切等方法可转化为一元二次方程求解,最终转化为最简单的三角方程。 三. 例题选讲:

例1. 函数,,的反函数为(

)y x x =∈???

???sin π

π2

32

[]

A y x x .a r c s i

n =∈-,,11 []

B y x x .a r c s i

n =-∈-,,11 []

C y x x .a r c s i

n =+∈-π,,11 []

D y x x .a r c s i

n =-∈-π,,11 分析与解:

π

π

2

32

≤≤

x ∴?-??????x x π

π2

2,,需把角转化至主值区间。 ∴-

≤-≤

-==π

ππ

π2

2

x x x y ,又sin()sin

由反正弦函数定义,得π-=x y arcsin

∴=--≤≤x y y πa r c s i n

,又由已知得11 []

∴=-∈-所求反函数为,,y x x πarcsin 11 例2. 直线且的倾斜角为()bx ay ab a b +=<<()00

A a r c t g b a

B a r c t g a

b .().()--

C a r c t g b a

D a r c t g a

b

..ππ--

分析与解:

由直线方程,易得直线的斜率k b a =- 由且,知,即a b k tg b

a

<<<=-<0000α

又 02

≤<∴

<<αππ

απ

注意到,,即角不在的主值区间上απ

π

α?-=()22y tgx 但,(,

)αππ

π

π

-∈-

?-

()2

02

2

且tg tg tg b

a

()()αππαα-=--==-

由反正切函数的定义,得απ-=-arctg b a

() ∴=+-=-αππa r c t g b a a r c t g b a

() 故选(C )。

例3. 若一个直角三角形的三内角的正弦值成等比数列,则其最小内角为( ) A B .a r c c o s .a r c s i n 512512-- C D .a r c c o s

.a r c s i n 15

215

2

--

分析与解:

?ABC C A 中,设,设为最小内角,则依已知,得∠=∠90

s i n

s i n ()s i n A A ,,成等比数列。9090

- ∴-=?=s i n()s i n

s i n cos sin 2

2

9090

A A A A 即 即,解得sin sin sin 21015

2

A A A +-==

-± 注意到|sin |sin A A ≤∴=

-151

2

A A ∈=-(,)由反正弦函数定义,得02

51

2

π

arcsin

. 故选(B )。

例4. 函数,,的图象为()y x x =∈-

??????arccos(cos )π

π2

2

(A ) (B )

(C ) (D )

分析与解:

解析式可化简为,,,,y x x x x x ==∈?

? ??

?-∈-????

???????

??arccos(cos )0220ππ

即,,,,显然其图象应为()y x x x x A =∈?

? ??

?-∈-????

????

???

??0220ππ

例5. 函数,,

的值域为()y x x =∈-arccos(sin )()π

π

3

23

A B ..π

ππ656056,,??

??

??

?????

C D ..π

ππ

π3236

23,,??

??

???????

分析与解:

欲求函数值域,需先求,,

的值域。u x x =∈-

sin ()π

π

3

23

-

<<

∴-<≤-<≤π

π3

2332132

1x x u ,,即sin []

而在,上为减函数y u =-arccos 11

∴-

>≥a r c c o s ()a r c c o s a r c c o s 32

1u 即,故选()056

例6. 使成立的的取值范围为(

)arcsin arccos x x x >

A B ..022221,,??

?

??

?? ?

?? [)C D ..-??

??

?

?-12210,

分析与解:

该题研究不等关系,故需利用函数的单调性进行转化,又因为求x 的取值范围,故需把x 从反三角函数式中分离出来,为此只需对arcsinx ,arccosx 同时取某一三角函数即可,不妨选用正弦函数。 若,则,,而,x x x ≤∈-

??????∈????

?

?0202arcsin arccos πππ 此时不成立,故arcsin arccos x x x >>0 若,则,

,,x x x >∈??

?

??∈?

? ??

?00202arcsin arccos ππ 而在区间,

上为增函数y x =?

?

?

?

?sin 02π

又a r c s i n a r c c o s s i n (a r c s i n )s i n (a r c c o s

)x x x x >∴> 即,解不等式,得x x x >->

12

2

2

|| 又,故选()012

2

1<≤∴

<≤x x B

例7. []若,则()022<<

+????

?

?++=απ

παπαarcsin cos()arccos sin()

A B C D .

..

π

π

απ

α22

2

22

2-

--

-

分析与解:这是三角函数的反三角运算,其方法是把角化到相应的反三角函数的值域内。 a r c s i n c o s ()a r c s i n (s i n )a r c s i n (s i n )π

αααα2

+??

???

?=-=-=-

[

]a r c c o s s i n ()a r c c o s (s i n )a r c c o s (s i n )πααπα+=-=- =--?

?

??

?

?=--=+ππ

αππαπαa r c c o s cos(

)(),222 ∴=-++=

原式,故选()()()απ

απ

2

2

A

例8. 求值:

()()12352121

3

s i n a r c s i n ()(a r c c o s )-

?

?

???

?tg

分析:arcsin()arcsin()sin --

??????=-3

5

2

235表示,上的角,若设,则易得π

παα =-3

5

2,原题即是求的值,这就转化为早已熟悉的三角求值问题,解决此类sin α问题的关键是能

认清三角式的含义及运算次序,利用换元思想转化为三角求值。 解:()设,则13535arcsin()sin -==-

αα αππαα∈-????

??∴=-=2214

52

,,cos sin

∴==?-?=-

s i n s i n cos ()()2223

5452425

ααα 即s i n a r c s i n ()2352425

-

?

?

???

?=-

()设,则21313arccos

cos ==αα []

απ

αα∈∴=-=

0122

3

2,s i n cos ∴=-=-

=tg ααα2111

322

3

22cos sin

即tg 12132

2arccos ????

?

?=

例9. 解方程4212

sin sin cos x x x +=

分析一:若想把降次,则对逆用二倍角正弦公式,可转化为sin sin cos 22x x x 辅助角化积的结构,进一步可化为一个函数式的形式。 解一:原方程化为4122

21?

-+=cos sin x

x 即s i n c o s 2221x x -=-

∴-=-52

21s i n ()x a r c t g ∴-=-s i n ()2

25

5

x a r c t g ∴-=-22255x arctg k πarcsin

或 22

255

x a r c t g k k Z -=++∈ππa r c s i n () ∴=+

-x k a r c t g π1221255

a r c s i n 或()x k a r c t g k Z =+

++∈ππ1222125

5

a r c s i n 分析二:若注意到1=sin 2x+cos 2x ,及方程各项均为二次式(齐次)可考虑齐次化切的变形,转化为以tgx

为未知数的方程。

解二:原方程化为3202

2

sin sin cos cos x x x x +-=

c o s

c o s x x ≠02

,方程两边同除以,得 32102

tg x tgx +-= ∴=-=t g x t g x 11

3

或 ∴=-=+∈x k x k a r c t g k Z ππ

π41

3

或,()

例10. 设,是方程的二根,且,x x x x arctgx 122

15

45

0-?+==sin

cos

π

π

α

βαβ=+arctgx 2,求的值。

解: x x x x 1225

45

0,是方程的二根-?+=sin

cos

π

π

∴+=>=

????

??x x x x x x 1212125

0450

s i n c o s ,ππ中一正一负,且正根绝对值大于负根绝对值

∴<+<

02

αβπ

由,得t g a x tg x tg tg tg tg ==+=?=?

????

??125

45βαβπαβπsin cos

∴+=

+-?=

-=+=tg tg tg tg tg tg ()sin

cos sin

cos

αβαβαβ

π

ππ

ππ15145515

10 ∴+=αβπ

10

【模拟试题】

一. 选择题:

[]

12.cos 函数,,的反函数为(

)y x x =∈ππ

[]A y x x .a r c c o

s =+∈-π,,11 []

B y x x .a r c c o s =-∈-π,,11 []

C y x x .a r c s i n =-∈-5211π,, []

D y x x .a r c s i n =+∈-32

11π

,, 2231

3

.a r c s i n a r c c o s 若,,则()αβ==

A B ..αβ

αβ<= C D ..αβ>无法确定其大小关系

31

3

.a r c s i n a r c c o s ()若,则(

)x x =-= A B C D ..

.

.-

-

13

13

223

22

3

423

23

.a r c s i n (c o s )()函数,,

的值域为()y x x =∈-π

π

A B .()

.-

-?? ?

?

πππ3

3,, C D ..()(,),

-ππππ32323

[]

50102.s i n 设(,),则在,内使的的取值范围为()a x a x ∈≥π

[]A a .a r c s i

n 0, []

B a a .a r c s i n a r c s i n ,π- []

C a .a r c s i n ππ-,

D a a .a r c s i n a r c s i n ,π

2+?

???

?

?

二. 填空题:

63240.直线的倾斜角为

。(用反正切表示)x y +-=

71.a r c c o

s ()a r c c o s 若,则的取值范围为。-≥x x x

81

2

1.a r c s i n 函数的定义域为,值域为

。y x =

-

92302.cos cos 方程在(,)内的解为。x x =π

1043

.arcsinsin()π=。

三. 解答题:

11328102

.sin sin 解方程x x --=

12302.sin cos 若方程在(,)上有相异而解,求实数的取值范x x m m +=π围。

【试题答案】

一. 选择题

1. D

2. A

3. C

4. B

5. B

提示:[][]

120.cos()cos x x x x y ∈?-∈-=-=-πππππ,,,且 由反余弦函数定义,得x y x y -=-?=-ππarccos()arccos 2

另外,由,得sin()cos arcsin x x y x y -===+3232

ππ ∴=-=+反函数解析式为或y x y x 232

ππ

arccos arcsin ,

[]

其中,x ∈-11

2.欲比较两反三角函数值的大小,可先比较其正弦值大小

s i n

s i n ()s i n ()αβαβππ

=<=∈=232230202

,又、,在,上为增函数y x ∴<αβ.故选()。A

3.a r c s i n s i n (a r c s i n )求,就需从中分离,可利用x x x x x = []故需对等式两边取正弦,得sin arcsin sin arccos()x =-??

???

?13

即,故选()x C =22

3

43

2312162

.()cos (arcsin(cos )x x x ∈-

?∈-?∈-π

πππ,

,](,] ?=∈-y x B 23

a r c s i n (c o s )()π

π,,故选()

5.s i n s i n ,解,通常借助于单位图,如下图,先确定的角终边其中x a x a x ≥=的,而αβπ==-arcsin arcsin a a

αβπ≤≤∴≤≤-x a x a a r c s i n a r c s i n 故选(B )

二. 填空题 632

.π-a r c t g 712

1.x ∈??

???

?,

提示:-≤-≤-≤≤-≤???

???≤≤-≤≤≥

?

????

???≤≤11111

102

1112121x x x x x x x x []

81204.定义域为,,值域为,π?

???

?? 925456585

.x =

ππππ,,,

提示:c o s

c o s ()23322322x x x x k x x k k Z =?=+=-+∈ππ或() ?==∈∈x k x k k Z x 225

02ππ

π或(),(,) ?====

x x x x 25456585

ππππ

或或或 103

.-

π

提示:a r c s i n (s i n )a r c s i n (s i n )a r c s i n (s i n )43

33

3

π

πππ

=-=-=-

三. 解答题

11. 解法一(齐次化切)

原方程化为69022

sin cos sin cos x x x x --= cos cos x x tgx tg x ≠--=069102

2

两边同除以,得 即,解得96101

3

2tg x tgx tgx -+== ∴=+∈x k a r c t g k Z π13

() 解法二(降次,辅助角化积) 原方程化为328122

10sin cos x x

-?--= 即32425s i n c o s x x += ∴+=5243

5s i n ()x a r c t g ∴+=+

24

3

22

x a r c t g k ππ

∴=+-∈x k a r c t g k Z ππ4124

3

()

12. 解:方程可化为sin()x m

+=π32

02<

∴<+<πππ3373x

设,则方程化为,而,x t t m t +==∈πππ

32373

sin ()

画出函数在,的图象y t t =∈sin ()ππ

373

由图象知 当且时-<

<≠=1212332

m m s i n π 即且时,-<<≠223m m

直线与的图象在,有两个交点,即方程有两y m y t t m

=

==23732

sin ()sin ππ个解。 ∴∈-m ()2332,(,)

三角函数,反三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2 A )= A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cos b = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsinB 积化和差 sinasinb = - 21[cos(a+b)-cos(a-b)] cosacosb = 2 1 [cos(a+b)+cos(a-b)]

三角和反三角函数图像

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且x≠kπ+ 2 π ,k∈Z} {x|x∈R且x≠kπ,k∈Z}值域 [-1,1]x=2kπ+ 2 π 时y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ]上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函 数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都是增函数 (k∈Z) 在(kπ,kπ+π)内都是减函数 (k∈Z)

反三角函数及性质

y=arcs inx. 函数y=sinx , x€ [- n /2 , n /2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x € R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx , x€ [- n /2 , n /2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1 , 1],值域[-n /2 , n /2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx ,注意x的取值范围:x € [-1 , 1] 导函数: arcsinx = (土匚(-1,1)) vl-x2,导函数不能取|x|=1 * / fim (arcsinx) =-oo lim {arcsinx) = +oo - . ,:T 1 反正弦恒等式 sin(arcsinx)=x , x € [-1 , 1] (arcsinx)'=1/ V (1-x A2) arcsin x=-arcs in(-x) arcs in ( sin x)=x , x 属于[0, n /2]

arccosx 反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,贝U arccos(b) = a ; 它的值是以弧度表达的角度。定义域:【-1 , 1】。 由于是多值函数,往往取它的单值支,值域为【0, n ],记作y=arccosx,我们称它叫 做反三角函数中的反余弦函数的主值, arcta n x 反三角函数中的反正切。意思为:tan(a) = b;等价于arctan(b) = a fflil 定义域:{x lx € R},值域:y € (- n/2,冗/2) 计算性质: tan( arcta na)=a arcta n(-x)=-arcta nx arctan A + arctan B=arcta n(A+B)/(1-AB) arctan A - arctan B=arcta n(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x T 0时,arctanx~x

三角和反三角函数图像

三角和反三角函数图像 The Standardization Office was revised on the afternoon of December 13, 2020

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ- 2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

三角、反三角函数图像与性质与三角公式

三角、反三角函数图像 ( 附:资料全部来自网络, 仅对排版做了改动, 以方便打印及翻阅, 其中可能出现错误,阅者请自行注意。 ) 1. 六个三角函数值在每个象限的符号: sin α· csc α cos α· sec α tan α· cot α 2. 三角函数的图像和性质: y=sinx y -5 - 2 1 2 -7 o -4 -3 -2 -3 - 2 -1 2 3 7 2 5 2 2 3 4 2 2 x y=cosx y -5 - 2 1 -32 - -4 -7 -2 -3 o 2 2 -1 y y=tanx 3 3 7 2 2 2 5 4 2 2 y y=cotx x - 3 - - 2 2 o 3 2 2 x - - 2 o 3 2 x 2 2 函数 y=sinx y=cosx y=tanx { x | x ∈ R 且 定义域 R R x ≠ k π+,k ∈ Z } [ -1,1] 2 [ -1,1]x=2k π+ 时 x=2k π时 y max =1 2 R y max =1 x=2k π +π时 值域 无最大值 y min =-1 无最小值 x=2k π-时 y min =-1 2 y=cotx { x | x ∈ R 且 x ≠ k π∈,kZ } R 无最大值 无最小值 周期性 周期为 2π 周期为 2π 周期为 π 周期为 π 奇偶性 奇函数 偶函数 奇函数 奇函数 1 / 5

在[ 2kπ-,2kπ+ ]在[ 2kπ-π,2kπ] 在 (k π- , 在 (k π,kπ+π)内上都是增函数;都是减函数 22 在[ 2kπ,2kπ+π]2 (k ∈ Z) 上都是增函数;在 单调性 2上都是减函数k π+ )内都是增 [ 2kπ+,2k(k ∈ Z)2 π+ π] 函数 (k ∈ Z) 23 上都是减函数(k ∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx 名称反正弦函数 y=sinx(x ∈ 〔- ,〕的反函 2 2 定义 数,叫做反正弦函 数,记作 x=arsiny arcsinx 表示属于 理解 [ -, ] 22 x 的 且正弦值等于 角 定义域[ -1, 1] 值域[ -,] 性 22 单调性 在〔 -1, 1〕上是增 质函数 奇偶性 arcsin(-x)=-arcsinx 周期性都不是周期函数反余弦函数 y=cosx(x ∈ 〔0, π〕)的反 函数,叫做反余 弦函数,记作 x=arccosy arccosx 表示属于 [ 0,π],且 余弦值等于 x 的 角 [-1, 1] [0,π] 在[ -1,1]上 是减函数 arccos(- x)= π- ar ccosx arccotx 反正切函数反余切函数 y=tanx(x ∈ (-, y=cotx(x ∈(0, π )) 的反函数,叫做 2 反余切函数,记 2 )的反函数,叫作 x=arccoty 做反正切函数,记作 x=arctany arctanx表示属于arccotx 表示属于 (-,),且正切值 (0,π)且余切值等 于 x 的角 22 等于 x 的角 (-∞,+∞)(-∞, +∞) (-,)(0,π) 2 2 在(-∞, +∞)上是增在(-∞,+∞)上是 数减函数 arctan(-x)=-arctanx arccot(- x)= π- arc cotx 2/ 5

常用反三角函数公式表

反三角函数公式

反三角函数图像与特征 1 :

反三角函数的定义域与主值范围 式中n为任意整数.

反三角函数的相互关系 sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞= -1 And x < -0.5 Then ArcSin = -Atn(Sqr(1 - x * x) / x) - 2 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcSin = Atn(x / Sqr(1 - x * x))

If x > 0.5 And x <= 1 Then ArcSin = -Atn(Sqr(1 - x * x) / x) + 2 * Atn(1) End Function ArcCos(x) 函数 功能:返回一个指定数的反余弦值,以弧度表示,返回类型为Double。 语法:ArcCos(x)。 说明:其中,x的取值范围为[-1,1],x的数据类型为Double。 程序代码: Function ArcCos(x As Double) As Double If x >= -1 And x < -0.5 Then ArcCos = Atn(Sqr(1 - x *x) / x) + 4 * Atn(1) If x >= -0.5 And x <= 0.5 Then ArcCos = -Atn(x/ Sqr(1 - x * x)) + 2 * Atn(1) If x> 0.5 And x <= 1 Then ArcCos = Atn(Sqr(1 - x*x) / x) End Function

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

三角和反三角函数图像性质总结

反三角函数的图像和性质 yx,arccos yx,arctanyx,arcsin ,1,1,1,1,,,,R 定义域 ,,,,,,,, ,,,,值域 [0,π] ,,,,2222,,,, 在上单调递增在上单调递减 ,1,1,1,1,,,,在R上单调递增单调性 无减区间无减区间无增区间 3奇偶性奇函数非奇非偶函数奇函数 32, 32,,21212,-1 图象 -22468-224682O11 -1,-1-,2-2 -22468-1 -1O2-2 -1 arcsin()arcsin,,,xxarccos()arccos,,,xx,arctan()arctan,,,xx 运算公x,,[1,1]x,,[1,1] xR,式1 运算公,,,, arccos(cos),[0,]xxx,,, arctan(tan),(,)xxx,,,arcsin(sin),[,]xxx,,,2222式2 运算公 sin(arcsin),[1,1]xxx,,,cos(arccos),[1,1]xxx,,,tan(arctan),xxxR,, 式3 , arctancotxarcx,,运算公,2 arcsinarccos,[1,1]xxx,,,,2式4 xR, 三角函数的图像和性质 4 yx,cosy,tanx yx,sin kZ,343 3222 1一个周11(((113,,2,,,期的图-22468,-22468(-4-2246823,,O,2,O2O--12-12-1-1-1 22像 -2-2 -2

-3,,,x|x,k,,k,Z ,定义域 R R ,,2,, [1,1],[1,1], 值域 R 奇偶性奇函数偶函数奇函数 , 2,2,周期 对 ,直线xk,kZ, ,,,称直线,无 xk,,kZ,2 轴对 称对 性称k,,(,0)k,,kZ, 点,kZ, 点(,0)k,(,0)点,kZ, ,22中 心 ,,,,,在上 [2,2]kk,,[2,22]kk,,,,,,,,,上在,上在(,)kk,,,,2222单调性 ,,3,在上,,[2,2]kk,,,,,[2,2]kk,,在上无减区间 22

大学高数 函数与反三角函数图像

三角函数公式和图象总结 1.与角α终边相同的角,连同角α在内,都可以表示为S={β|β=α+k ×360,k ∈Z} 2.弧长公式:α?=r l 扇形面积公式lR S 21 = 其中l 是扇形弧长,R 是圆的半径。 3.三角函数定义: sin ,cos ,tan y x y r r x ααα===,其中P (,)x y 是α终边上一点,||r OP = 4.同角三角函数的两个基本关系式 22 sin sin cos 1 tan cos ααααα +== sin sin αsin β tan tan α

sin cos), a x b x x? +=+其中tan b a ?=,?所在的象限与点(,) a b所在的象限一 致。

12.①sin()(0)y A x b A ω?=++>、cos()(0)y A x b A ω?=++>的最小正周期为 || ω,最大值为A+b ,最小值为-A+b. ②tan()(0)y A x b A ω?=++>的最小正周期为|| π ω 13.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 14.余弦定理:2 2 2 2cos a b c bc A =+- bc a c b A 2cos 2 22-+= 15.S ⊿= 21a a h ?=21ab C sin =21bc A sin =2 1ac B sin =R abc 4=2R 2 A sin B sin C sin =))()((c p b p a p p ---(其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 反三角函数图像与反三角函数特征 反正弦曲线 反余弦曲线 拐点(同曲线对称中心):,该点切线斜率为1 拐点

反三角函数的概念和性质

反三角函数的概念和性质 . 一.基础知识自测题: 1.函数y=arcsin x的定义域是 [-1, 1] ,值域是. 2.函数y=arccos x的定义域是 [-1, 1] ,值域是 [0, π] . 3.函数y=arctg x的定义域是R,值域是. 4.函数y=arcctg x的定义域是R,值域是 (0, π) . 5.arcsin(-)=; arccos(-)=; arctg(-1)=; arcctg(-)=. 6.sin(arccos)=; ctg[arcsin(-)]=; tg(arctg)=; cos(arcctg)=. 7.若cos x=-, x∈(, π),则x=. 8.若sin x=-, x∈(-, 0),则x=. 9.若3ctg x+1=0, x∈(0, π),则x=. 二.基本要求: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系;

2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y= arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- (C)sin[arcsin(-)]=-(D)arctg(tgπ)=π 解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。

5.6三角函数的图像和性质

【课题】5.6三角函数的图像和性质 【教学目标】 知识目标: (1) 理解正弦函数的图像和性质; (2) 理解用“五点法”画正弦函数的简图的方法; (3) 了解余弦函数的图像和性质. 能力目标: (1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数; (2) 会用“五点法”作出正弦函数、余弦函数的简图; (3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力. 情感目标: (1)经历利用“图像法”分析三角函数的性质的探究过程,体验“数形结合”的探究方法,享受成功的喜悦。 (2)体验三角函数的性质,特别经历对周期现象的研究,感受科学思维方法。 (3)结识正弦、余弦曲线,感受数学图形的曲线美、对称美、和谐美 【教学重点】 (1)正弦函数的图像及性质; (2)用“五点法”作出函数y=sin x在[] 0,2π上的简图. 【教学难点】 周期性的理解. 【教学设计】 (1)结合生活实例,认识周期现象,介绍周期函数; (2)利用诱导公式,认识正弦函数的周期; (3)利用“描点法”及“周期性”作出正弦函数图像; 【教学备品】 课件,实物投影仪,三角板,常规教具. 【课时安排】 2课时.(90分钟) 【教学过程】

过 程 行为 行为 意图 间 观察发现,正弦函数x y sin =在[]0,2π上的图像中有五个关键点:(0,0), ,12π?? ???, (),0π, 3,12π?? - ??? , ()2,0π. 描出这五个点后,正弦函数x y sin =,[]0,2π在上的图像的形状就基本上确定了.因此,在精确度要求不高时,经常首先描出这关键的五个点,然后用光滑的曲线把它们联结起来,从而得到正弦函数在[]0,2π上的简图.这种作图方法叫做“五点法”. 质疑 引领 总结 观察 思考 体会 五点 可以 教给 学生 自我 发现 总结 35 *巩固知识 典型例题 例1 利用“五点法”作函数x y sin 1+=在[]0,2π上的图像. 分析 x y sin =图像中的五个关键点的横坐标分别是0,2 π ,π,23π ,2π,这里要求出x y sin 1+=在五个相应的函数值, 从而得到五个点的坐标,最后用光滑的曲线联结这五个点,得到图像. 解 列表 x 0 π 2 π 3π2 2π x sin 0 1 0 ?1 0 x y sin 1+= 1 2 1 1 以表5-6中每组对应的x ,y 值为坐标,描出点),(y x ,用光滑的曲线顺次联结各点,得到函数 x y sin 1+=在[]0,2π上的图像. 例2 已知sin 4x a =-, 求a 的取值范围. 解 因为x sin ≤1,所以4a -≤1,即 141a --剟, 解得 35a 剟. 说明 讲解 引领 质疑 分析 归纳 观察 思考 主动 求解 理解 讨论 求解 思考 安排 与知 识点 对应 例题 巩固 新知 注重 画图 时对 细节 的强 调和 引领 不等 式的 求解 过程 可以 教给

正切 余切图像的性质 反三角函数

正切、余切函数图象和性质反三角函数 [知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图 象上三点及两条重要的辅导线——渐近线,来作正切函

数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: 上单减 ,奇函数 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的. 3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数.

角、反三角函数图像及性质与三角公式

三角、反三角函数图像 (附:资料全部来自网络,仅对排版做了改动,以方便打印及翻阅,其中可能出现错误,阅者请自行注意。) 1.六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 2.三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x∈R 且x≠kπ+2 π ,k∈Z } {x |x∈R 且x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ-2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数

单调性 在 [2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上都是减函数 (k∈Z) 在[2kπ -π, 2kπ]上都是增 函数;在[2kπ, 2kπ+π]上都是 减函数(k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是 增函数(k∈Z) 在(kπ,kπ+π) 内都是减函数 (k∈Z) 3.反三角函数的图像和性质: arcsinx arccosx arctanx arccotx 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈ 〔- 2 π , 2 π 〕的反 函数,叫做反正弦 函数,记作 x=arsiny y=cosx(x∈ 〔0,π〕)的反函 数,叫做反余弦 函数,记作 x=arccosy y=tanx(x∈(- 2 π , 2 π )的反函数,叫 做反正切函数,记作 x=arctany y=cotx(x∈(0, π))的反函数, 叫做反余切函 数,记作 x=arccoty 理解 arcsinx表示属于 [- 2 π , 2 π ] 且正弦值等于x的 角 arccosx表示属 于[0,π],且 余弦值等于x的 角 arctanx表示属于 (- 2 π , 2 π ),且正切 值等于x的角 arccotx表示属 于(0,π)且余切 值等于x的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- 2 π , 2 π ][0,π](- 2 π , 2 π )(0,π)单调性 在〔-1,1〕上是增 函数 在[-1,1]上是 减函数 在(-∞,+∞)上是增 数 在(-∞,+∞)上 是减函数

反三角函数的概念和性质

反三角函数的概念和性质

反三角函数的概念和性质 一.基本知识: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系; 2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,]上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据;

1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[- ,], ∴ (A)(B)(D)都不正确。 例二.下列函数中,存在反函数的是(D)。 (A)y=sin x, x∈[-π, 0](B)y=sin x, x∈[, ] (C)y=sin x, x∈[,] (D)y=sin x, x∈[,] 解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。 例三. arcsin(sin10)等于(C)。 (A)2π-10 (B)10-2π(C)3π-10 (D)10-3π 解:本题是判断哪个角度的正弦值与sin10相

反三角函数及性质

函数y=sinx,x∈[-π/2,π/2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x∈R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx,x∈[-π/2,π/2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1,1],值域[-π/2,π/2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx,注意x的取值范围:x∈[-1,1] 导函数: ,导函数不能取|x|=1 , 反正弦恒等式 sin(arcsinx)=x,x∈[-1,1] (arcsinx)'=1/√(1-x^2) arcsinx=-arcsin(-x) arcsin(sinx)=x ,x属于[0,π/2]

反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,则arccos(b) = a; 它的值是以弧度表达的角度。定义域:【-1,1】。 由于是多值函数,往往取它的单值支,值域为【0,π】,记作y=arccosx,我们称它叫做反三角函数中的反余弦函数的主值, arctan x 反三角函数中的反正切。意思为:tan(a) = b; 等价于 arctan(b) = a 定义域 :{x∣x∈R} ,值域:y∈(-π/2,π/2) 计算性质: tan(arctana)=a arctan(-x)=-arctanx arctan A + arctan B=arctan(A+B)/(1-AB) arctan A - arctan B=arctan(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x→0时,arctanx~x

三角函数与反三角函数图像性质、知识点总结

三角函数 1.特殊锐角( 0°, 30°, 45°, 60°, 90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l ,圆心角为 a (rad ), 半径为 R,面积为 S 角a 的弧度数公式2π×(a /360 °) ①360°=2π rad 角度与弧度的换算②1°=π/180rad ③1 rad= 180°/π=57° 18′≈ 57.3 ° 弧长公式l a R 扇形的面积公式s1lR 2 3.诱导公式:(奇变偶不变,符号看象限)所谓 奇偶指是整数 k 的奇偶性( k· /2+ a) 所谓符号看象限是看原函数的象限(将a 看做锐角, k· /2+ a 之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了 学习指导参考

4. 三角函数的图像和性质: (其中 k z ) ①: 三角 函数 函 数 图 象 定义域 值域 周期 奇偶性 单 调 性 对 称 y sin x R [-1,1] 2 奇 2k , 2k 2 2 2k , 2k 2 2 对称轴 : x k 2 y cosx R [-1,1] 2 偶 2k ,2 k 2k ,2 k 对称轴 : x k y tanx y cotx x k x k 2 R R 奇 非奇非偶 k , k k , k 2 2 对称中心: ( k 2 , 0) 性 对称中心 : ( k , 0) 对称中心 : ( k + 2 , 0) 零值点 x k x k 2 最 x k , y max 1 x 2k , y max 1 ; 2 值 x k , y min 1 y 2k , y min 1 x k x 2 k

三角函数和反三角函数图像性质知识点总结

三角函数 1.特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2.角度制与弧度制 设扇形的弧长为l,圆心角为a(rad),半径为R,面积为S 角a的弧度数公式2π×(a/360°) 角度与弧度的换算 ①360°=2π r ad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式l a R = 扇形的面积公式12 s lR = 3.诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k的奇偶性(k·π/2+a) 所谓符号看象限是看原函数的象限(将a看做锐角,k·π/2+a之和所在象限)注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑??? ?2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

三角和反三角函数图像

三角和反三角函数图像-CAL-FENGHAI.-(YICAI)-Company One1

2 三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x

3 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2 π 时y max =1 x=2kπ- 2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ- 2π,2kπ+2 π ]上都是增函数;在[2kπ+2 π ,2kπ+32π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数;在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ-2π,kπ+2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

三角和反三角函数图像+公式

三角和反三角函数图像 +公式 -CAL-FENGHAI.-(YICAI)-Company One1

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1 -1 y=sinx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π-3π-2π4π 3π 2π π -π o y x 1 -1 y=cosx -3π 2 -5π 2 -7π 2 7π 2 5π 2 3π 2 π 2 - π 2 -4π -3π -2π4π 3π 2π π -π o y x y=tanx 3π 2 π π 2 - 3π 2 -π- π 2 o y x y=cotx 3π 2 π π 2 2π -π-π 2 o y x 函数y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且 x≠kπ+ 2 π ,k∈Z} {x|x∈R且 x≠kπ,k∈Z} 值域 [-1,1]x=2kπ+ 2 π 时 y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=- 1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π 奇偶性奇函数偶函数奇函数奇函数 单调性 在[2kπ- 2 π ,2kπ+ 2 π ] 上都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π] 上都是减函数(k∈Z) 在[2kπ-π, 2kπ]上都是增 函数;在 [2kπ,2kπ+π] 上都是减函数 (k∈Z) 在(kπ- 2 π , kπ+ 2 π )内都是增 函数(k∈Z) 在(kπ,kπ+π)内 都是减函数 (k∈Z)

相关主题