搜档网
当前位置:搜档网 › 手性分子绝对构型的确定

手性分子绝对构型的确定

手性分子绝对构型的确定
手性分子绝对构型的确定

手性分子绝对构型的确定

手性分子可以分为下面几种类型:中心手性分子,轴手性分子,平面手性分子及螺旋手性分子。

下面用R/S 命名法依次对它们进行命名。

中心手性分子: 如果一个原子连接四个不同的基团,则称这个原子具有手性。常见的有C, N, P, S, Si, As 等原子。

判断方法:先将与手性原子相连的四个原子(团)按次序规则进行排列,然后将次序最小的原子(团)放在距观察者最远的位置,再观察其他3个原子(团)的排列次序,若由大到小的排列次序为顺时针方向,则R 为型,若为逆时针方向,则为S 型.

e

a 假定原子的优先次序为a >b

>

d >e

b d 为顺时针方向,R 型

b d 为逆时针方向,S 型

轴手性分子:四个基团围绕一根轴排列在平面之外的体系,当每对基团不同时,有可能是不对称的。轴手性分子可分为以下几种类型:

丙二烯型分子:螺环型分子:

环外双键型分子:

联苯型分子:

C

3

3

H 3

3

H 3

(远端)

逆时针方向,R 型

顺时针方向,R 型

(近端)逆时针方向,S 型

(近端)逆时针方向,S 型

从左向右看:

从左向右看:

(远端)

判断方法:从左向右看,先看到的基团为近端,用实线表示,后看到的基团为远端,用虚线

表示,然后从近端的大基团看到近端的小基团再看到远端的大基团(不看远端的小基团),若为顺时针方向,则为则R 为型,若为逆时针方向,则为S 型. 平面手性分子:平面手性通过对称平面的失对称作用而产生,其手性取决与平面的一边与另

一边的差别,还取决与三个基团的种类。判断方法:第一步是选择手性平面,第二步是确定平面的优先边,这个优先边可以通过按标准的顺序规则在直接连接到平面原子的原子中找到哪一个是最优先的来确定。连接到平面的一套原子中的最优先原子,即先导原子或导向原子标记了平面的优先边(标记为1号),第二优先(标记为2号)给予手性平面直接与1号基团成轴连接的原子,等等,对于1-2-3为顺时针方向,则为R p 为型,若为逆时针方向,则为S p 型. 例如:

S p 型R p 型

螺旋手性分子:螺旋性是手性的一个特例,其中分子的形状就像右的或左的螺杆或盘旋扶梯,从旋转轴的上面观察,看到的螺旋是顺时针方向的定为P 构型,而逆时针方向的定为M 构型. 例如:

M 型

几个例子:

22

3

从上往下看:

顺时针方向,R 构型

近端

远端

从左向右看:

R

S

参考文献 《有机结构理论》,图书馆藏书

选修三 分子结构与性质

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程

天然手性小分子分离研究进展

综述 题目:天然手性小分子分离研究进展 姓名:吴文凡 学号:z1415005 科目:天然药物化学

天然手性小分子分离研究进展 摘要:综述了色谱法和石英晶体微天平传感器技术在天然手性小分子分离研究的新进展,也同时介绍了分离天然手性小分子分离的手性固定相柱的制备,并探讨手性分子与手性固定相间识别的方法;也同时对紫外光谱和荧光光谱等在天然手性小分子分离的应用进行了阐述。 关键词:天然手性小分子;手性固定相;石英晶体微天平传感器; Abstract: The chromatography and quartz crystal microbalance sensor technology in the new progress of the study of natural chiral separation of small molecules, and also describes the preparation of small molecule chiral separation natural separation of chiral stationary phase column, and to explore chiral molecules chiral stationary phase identification method; also for UV and fluorescence spectra of small molecules in natural chiral separation applications are described. Key words: natural chiral small molecules; chiral stationary phase; quartz crystal microbalance sensors; 天然手性小分子是手性分子的一种,其分离方法类似于手性分子,手性是自然界特别是生物体的本质属性,作为生命活动重要基础的生物大分子和许多作用于受体的活性物质均具有手性特征,如酶、载体、受体、血浆蛋白和多糖等.对映异构体在生物活性、生理活性和药理活性等方面存在较大差异甚至可能完全相反的作用,因此获得单一的对映异构体对生理学和药理学的研究有着非常重要的意义[1].近年来,有关手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。 1.色谱法 色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分.目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用.其中,高效液相色谱法(HPLC )进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、具有不对称中心的手性固定相成为发展手性色谱技术的前沿领域之一.在手性固定相材料中,选择剂和手性分子间形成非对映异构体络合物,但由于不同对映体分子间存在空间结构的差异,直接影响两者的结合和络合物的稳定性.根据这些差异有望实现对手性底物的拆分[2].以环糊精衍生物、多糖衍生物和蛋白质等为手性选择剂的手性固定相材料备受研究者的关注,它们对许多手性药物对映体表现出良好的分离性能,已有许多填充手性固定相的色谱柱实现商品化,广泛应用在制药工业、化学品和食品等行业中.下文针对新型环糊精手性固定相、多糖手性固定相和蛋白质手性分离材料的制备及在拆分手性对映体方面的研究进行综述。 1.1环糊精类手性固定相 泽环糊精由7个葡萄糖单元通过糖苷键连接形成,内部有一个疏水性手性空腔,可与有机物、无机物及生物分子形成主客体包合物.1965年,Solms等[3 ]首先开发了适用于液相色谱标准粒径的环糊精聚合物固定相.通过化学修饰可改变泽环糊精的内腔深度和氢键作用位点,引人静电作用和n- n作用位点,满足识别不同类型和结构的底物要求,提高泽环糊精衍生物的手性识别能力。环糊精手性固定相在巴比妥酸、阻断剂、镇静安眠剂、抗组胺剂、生物碱、胡萝卜素、二肽、多肽、氨基酸、芳香醇、黄酮类等的分析检测和制备方面得到很好的应用[4 ]。

分子的性质

分子的性质 《选修三第二章第三节分子的性质》导学案(第3课时)学习 时间 2011 — 2012学年上学期周【课标要求】知识与技能要 求: 1、从分子结构的角度,认识“相似相溶”规律。2、了解“手性 分子”在生命科学等方面的应用。3、能用分子结构的知识解释无机 含氧酸分子的酸性。【复习】分子的极性判断标准,分子间作用力 对物质性质的影响。【阅读与思考】阅读教材P50“溶解性”部分内容,什么事“相似相容”原理?溶解度影响因素?“相似相容”原理有 何应用?【思考与交流】1.比较NH3和CH4在水中的溶解度。怎 样用相似相溶规律理解它们的溶解性不同? 2.为什么在日常生活 中用有机溶剂(乙酸乙酯等)溶解油漆而不用水? 3.在一个小试管里 放入一小粒碘晶体,加入约5 mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1 mL四氯化碳(CCl4),振荡试管,观察 碘被四氯化碳萃取,形成紫红色的四氯化碳溶液。再向试管里加入 1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在 水溶液里可发生如下反应:I2+I-===I-3。实验表明碘在纯水还 是在四氯化碳中溶解性较好?为什么?【实践】每个同学亮出自己 的左又手。看能否完全重合?【科学史话】P52-53【回顾与思考】 H2S04和HN03是强酸,而H2S03和HN02是弱酸,即从酸性强弱 来看:H2S03Br2>Cl2>F2,Rn>Xe>Kr>Ar>Ne>He(2)对物质溶解性的影响如: 在273 K、101 kPa时,氧气在水中的溶解量(49 cm3?L-1)比氮气在 水中的溶解量(24 cm3?L-1)大,就是因为O2与水分子之间的作用 力比N2与水分子之间的作用力大所导致的。【典例解悟】1.欲提取 碘水中的碘,不能选用的萃取剂是()A.酒精B.四

超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其

广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐药性小、生物相容性好、高疗效以及开发成本低、周期短、成功可能性大等诸多优点而备受关注,在抗肿瘤、抗炎镇痛、抗疟、抗菌、抗真菌、抗结核、抗病毒、抗癫痫、作为心血管和磁共振

分子的手性与旋光性

分子的手性和旋光性 【摘要】长久以来,分子的手性和旋光性都受到了人们的密切关注。这些性质既带给了人们便利,也给人们造成了伤害。本文讲述了手性和旋光性的基本信息,详细阐述了它们的判断方法,着重说明了它们的应用领域和对人类生活的影响,文章的最后还提出了一些手性分子的合成方法。 【关键词】手性;旋光性;判断方法;应用;合成 1.分子的手性 1.1分子手性的概念 手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理和化学性质。但是从分子的组成形状来看,它们依然是两种分子。这种情形就像镜子里和镜子外的物体那样,看上去互为对应,可是由于是三维结构,它们不管怎样旋转都不会重合,就如同人们的左手和右手。这两种分子具有手性,所以叫手性分子。由于这两种分子互为同分异构体,所以这种异构的形式称为手性异构,有R型和S型两类。 1.2发展历史 在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr通过细心研究发现了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对应异构体的概念。人们在研究对应异构体时发现,在左旋和右旋两种对应异构体的分子中,原子在空间的排列是不重合的实物和镜像关系,这与左受和右手互为不能重合的实物和镜像关系类似,从而引入了手性及手性分子的概念。 1.3分子手性的判断方法 物质分子凡在结构上具有对称面和对称中心的,就不具有手性。反之,在结构上既不具有对称面,也不具有对称中心的,这种分子就有手性。具有手性的分子称为手性分子。 1.3.1对称轴 这种轴是通过物体或分子的一条直线,以这条直线为轴旋转一定的角度,得到的物体或分子的形象和原来的形象完全相同,这种轴称为对称轴。n指绕轴一周,有n个形象与原形象相同。

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

【CN110078932A】手性CSub3Sub超分子聚合物及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910326820.2 (22)申请日 2019.04.23 (71)申请人 上海大学 地址 200444 上海市宝山区上大路99号 (72)发明人 张阿方 吴金雕 林尧东 仲国强  徐刚 刘延军 李文  (74)专利代理机构 上海上大专利事务所(普通 合伙) 31205 代理人 顾勇华 (51)Int.Cl. C08G 83/00(2006.01) (54)发明名称 手性C 3超分子聚合物及其制备方法 (57)摘要 本发明提供一种手性C 3分子及其制备方法。 该分子的结构式为:。该C 3分子能够在 溶剂中,通过超分子作用力下,自发组装堆叠形 成超分子聚合物。该C 3超分子聚合物在二氯甲烷 中呈现出超强的手性信号,并且具有极强的荧光 效应。在超分子聚合物的基础上,发生丁二炔基 元在紫外光照下的拓扑聚合反应,使得聚合物中 相邻的C 3分子之间形成共价键,从而实现从超分 子聚合物向共价聚合物的转变,形成更稳定的聚合物。该方法利用超分子化学方便可设计的优点,实现了超高的手性诱导以及避免了传统共价化学合成聚合物产生的各种不可控因素。基于超分子聚合物实现的手性诱导、传递和放大,在手性材料、光学器件、生物医用材料等方面有重要 应用价值。权利要求书1页 说明书4页 附图4页CN 110078932 A 2019.08.02 C N 110078932 A

权 利 要 求 书1/1页 CN 110078932 A 1.一种手性C3分子, 其特征在于该分子的结构式为:Array 其中n= 1~6,R1=H或C1~C3的烷基,R2 = H或C1~C3的烷基,X为C1~C3的烷基。 2.一种制备根据权利要求1中所述的手性C3分子的方法,其特征在于该方法的具体步骤为:将该C3分子溶于有机溶剂或水中,在超分子作用力下,即苯环-丁二炔组成的扩展共轭核的强π-π堆叠作用和肽链的氢键作用,能够自发组装形成超分子螺旋聚合物,具有动态可逆的特征,并且在手性中心的诱导下,形成的聚合物具有明显的手性增强和有序二级结构。 3.一种根据权利要求1所述的C3分子的制备方法,其特征在于该方法的具体合成步骤如下: 步骤a:在惰性气体保护下,将Boc保护的二肽甲酯、DMAP、寡聚乙二醇单体溶于二氯甲烷中,冰盐浴20 min,加入EDC?HCl,1 h后撤去冰盐浴,室温过夜反应,经分离提纯得到产物; 步骤b:将步骤a产物溶于二氯甲烷中,冰浴下加入TFA,10min后撤去冰浴,搅拌反应1 h,滴加甲醇终止反应,蒸干溶剂得到产物; 步骤c:将4-戊炔酸溶于二氯甲烷中,加入HOBt,搅拌溶解,取步骤b产物和DiEA搅拌溶于二氯甲烷中,把两种混合溶液搅拌加入烧瓶中,在惰性气体保护下,把体系放入冰盐浴中冷冻20 min,加入EDC?HCl,室温过夜反应,经分离提纯得到产物; 步骤d:将步骤c产物、1,3,5-三(2-溴乙炔基)苯、三乙胺,溶于四氢呋喃的反应管中,用液氮冻住反应液,用泵抽气15 min,解冻,加入催化剂Pd(PPh3)2Cl2,CuI,再用液氮冻住反应液,用泵抽气15 min,解冻,如此循环冻抽3次,油浴升温至29o C,避光过夜反应,经分离提纯得到目标C3产物。 2

分子的性质(知识点总结+典例导析)

分子的性质 【学习目标】 1、知道极性共价键和非极性共价键;结合常见物质分子立体结构会判断极性分子和非极性分子。 2、理解范德华力、氢键的概念及其对物质性质的影响。 3、从分子结构的角度,认识“相似相溶”规律。 4、了解“手性分子”的结构及其在生命科学等方面的应用。 5、能用分子结构的知识解释无机含氧酸分子的酸性。 【要点梳理】 要点一、共价键的极性--极性键和非极性键 1、分类依据: 共用电子对是否偏移,发生偏移为极性键;不发生偏移为非极性键。 说明:极性键中共用电子对偏向的一方带负电荷用δ-表示;共用电子对偏离的一方带正电荷用δ+表示。 2、判断技巧: 形成共价键的两原子是否为同种原子,如相同,为非极性键;如不同,为极性键。 原子电负性(元素非金属性)差值越大的,共用电子对偏移程度大,键的极性就越大。 要点诠释:化学键类型和物质类别的关系 1)、不含有化学键的物质:稀有气体分子。 2)、只含非极性共价键的物质:同种非金属元素构成的单质。如:H2、P4、金刚石等 3)、只含极性共价键的物质:一般是不同非金属元素构成的共价化合物。如:HCl、NH3等 4)、既有非极性共价键又有极性共价键的物质:如:H2O2、C2H2、CH3CH3、C6H6等 5)、只含有离子键的物质:活泼金属与活泼非金属元素形成的化合物。如:Na2S、CsCl、K2O、NaH等 6)、既有离子键又有非极性键的物质:如:Na2O2、CaC2等 7)、既有离子键又有极性键的物质:如:NaOH 8)、有离子键、共价键、配位键组成的物质:如:NH4Cl 要点二、分子的极性 1、非极性分子: 正负电荷中心重合的分子称为非极性分子,它的分子中各个键的极性的向量和等于零。 例如:X2型双原子分子(如H2、Cl2、Br2等)、XY n型多原子分子中键的极性互相抵消的分子(如CO2、CCl4等)都属非极性分子。 2、极性分子: 正负电荷中心不重合的分子称为极性分子,它的分子中各个键的极性向量和不等于零。 例如:XY型双原子分子(如HF、HCl、CO、NO等),XY n型多原子分子中键的极性不能互相抵消的分子(如SO2、H2O、NH3等)都属极性分子。 3、分子极性的判断方法: (1)全部由非极性键构成的分子一般是非极性分子。(O3例外) (2)由极性键构成的双原子分子一定是极性分子。 (3)在含有极性键的多原子分子中,如果结构对称则键的极性得到抵消,其分子为非极性分子。 如果分子结构不对称,则键的极性不能完全抵消,其分子为极性分子。 (4)ABn型分子极性简便判别方法 A.孤对电子法 在ABn型分子中,若中心原子A无孤对电子(未成对电子),则是非极性分子,若中心原子A有孤对电子则是极性分子。 例如:CO2、CH4、SO3中心原子(C、S)无孤对电子,是非极性分子。而像H2O、NH3、NP3中心原子(O、N)有孤对电子,则为极性分子。 B.空间形状法

手性分子绝对构型的确定

手性分子绝对构型的确定 手性分子可以分为下面几种类型:中心手性分子,轴手性分子,平面手性分子及螺旋手性分子。 下面用R/S 命名法依次对它们进行命名。 中心手性分子: 如果一个原子连接四个不同的基团,则称这个原子具有手性。常见的有C, N, P, S, Si, As 等原子。 判断方法:先将与手性原子相连的四个原子(团)按次序规则进行排列,然后将次序最小的原子(团)放在距观察者最远的位置,再观察其他3个原子(团)的排列次序,若由大到小的排列次序为顺时针方向,则R 为型,若为逆时针方向,则为S 型. e a 假定原子的优先次序为a >b > d >e b d 为顺时针方向,R 型 b d 为逆时针方向,S 型 轴手性分子:四个基团围绕一根轴排列在平面之外的体系,当每对基团不同时,有可能是不对称的。轴手性分子可分为以下几种类型: 丙二烯型分子:螺环型分子: 环外双键型分子: 联苯型分子: C 3 3 H 3 3 H 3 (远端) 逆时针方向,R 型 顺时针方向,R 型 (近端)逆时针方向,S 型 (近端)逆时针方向,S 型 从左向右看: 从左向右看: (远端) 判断方法:从左向右看,先看到的基团为近端,用实线表示,后看到的基团为远端,用虚线 表示,然后从近端的大基团看到近端的小基团再看到远端的大基团(不看远端的小基团),若为顺时针方向,则为则R 为型,若为逆时针方向,则为S 型. 平面手性分子:平面手性通过对称平面的失对称作用而产生,其手性取决与平面的一边与另

一边的差别,还取决与三个基团的种类。判断方法:第一步是选择手性平面,第二步是确定平面的优先边,这个优先边可以通过按标准的顺序规则在直接连接到平面原子的原子中找到哪一个是最优先的来确定。连接到平面的一套原子中的最优先原子,即先导原子或导向原子标记了平面的优先边(标记为1号),第二优先(标记为2号)给予手性平面直接与1号基团成轴连接的原子,等等,对于1-2-3为顺时针方向,则为R p 为型,若为逆时针方向,则为S p 型. 例如: S p 型R p 型 螺旋手性分子:螺旋性是手性的一个特例,其中分子的形状就像右的或左的螺杆或盘旋扶梯,从旋转轴的上面观察,看到的螺旋是顺时针方向的定为P 构型,而逆时针方向的定为M 构型. 例如: M 型 几个例子: 22 3 从上往下看: 顺时针方向,R 构型 近端 远端 从左向右看: R S 参考文献 《有机结构理论》,图书馆藏书

功能导向的纳米超分子组装体结构调控与可控制备

项目名称:功能导向的纳米超分子组装体结构调控 与可控制备 首席科学家:刘育南开大学 起止年限:2011.1至2015.8 依托部门:教育部天津市科委

二、预期目标 总体目标 以分子识别与传感、分子存储与转换、生物活性分子传输等功能为导向,利用小分子与小分子自组装、小分子与大分子自组装及大分子与大分子自组装构筑具有重要应用前景的纳米超分子组装体,运用各种现代测试技术研究纳米超分子组装体的形成规律,阐明小分子/小分子自组装体、小分子/大分子自组装体、大分子/大分子自组装体等各层次纳米超分子组装体间的内在联系、物理和化学过程、构效关系以及特定功能等基础科学问题。通过对自组装方法的优化实现纳米超分子组装体的结构调控和可控制备,提供多种具有特定功能和重要应用前景的纳米超分子组装体,并在此基础上揭示新现象,发展新理论,开拓新技术,推动相关学科的发展。 五年预期目标 在前一期重大研究计划?纳米研究?专项项目?具有重要应用背景的纳米超分子组装体的构筑与功能研究?研究成果的基础上,进一步加大研究力度,以分子识别与传感、分子存储与转换、生物活性分子传输等功能为导向,设计多个系列功能小分子和大分子作为构筑单元,通过小分子与小分子自组装、小分子与大分子自组装及大分子与大分子自组装构筑150种以上结构、形貌可控的纳米超分子组装体。利用各种现代测试手段考查它们的结构特征以及它们所具有的特定功能,阐述分子组装过程中各种外界因素对纳米超分子组装体结构和功能的影响,总结自组装的一般规律以及小分子/小分子自组装体、小分子/大分子自组装体、大分子/大分子自组装体等各层次纳米超分子组装体间的内在联系,通过引入不同性能的修饰基团和完善自组装工艺实现纳米超分子组装体的结构调控和可控制备,提升我国在纳米科学领域的国际影响,为开发具有我国自主知识产权的纳米技术提供新材质和奠定理论基础。本项目成果预计提供150-200篇高水平的论文发表在SCI摘录刊物上,申请国家发明专利20-30项,培养100名以上的博士和硕士研究生。

超分子化学技术及其应用进展

超分子化学技术及其应用进展 20世纪80年代末, 诺贝尔化学奖获得者J.M.Lehn 创造性地提出了超分子化学的概念,它的提出使化学从分子层次扩展到超分子层次,这种分子间相互作用形成的超分子组装体,带给人们许多认识上的飞跃,认识到分子已不再是保持物性的最小单位。功能的最小基本单位不是分子而是超分子,功能产生于超分子组装体之中,这种认识带来了飞跃。据估计,现在已有40 %的化学家要用超分子的知识来解决所面临的科学问题,超分子科学已成为21世纪新思想、新概念和高技术的一个主要源头[1]。 所谓超分子化学[2],是基于分子间的弱相互作用(或称次级键) 而形成复杂而有序且有特定功能分子聚集体的化学。不同于基于原子构建分子的传统分子化学,超分子化学是分子以上层次的化学,它主要研究两个或多个分子通过分子之间的非共价键弱相互作用,如氢键、范德华力、偶极/ 偶极相互作用、亲水/ 疏水相互作用以及它们之间的协同作用而生成的分子聚集体的结构与功能。 一、超分子化合物的分类[3] 1.1杂多酸类超分子化合物 杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物。作为一类新型电、磁、非线性光学材料极具开发价值,有关新型Keg-gin和Dawson 型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注。 1.2 多胺类超分子化合物 由于二氧四胺体系可有效地稳定如Cu ( Ⅱ) 和Ni ( Ⅱ) 等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用。大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视。近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元。李晖等利用了冠醚分子的分子识别能力及蒽

分子结构与性质知识点汇总

【知识网络】 1化学键 11、化学键的分类: 化学键分为离子键、共价键。从电负性角度考虑,电负性相差大的原子间是以 离子键相连,而电负性相差不大的原子间是以共价键相连。 【说明】氢键与范德华力是分子间作用力,不是化学键。 22、共价键的形成及本质: ①定义:原子间通过共用电子对形成的化学键; ②本质:高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用; ③形成条件:电负性相同或差值小的非金属元素原子间或非金属原子与金属原 子间易形成共价键。 33、共价键的类型——δ键和π键: ①δ键:δ键是两原子在成键时,电子云采取“头碰头”的方式重叠形成的共 价键(重叠程度大),这种重叠方式符合能量最低,最稳定;δ键是轴对称的,可以围绕成键的两原子核的连线旋转。 ②π键:π键是电子云采取“肩并肩”的方式重叠(重叠程度较小),成键的 电子云由两块组成,分别位于由两原子核构成平面的两侧,互为镜像,不可以 围绕成键的两原子核的连线旋转。

共价单键都是δ键,共价双键、叁键中只有一个δ键。π键不如δ键牢固,比 较容易断裂。 44、共价键的特征: ①饱和性:指每个原子形成共价键的数目是确定的; ②方向性:成键的原子轨道最大程度的重叠,在成键时,要尽可能沿着电子云 密度最大的方向发生重叠。成键电子云越密集,共价键越强。(决定了键角) 55、化学键的参数: ①键能:气态基态原子形成1mol化学键释放的最低能量。(或断开1molAB(g)中的化学键,使其分别生成气态A原子和气态B原子所吸收的能量,叫A--B键的键能)。注意几个点:气态、基态原子,1mol化学键。键能越大,化学键越 稳定。 ②键长:数值约等于形成共价键的两个原子之间的核间距。键长越短,键能越大,化学键越稳定。 ③键角:多原子分子中,两个共价键之间的夹角。决定分子的立体结构和分子 的极性。 66、键的极性和分子的极性: ①极性键和非极性键: 不同元素原子间形成的共价键——极性键;相同元素原子间形成的共价键—— 非极性键。 分类依据:共用电子对是否偏移;发生偏移为极性键,不发生偏移为非极性键。 极性大小比较:元素的电负性(元素非金属性)差值越大,共用电子对偏移越多,极性越大。 【说明】在极性键中,非金属性强的元素原子吸引共用电子对的能力强,共用 电子对偏向于该原子,该原子带部分负电荷,化合价表现为负价;共用电子对 偏离的一方带部分正电荷。 ②分子的极性 非极性分子:正负电荷中心重合的分子称为非极性分子。例如:X 2 型双原子分子(如H 2、Cl 2 、Br 2 等)、XYn型多原子分子中键的极性互相抵消的分 子(如CO 2、CCl 4 等)都属非极性分子。 极性分子:正负电荷中心不重合的分子称为极性分子。例如XY型双原子分子(如HF、HCl、CO、NO等)、XYn型多原子分子中键的极性不能互相抵消的分子 (如SO 2、H 2 O、NH 3 等)都属极性分子。

不对称分子及生命分子的手性起源

不对称分子及生命分子的手性起源 王丁众钟绮文江来田松海张威关键词:不对称,光活性,起源 一、不对称分子 在引出这个概念之前,我们先看什么是对称分子。对称分子有以下几种对称因素: 1、平面对称因素即存在一个平面把分子分成两部分,这个平面好像一个镜子,镜外实体的镜象可与镜内实体重叠,如CH2=CH 2、C6H6、CO2等。 2、反射对称因素检查是否存在这种因素时,一般需经两个操作:先将分子通过一个轴旋转2π/n度,然后用一个垂直这个轴的镜面反射,如果镜内的镜象和镜外未旋转前的实 体完全重叠,如分子,这种具有n次反射对称轴的分子也为对称分子。 3、简单轴对称因素即以一条直线为旋转轴旋转2π/n度,得到的分子与原分子可以重叠,n表示轴的级,称n重轴,如氨分子有一个三重轴。但需注意的是,如果分子中不含其它对称因素,只有简单旋转轴因素,它们就必定和其镜象不重叠,这就是我们要说的不对称分子,又叫手性分子,如L-酒石酸、D-酒石酸。 由此我们可以引出不对称分子(即手性分子)的概念:在三维空间中实体与其镜象或经轴旋转后的镜象不重叠的分子,即为不对称分子。 旋光性是手性分子的重要特征。不对称分子的实体和镜象─—左手性分子(用L表示)和右手性(用D表示)─—互称对映体。它们的差别在于对偏振光作用不同:一个可以把偏振光向左旋,另一个则把偏振光向右旋。 二、不对称分子对生命的意义 1、不对称分子是生命的物质基础。 生命的基本物质是核酸和蛋白质。核酸和蛋白质以及糖元、淀粉、纤维素、磷脂等都有右手螺旋结构(可用右手螺旋方法判断),螺旋型分子均是不对称分子,而它们的单体如核苷酸、氨基酸等,也都是不对称分子。 2、光学活性是生命有序性和组织化的基础 生命是一个非常高度组织化了并高度有序的体系。为了生成这样的体系,就只能有一种对映体作为形成生物分子的空间结构,如组成生命蛋白质的氨基酸都是L型,组成核酸的核糖和脱氧核糖分子都是D型。 试想如果没有这种光学活性,会怎样呢?例如由100个谷氨酸组成的α一聚谷氨酸大分子,组成单元具有同一旋光性的,就只能生成一种α一聚谷氨酸。相反,若这100个氨基酸分子是L型和D型的混合物,则这100个氨基酸组成的聚合分子的异构体将有2100个之多,这样的分子根本构不成高度有序的生命分子。 3、生物大分子手性是识别生命与非生命的探针 在地球上的生命组织的蛋白质中,氨基酸都是L型;核酸中,核糖和脱氧核糖总是D

高中化学《分子的性质》教案12 新人教版选修3

分子的性质 [复习]分子的极性判断标准,分子间作用力对物质性质的影响。 [过渡]今天我们利用已学过的分子结构理论,继续研究物质的其它性质。 [板书]四、溶解性 [讲述]物质相互溶解的性质十分复杂,有许多制约因素,如温度、压强等。从分子结构的角度,存在“相似相溶”的规律。蔗糖和氨易溶于水,难溶于四氯化碳;而萘和碘却易溶于四氯化碳,难溶于水。如果分析溶质和溶剂的结构就可以知道原因了:蔗糖、氨、水是极性分子,而萘、碘、四氯化碳是非极性分子。通过对许多实验的观察和研究,人们得出了一个经验性的“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。 [板书]1、“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。 [讲述]水是极性溶剂,根据“相似相溶”,极性溶质比非极性溶质在水中的溶解度大。如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。 [板书]2、溶解度影响因素:溶剂的极性、溶剂和溶质之间的氢键作用、 [讲述]此外,“相似相溶”还适用于分子结构的相似性。例如,乙醇的化学式为CH3CH20H,其中的一OH与水分子的一OH相近,因而乙醇能与水互溶;而戊醇CH3CH2CH2CH2CH20H中的烃基较大,其中的一OH跟水分子的一OH的相似因素小得多了,因而它在水中的溶解度明显减小。 [板书] 分子结构的相似性。 [强调]另外,如果遇到溶质与水发生化学反应的情况,如SO2与水发生反应生成亚硫酸,后者可溶于水,因此,将增加SO2的溶解度。 [思考练习] 1、比较NH3和CH4在水中的溶解度。怎样用相似相溶规律理解它们的溶解度不同? 2.为什么在日常生活中用有机溶剂(如乙酸乙酯等)溶解油漆而不用水? 3、在一个小试管里放入一小粒碘晶体,加入约5mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1mL四氯化碳(CCl4),振荡试管,观察碘被四氯化碳萃取,形成紫红色的碘的四氯化碳溶液。再向试管里加入1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在水溶液里可发生如下反应:I2+I—=I3—。实验表明碘在纯水还是在四氯化碳中溶解性较好?为什么? [汇报]略。 [展示]模型: [设问]看一看两个分子的立体结构,像不像一双手那样?它们不能相互叠合?

手性分子的性质

什么是手性分子 英文名:chiral molecules 我们知道,生命是由碳元素组成的,碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理、化学性质。比如它们的沸点一样,溶解度和光谱也一样。但是从分子的组成形状来看,它们依然是两种分子。这种情形像是镜子里和镜子外的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不会重合,就像我们的左手和右手那样,所以又叫手性分子。 对于非碳原子手性中心的分子,只要没有对称面和对称中心即为手性分子。 手性分子的基本标志 一个化合物的分子与其镜像不能互相叠合,则必然存在一个与镜像相应的化合物,这两个化合物之间的关系,相当于左手和右手的关系,即互相对映。这种互相对应的两个化合物成为对映异构体(enantiomers)。这类化合物分子成为手性分子(chiral molecule)。不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,镜面不对称性是识别手性分子与非手性分子的基本标志。 生物分子手性原则是什么 生物分子都有手性,即分子形式的右撇子和左撇子(或左旋、右旋)。在法国生物学家巴斯德发现酒石酸晶体的镜像后就更激起了科学家的兴趣。然而,手性分子是如何形成的却一直让人迷惑不解。过去,生物化学领域趋向于认为,单一手性形式的分子合成通常从一开始就要利用手性本体,也就是说生物分子自身在催化着手性形式的形成。而且在一些化学反应中手性产物的形成进一步扩大了。 2006年6月16日出版的英国《自然》刊发文章称,最近,美国研究人员发现,物质的固(体)-液(体)相平衡可能参与了生物分子手性的形成。比如,氨基酸固(体)-液(体)相的平衡,可以由刚开始时的小小的不平衡导致严重偏向一种手性形式,即左旋或右旋。而这种现象出现在水溶液中,因而也可以解释生命起源以前的左手性和右手性,即为何左右手性数量相当的分子为何会转变成生物分子偏爱一种手性。而物质世界中有活性作用的分子常常是左旋,如左旋糖苷。 手性分子的药用价值 手性是生命过程的基本特征,构成生命体的有机分子绝大多数都是手性分子。人们使用的药物绝大多数具有手性,被称为手性药物。手性药物的“镜像”称为它的对映体,两者之间在药力、毒性等方面往往存在差别,有的甚至作用相反。20世纪60年代一种称为反映停的手性药物(一种孕妇使用的镇定剂,已被禁用)上市后导致1.2万名婴儿的生理缺陷,因为反映停的对映体具有致畸性。因此,能够独立地获得手性分子的两种不同镜像形态极为重要。生命的手性之分 作为生命的基本结构单元,氨基酸也有手性之分。也就是说,生命最基本的东西也有左右之分。 惊人的发现---组成地球生命体的几乎都是左旋氨基酸,而没有右旋氨基酸 我们已经发现的氨基酸有20多个种类,除了最简单的甘氨酸以外,其它氨基酸都有另一种手性对映体!那么,是不是所有的氨基酸都是手性的呢?答案是肯定的,检验手性的最好方法就是,让一束偏振光通过它,使偏振光发生左旋的是左旋氨基酸,反之则是右旋氨基酸。通过这种方法的检验,人们发现了一个令人震惊的事实,那就是除了少数动物或昆虫的特定

有机化学之浅谈分子手性

有机化学之浅谈分子手性 有机化学是化学、化工、轻工、环工医药类各专业的一门重要的基础课,而立体化学是有机化学的一个重要组成部分,它的内容主要是研究有机化合物分子的三度空间结构、立体结构及其对化合物的物理性质和化学性质的影响,其中又以对映异构现象为重点。学习对应异构不仅可以锻炼我们学生的空间想象能力,也能锻炼学生的思维能力,这对于我们学生的成长有着积极影响。 学习认知 在学习立体化学时,难点就是分子的手性,接下来我们主要研究分子的手性 我们知道,生命是由碳元素组成的,碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理、化学性质。比如它们的沸点一样,溶解度和光谱也一样。但是从分子的组成形状来看,它们依然是两种分子。这种情形像是镜子里和镜子外的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不会重合,就像我们的左手和右手那样,所以又叫手性分子。 对于非碳原子手性中心的分子,只要没有对称面和对称中心即为手性分子。 一个化合物的分子与其镜像不能互相叠合,则必然存在一个与镜像相应的化合物,这两个化合物之间的关系,相当于左手和右手的关系,即互相对映。这种互相对应的两个化合物成为对映异构体。这类化合物分子成为手性分子。不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,镜面不对称性是识别手性分子与非手性分子的基本标志。 分子的手性和分子结构的对称性有密切联系。化合物分子存在的对称因素有:对称轴(旋转轴)、对称面、对称中心和交替对称轴旋转反映轴,在课堂学习时,重点应放在对一个分子有没有对称中心和对称面的考察上。一般地说,有机物分子只要既没有对称中心,又没在对称面存在,就可以断定它是个手性分子了。会有个别例外情况,但不是主要问题。所以只要对这个问题掌握了就会比较容易地判断有机化合物分子是否存在手性,同时对立体化学中内消旋体概念的理解也会有较大的帮助。 命名学习 R/S构型命名法 顺序规则:,是由Cahn和Ingold等人从1951年开始提出的,经过修改定型60年代中期,又被称为CIP系统,随后被IUPAC(国际纯粹和应用化学联合会)采用,得到国际上的普遍应用,用R或S符号指明分子构型的方法,取决于分子立体模型的特征,独立于两个化合物间的相互转化,即与化合物的类型和来源无关。因而是个独立的方法。一般包括以下三个步骤,首先按顺序规则确定与手性碳原子X相连的四个基团a,b,c,d的先后顺序,排列为a>b>c>d,然后将顺序最后的基团I放在离观测者最远的方向,三个基团就指向观测者。最后,这三个基团按顺序规则递减排列的顺序a-b-c,若为顺时针方向则构型为R型,若为反时针方向则构型为S型。 学以致用 在农药上的应用 杀虫剂农药的许多大类中存在着手性化合物分子。其中杀虫剂占了手性化合物分子的绝大多数。主要有合成拟除虫菊醇类和有机磷酸南类杀虫剂。蘸果磷是砷年代开发的一个优秀品种,其分子中台有一个不对称磷原子,它的R体与s体的生物活性茬化下的羟氰化作用 存在较大差异,如对家蝇乙酰胆醇蘸的活体抑制活性是s体较高,而杀虫的活性却是R体比s体高。同时人们还发现蔬果磷的氧化产物恰好与蘸果礴的立体化学与生物活性关系性质相

相关主题