搜档网
当前位置:搜档网 › 勾股定理--——辛兰

勾股定理--——辛兰

勾股定理--——辛兰
勾股定理--——辛兰

勾股定理

一、教学背景

勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理,英文译法:Pythagoras' Theorem。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。

用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表

示斜边,则可得:勾2+股2 =弦2,亦即:a2+b2=c2

二、教学课题勾股定理

三、教学目标

1.了解勾股定理的证明,掌握勾股定理的内容,初步会用它进行有关的计算、作图和证明.

2.通过勾股定理的应用,培养方程的思想和逻辑推理能力.

3.对比介绍我国古代和西方数学家关于勾股定理的研究,对学生进行爱国主义教育.

四、教学重点与难点

重点是勾股定理的应用;难点是勾股定理的证明及应用.

五、教学过程设计

(一)激发兴趣引入课题(利用互联网)

通过介绍我国数学家华罗庚的建议——向宇宙发射勾股定理的图形与外星人联系,并说明勾股定理是我国古代数学家于2000年前就发现了的,激发学生对勾股定理的兴趣和自豪感,引入课题.

(二)勾股定理的探索,证明过程及命名

1.猜想结论

勾股定理叙述的内容是什么呢?请同学们也体验一下数学家发现新知识的乐趣.让学生观察三个数之间有何数量关系,得出猜想.对比显示锐角三角形、钝角三角形的三边的平方不存在这种关系,因此它是直角三角形所特有的性质.让学生用语言来叙述他的猜想,画图及写出已知、求证.

2.证明猜想

目前世界上可以查到的证明勾股定理的方法有几百种,连美国第20届总统加菲尔德于1881年也提供了一面积证法(见课本第109页图(4)),而我国古代数学家利用割补、拼接图形计算面积的思路提供了很多种证明方法,下面咱们采纳其中一种(教师制作教具演示,见如图3-151)来进行证明.

3.勾股定理的命名

我国称这个结论为“勾股定理”,西方称它为“毕达哥拉斯定理”,为什么呢?

(1)介绍《周髀算经》中对勾股定理的记载;

(2)介绍西方毕达哥拉斯于公元前582~493时期发现了勾股定理;

(3)对比以上事实对学生进行爱国主义教育,激励他们奋发向上.

( 三)勾股定理的应用

1.已知直角三角形任两边求第三边.

例 1:在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对边分别为a,b,c.

(1)a= 6,b=8求c及斜边上的高;

(2)a=40,c=41,求 b;

(3)b=15 ,=25求 a;

(4)a:b=3:4,c=15,求b.

说明:对于(1),让学生总结基本图形(图3-153)中利用面积求斜边上高的基本方法;对于(4),引导学生利用方程的思想来解决问题.

教师板书(1),(4)的规范过程,让学生练习(2),(3).

例2:求图3-152所示(单位mm)矩形零件上两孔中心A和B的距离(精确到0.lmm).

教师就如何根据图纸上尺寸寻找直角三角形ABC中的已知条件,出示投影.

说明:(1)学会利用方程的思想来解决问题.

(2)通过此题让学生总结并熟悉几个基本图形中的常用结论:

例 3:如图 3-154, AB=AC=20, BC=32,∠DAC=90°.求 BD的长.

分析:(1)分解基本图形,图中有等腰△ABC和Rt△ADC;

(2)添辅助线——等腰△ABC底边上的高AE,同时它也是Rt△ADC 斜边上的高;

(3)设BD为X.利用图3-153中的基本关系,

通过列方程来解决.教师板书详细过程.

解:作AE⊥BC于E.设BD为x,则DE=16-x,AE2=AC2-EC2.又AD2=DE2+AE2=DC2-AC2,将上式代入,得DE2+AC2-EC2=DC2-AC2,即2AC2=DC2+EC2-DE2.

∴2×202=(32-x)2+162-(16-x)2,解得x=7.

2.利用勾股定理作图.

例4:作长为的线段.

说明:按课本第101页分析作图即可,强调

构造直角三角形的方法以及自己规定单位

长.

3.利用勾股定理证明.

例5:如图3-155,△ABC中,CD⊥AB于D,AC>BC.

求证:AC2-BC2=AD2-BD2=AB(AD-BD).

分析:(1)分解出直角三角形使用勾股定理.

Rt△ACD中,AC2=AD2+CD2;Rt△BCD中,BC2=CD2+BD2.

(2)利用代数中的恒等变形技巧进行整理:

AC2-BC2=(AD2+CD2)-(CD2+BD2)

=AD2-BD2=(AD+BD)(AD-BD)=AB(AD-BD).

(4)已知:3-160(a),矩形ABCD.(四个角是直角)

①P为矩形内一点,求证PA2+ PC2= PB2+ PD2

②探索P运动到AD边上(图3-160(b))、矩形ABCD外(图3-160(C))时,结论是否仍然成立.

分析:(1)添加辅助线——过P作EF⊥BC交AD干E,交BC于F.在四个直角三角形中分别使用勾股定理.

(2)可将三个题归纳成一个命题如下:

矩形所在平面上任一点到不相邻顶点的距离的平方和相等.

(四)师生共同回忆小结

1.勾股定理的内容及证明方法.

2.勾股定理的作用:它能把三角形的形的特征(一角为90°)转化为数量关系,即三边满足a2+b2=c2.

3.利用勾股定理进行有关计算和证明时,要注意利用方程的思想求直角三角形有关线段

长;利用添加辅助线的方法构造直角三角形使用勾股定理.

(五)作业

课本第106页第2~8题.

六、教学反思:

1.勾股定理揭示了直角三角形三边之间的数量关系,是直角三角形的一个重要性质.本教学设计利用计算机(几何画板软件动态显示)的优越条件,提供足够充分的典型材料——形状大小、位置发生变化的各种直角三角形,让学生观察分析,归纳概括,探索出直角三角形三边之间的关系式,并通过与锐角、钝角三

角形的对比,强调直角三角形的这个特有性质,体现了启发学生独立分析问题、发现问题、总结规律的教学方法.

2.各学校根据自己的教学条件还可以采纳以下类比联想的探索方式来引入新课.

(1)复习三角形三边的关系,总结出规律:较小两边的和大于第三边.

(2)引导学生类比联想:较小两边的平方和与第三边的平方有何大小关系呢?

(3)举出三个事例(见图3-161(a)(b)( c)).

对比发现锐角、钝角三角形中两较小边的平方和分别大于或小于第三边的平方,直角三角形中较小两边的平方和等于第三边的平方.

(4)用教具演示图3-151,验证对直角三角形所做的猜想.

勾股定理的方程思想

【授课内容】勾股定理的方程思想 【适用年级】八年级上 【执教教师】宁波镇海蛟川书院滕丽 【教学目标】能根据勾股定理列方程,体会方程的思想方法。【教学过程】

BD+CD=AD+CD=3.这个时候我们来看Rt△ACD,AC的长已知,AD、CD满足和等于3,那么我们不妨设AD=x,则CD=3- x,根据勾股定理列方程就可以求出AD的长. 师:好的,同学们理清思路了吗我们一起来完成解答过程。解:∵D在线段AB的中垂线上 ∴AD=BD ∵BC=3 ∴BD+CD=AD+CD=3 设AD=x,则CD=3- x, 由勾股定理得:x2= (3-x)2+12 解得: x=5 3 ∴AD=5 3 师:从这个例题我们可以看到在许多问题中,直角三角形某两边的数量关系并不是条件直接给出的,而是通过条件推理得到,在这种情况下,同学们要仔细分析条件,把数量关系都集中到一个直角三角形中,就可以转化成例1中的类型了。出示解答过程 讲解例3师:我们最后来看一个课本中的练习题,请同学们先读题目。 例3在《九章算术》中记载了一道有趣的数学题:“今有池方 一丈,葭生其中央,出水一尺。引葭赴岸,始与岸齐,问水深、 葭长各几何”这道题的意思 是说:有一个边长为1丈的正 方形水池,在池的正中央长着 一根芦苇,芦苇露出水面1 尺。若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问读题思考幻灯片: 出示例3 题目

师:请同学们先独立思考完成。(停顿) 师:好,我们简单理一下思路:由折叠可知,AE=AC=6cm,CD =DE,∠C= ∠AED=90°。在Rt△BDE中,BE=AB AE 106=4cm, 而BD+DE=BD+CD= BC=8cm,这样我们可以从这个数量关系入手设未知数列方程。下面我们一起来看解答。 解:在Rt△ABC中, AC=6cm,BC=8cm ∴ AB=10cm 由折叠可知AE=AC=6cm,CD=DE, ∠C= ∠AED=90° ∴BE=10-6=4cm, ∠BED=90° 设CD=DE=xcm,则BD=(8-x)cm 在Rt△BDE中,由勾股定理可得(8-x)2=x2+42 解得x=3 ∴ CD=DE=3cm

勾股定理与折叠问题题型

勾股定理与折叠问题题型 Modified by JEEP on December 26th, 2020.

与直角有关的折叠问题(一) 1.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH, 若EH=9厘米,EF=12厘米,则边AD的长是() A. 12厘米 B. 15厘米 C. 20厘米 D. 21厘米 2.如图,在矩形ABCD中,AB=4,BC=8,将矩形ABCD沿EF折 叠,使点C与点A重合,则折痕EF的长为() A. 6 B. 5 C. D. 3.如图1,四边形ABCD是一 矩形纸片,AB=8cm,AD=10cm,E是AD上一点,且 AE=8cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图2;(2)将△AFB以BF为折痕向右折过去,得图3.则△GFC的面积是() A. B. C. D. 4.如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF 折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE 的长是()A. B. C. D. 5.如图,在矩形纸片ABCD中,AD=6cm,点E在BC上,将纸 片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF, 则AB的长是() A. 2cm B. C. 4cm D. 6.如图,CD是Rt△ABC斜边AB上的高,直角边, 现将△BCD沿CD折叠,点B恰好落在AB的中点E处,则图中阴影部分的面积为()

A. 2 B. C. D. 7.如图,在矩形ABCD中,,,将△BCD沿对角线BD翻折,点C 落在处,AD与BC′交于点E,连接AC′,则AC′:BD为() A. B. C. D. 8.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且 ,将矩形沿直线EF折叠,点B恰好落在AD边上的 点P处,连接BP交EF于点Q,有下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是() A. ①② B. ②③ C. ①③ D. ①④ 9.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB 边的中点上.若AB=16,BC=32,则BF的长为() A. 15 B. C. 16 D. 17 10.如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折 叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点 G.若,则() A. B. C. D. 11.如图,折叠直角三角形纸片ABC的直角∠C,使点C落 在斜边AB上的点E处,已知,∠B=30°,则DE 的长为() A. B. C. D. 12.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()

勾股定理与折叠问题(经典题型)复习过程

勾股定理与折叠问题(经典题型)

与直角有关的折叠问题(一) 1.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无 缝隙无重叠的四边形EFGH, 若EH=9厘米,EF=12厘米,则边AD的长是( ) A. 12厘米 B. 15厘米 C. 20厘米 D. 21厘米 2. 如图,在矩形ABCD中,AB=4,BC=8,将矩形ABCD沿EF折叠,使点C与点A重合,则 折痕EF的长为( ) A. 6 B. 5 C. D. 3.如图1,四边形ABCD是一矩形纸片,AB=8cm,AD=10cm, E是AD上一点,且AE=8cm.操作:(1)将AB向AE折过去,使AB与AE重合,得折痕 AF,如图2;(2)将△AFB以BF为折痕向右折过去,得图3.则△GFC的面积是( ) A. B. C. D. 4. 如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着

EF折叠,使点A落在BC边上的点D的位置,且ED⊥BC,则CE的长是 ( )A. B. C. D. 5.如图,在矩形纸片ABCD中,AD=6cm,点E在BC上,将纸片沿AE折叠,使点B落在AC 上的点F处,且∠AEF=∠CEF,则AB的长是( ) A. 2cm B. C. 4cm D. 6. 如图,CD是Rt△ABC斜边AB上的高,直角边 ,现将△BCD沿CD折叠,点B恰好落在AB的中点E处,则图中阴影部分的面积为( ) A. 2 B. C. D. 7.如图,在矩形ABCD中,,,将△BCD沿对角线BD翻折,点C 落在处,AD与BC′交于点E,连接AC′,则AC′:BD为 ( ) A. B. C. D. 8.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且,将矩形沿直线EF 折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,有下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是( ) A. ①② B. ②③ C. ①③ D. ①④

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

勾股定理与面积计算

勾股定理与面积计算 1.(1)如图①,S 1、S 2和S 3分别是以直角三角形的两直角边和斜边长为直径的半圆的面积,你能找出S 1、S 2和S 3之间的关系吗?请说明理由 (2)如图②,如果直角三角形的两直角边分别为6cm ,8cm ,你能根据(1)的结论求出阴影部分的面积吗?你能得出什么结论吗? 2.如图(2)R t ⊿ABC 中,∠ACB=900,AC=6,BC=8,S 1、S 2和S 3分 别是以直角三角形的两直角边和斜边长为边长的等边三角形。你能找出S 1、S 2和S 3之间的关系吗?请说明理由 3. 如图(3)R t ⊿ABC 中,∠ACB=900,AB=3,S 1、S 2和S 3分别是以直角三角形的三边为斜边的等腰直角三角形,则图中阴影部分的面积为 。 4. 如图(4) 以R t ⊿ABC 的三边为边长向形外画正方形,以AB 为边的正方形的 面积为100cm 2,则这三个正方形的面积共为 cm 2。 5、如图14.1.3,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形E 的面积为81cm 2,则正方形A 、B 、C 、D 的面积之和为 。 6、如图14.1.4,是一个“羊头型”的图案,其作法是:从正方形1开始以它的一边为斜边向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,依次类推。若正方 形1的面积为64cm 2,则正形7的边长为 。 7.如图所示的弦图中,大正方形的面积为13,小正方形的面积为1,直角三角形的短直角边 为a ,较长直角边为b ,求(a+b )= 。 8. 有一块土地的形状如图, ∠B=∠D=90°,AB=20m ,BC=15m ,CD=7m ,请计算这块土地面积。 (2) (3) (4) 1242334图14.1.4B 8题图

勾股定理与折叠问题(经典题型).docx

与直角有关的折叠问题(一) 1.如图,将矩形ABCD勺四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH 若EH=9厘米,EF=12厘米,则边AD的长是() A. 12厘米 B. 15厘米 C. 20厘米 D. 21厘米 2. 如图,在矩形ABCD中, AB=4, BC=8将矩形ABCD沿EF 折叠,使点C与点A重合,则折痕EF 的长为( 5C. L D. 3. 如图1,四边形ABCD是一矩形纸片,AB=8cm 作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图2;(2)将厶AFB以BF为 A ICm J B 2cm j C 3cn∩j D 4. 如图,已知边长为5的等边三角形ABC纸片,点E在AC 边上,点F在AB边上,沿着 EF折叠,使点A落在BC边上的点D的位置,且ED⊥ BC,则 CE 的长是()A. 1°B. lθ^5λ∕3 C. D2O-1C√3 5. 如图,在矩形纸片ABCD中, AD=6cm点E在BC上,将纸片 - P G AE=8cm 操 A. 6 B. 折痕向右折过去,得图

沿AE 折叠,使点 B 落在AC 上的点F 处,且∠ AEF=∠ CEF 贝U AB 的长是( ) A. 2cm B. - √--d --1- C. 4cm D. L -' 6. 如图,CD 是 Rt △ ABC 斜边AB 上的高,直角边 ■ : ,现将△ BCD 沿 CD 折叠,点B 7. 如图,在矩形 ABCD 中,二「一「:;,「二二匚,将△ BCD 沿对角线BD 翻折,点C 落在Cr 处,AD 与BC 交于点 E ,连接 AC ,贝U AC : BD 为 曲二丄M 8. 如图,在矩形 ABCD 中,点E , F 分别在边AB, BC 上,且 ? ,将矩形沿直线 EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q,有下列结论:①EF=2BE ② PF=2PE ③FQ=4EQ ④厶PBF 是等边三角形.其中正确的是 ( ) A.①② B.②③ C.①③ D.①④ 恰好落在AB 的中点E 处,则图中阴影部分的面积为 A. IC

例谈方程思想与勾股定理的有效结合

例谈方程思想与勾股定理的有效结合

————————————————————————————————作者:————————————————————————————————日期:

例谈方程思想与勾股定理的有效结合-中学数学论文 例谈方程思想与勾股定理的有效结合 胡迎兰 (高邮市经济开发区树人中学,江苏扬州225600) 摘要:我们都知道,在直角三角形的计算中,如果已知两条边,要求第三边时,用勾股定理直接代入计算即可见效,但如果只知其中的一条边去求另两条边呢?笔者发现,此时那未知的两条边之间一定存在某种数量关系,我们只要抓住这个数量关系,只需设出一个未知数便可以表示出两条未知的边,这时候再用勾股定理,列方程即能解决问题。笔者通过下面的例子来说明勾股定理联手方程在很多情况下是非常给力的。 关键词:勾股定理;联手方程;直角三角形 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-08-0032-01 一、在实际问题中 例1:如图1,两只猴子都从竖直的木杆上距地面5米的D处出发,已知它们所经过的路程相同,且BC=15m,求木杆AB的高度。 分析:本题既然是求直角三角形的边长,毫无疑问要用勾股定理,但因为AC和AB两边未知,所以用勾股定理直接计算行不通,好在“它们所经过的路程相

同”,就可以设AD=x,再用含x的代数式表示出AC,最后利用勾股定理就可列出方程。 解:设AD=x,则AC=20-x, 由勾股定理,得:(20-x)2=(x+5)2+152 解得:x=2. 所以木杆高度AB为7米。 二、在折叠问题中 例3:如图3,折叠长方形的一边AD,使D点落在边BC上的点F处,折痕为AE,已知AB=8cm,BC=10cm,求CE的长。

八年级数学下册利用勾股定理作图或计算练习题及解析

第十七章 勾股定理 17.1 勾股定理 第3课时 利用勾股定理作图或计算 学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题; 2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题. 重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题. 难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题. 一、知识回顾 1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,- 2.5的点吗? 2.求下列三角形的各边长. 一、要点探究 探究点1:勾股定理与数轴 想一想 1.你能在数轴上表示出2的点吗?2 呢?(提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.) 2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数? 3.以下是在数轴上表示出 13的点的作图过程,请你把它补充完整. (1)在数轴上找到点A,使OA=______; (2)作直线l ____OA,在l 上取一点B ,使AB=_____; (3)以原点O 为圆心,以______为半径作弧,弧与数轴交 于C 点,则点C 即为表示______的点. 课堂探究 自主学习 教学备注 学生在课前完成自主学习部分 配套PPT 讲授 1.情景引入 (见幻灯片3-4) 2.探究点1新知讲授 (见幻灯片5-12)

要点归纳:利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三 角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在 交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数. 类似地,利用勾股定理可以作出长2,3,5L为线段,形成如图 所示的数学海螺. 典例精析 例1如图,数轴上点A所表示的数为a,求a的值. 易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长. 针对训练 1.如图,点A表示的实数是() A. 3 B. 5 C. 3 D.5 -- 2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为 半径作弧交数轴于点M,则点M表示的数为() A.2 B.5 1 C.10 1 D.5 -- 3.你能在数轴上画出表示17的点吗? 探究点2:勾股定理与网格综合求线段长 典例精析 例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐 标,并求出此三角形的周长. 方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中, 利用勾股定理求其长度. 例3 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的 高. 教学备注 配套PPT讲授 3.探究点2新 知讲授 (见幻灯片 13-17)第1题图第2题图

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法 ——拼图法、定理法 江苏省泗阳县李口中学沈正中 据说对社会有重大影响的10大科学发现,勾股定理就是其中之一。早在4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差。迄今为止,关于勾股定理的证明方法已有500余种,各种证法融几何知识与代数知识于一体,完美地体现了数形结合的魅力。让我们动起手来,拼一拼,想一想,娱乐几种,去感悟数学 的神奇和妙趣吧! 一、拼图法证明(举例12种) 拼法一:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图2拼法。 问题:你能用两种方法表示左图的面积吗?对比两种不同的表示方法,你发现了什么? 分析图2:S 正方形=(a+b )2= c 2 + 4×2 1ab 化简可得:a 2+b 2 = c 2 拼法二:做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像左 图那样拼成两个正方形。 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 a 2+ b 2+4×21ab = c 2+4×21ab 整理得 a 2+b 2 = c 2 拼法三:用四个相同的直角三角形(直角边为a 、b ,斜边为c )按图3拼法。 问题:图3是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。在图3中用同样的办法研究,你有什么发现?你能验证a 2+b 2=c 2吗? 分析图3:S 正方形= c 2 =(a-b )2+ 4×21ab 化简可得:a 2+b 2 = c 2 图1 图2 图3 图4 b a b a b a b a c b a c b a c b a c b a c b a c b a

八年级数学下册利用勾股定理作图或计算练习题

第十七章勾股定理 17.1 勾股定理 第3课时利用勾股定理作图或计算 一、选择——基础知识运用 1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出() A.2个B.3个C.4个D.6个 2.如图,在△ABC中,∠B=40°,EF∥AB,∠1=50°,CE=3,EF比CF大1,则EF的长为() A. 5 B. 6 C.3 D.4 3.如图所示:数轴上点A所表示的数为a,则a的值是() A.+1 B.-1 C.-+1 D.--1 4.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()

A.B.C.D. 5.如图,在7×7的正方形网格中,每个小正方形的边长为1,画一条线段AB=,使点A,B在小正方形的顶点上,设AB与网格线相交所成的锐角为α,则不同角度的α有() A.1种B.2种C.3种D.4种 二、解答——知识提高运用 6.如图中的螺旋形由一系列含30°的直角三角形组成,其序号依次为①、②、③、④、⑤…,则第7个直角三角形的斜边长为。 7.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,按要求画一个三角形:使这个三角形的顶点都在格点上,该三角形的面积为3,且有一边长为。 8.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3,AB=5,∠EBC=30°,求BC。

9.如图,在一张长方形ABCD纸张中,一边BC折叠后落在对角线BD上,点E为折痕与边CD的交点,若AB=5,BC=12,求图中阴影部分的面积。 10.在平面直角坐标系内,已知点A(2,2).B( 2,3),点P在y轴上,且三角形APB为直角三角形,求点P的坐标。 11.(1)在右面的方格纸中,以线段AB为一边,画一个正方形; (2)如果图中小方格的面积为1平方厘米,你知道(1)中画出的正方形的面积是多大吗?解释你的计算方法。

折叠问题与勾股定理例题总结

B'D C B A C D B A E E F D A B C A B C F E 'A 第8题图 ('B ) D 折叠问题与勾股定理例题总结 1.如图,在矩形ABCD 中,AB =6,BC =8。将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处。(1)求EF 的长;(2)求梯形ABCE 的面积。 2.如图所示,在ABC 中,AB=20,AC=12,BC=16,把ABC 折叠,使AB 落在直线AC 上,求 重叠部分(阴影部分)的面积. 3.如图,矩形纸片ABCD 的长AD=9 cm ,宽AB=3 cm ,将其折叠,使点D 与点B 重合,那么 折叠后DE 的长是多少 4如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC 折叠,使AB 落 在斜边AC 上得到线段AB ’,折痕为AD ,求BD 的长为. 5.如图,折叠长方形(四个角都是直角,对边相等)的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm ,BC=10cm .求EC 的长. 6.如图,将边长为8 cm 的正方形纸片ABCD 折叠,使点D 落在BC 中点E 处,点A 落在点F 处,折痕为MN ,求线段CN 的长.(MN 的长) 7.如题,在长方形ABCD 中,将ABC 沿AC 对折至AEC 位置,CE 与AD 交于点F. (1)试说明:AF=FC (2)如果AB=3,BC=4,求AF 的长。 8.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF . 若AB = 3 cm ,BC = 5 cm , (1)重叠部分△DEF 的面积是多少cm 2

勾股定理中蕴含的数学思想

勾股定理中蕴含的数学思想 河北张家口市第十九中学 贺峰 数学思想方法是对数学的认识内容和所使用的方法的本质的认识,是数学知识的精髓,又是知识转化为能力的桥梁,有了数学思想方法为灵魂,数学才有了魅力。在学习数学的过程中,既要掌握基础知识,又要注重挖掘题目中蕴含的数学思想和方法,从而不断提高数学素养,增强探索创新能力,激发学习数学的兴趣,本文着重将勾股定理中蕴含的数学思想为同学们加以分析: 一、 特殊到一般的思想 例1如图1所示的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n 个等腰直角三角形的斜边长为_____________。 析解:观察图象,第①、②、③、④个等腰直角三角形的斜边长分别为2、4、8、16,由此类推,第n 个等腰直角三角形的斜边长为2n 。 说明:猜想型问题是近几年各地中考试题的热点问题,根据问题提 供的信息,通过观察、类比、推理、猜想、验证得出一般性规律和 结论是解决这类问题一般方法,解题时要注意数形结合。 二、 分类思想 例2 如果三条线段的长分别为6cm 、xcm 、10cm ,这三条线段恰好能组成一个直角三角形,那么x =_______。 析解:本题分两种情况解答 (1)当以6cm 、xcm 为直角边,10cm 为斜边时,102=62+x 2,x =±8(舍负) (2)当6cm 、10cm 均为直角边时,62+102=x 2,x =±234(舍负) 因此,x 为4或34。 说明:在利用勾股定理解答某些数学问题时,常见的分类情况有以直角边、斜边分类,按等腰三角形的腰与底分类,依三角形的形状分类,按展开方式的不同分类等,同学们在解题须注意这一点,以避免出现丢解或遭成错解。 三、 整体思想 例3 如图2,已知Rt △ABC 的周长为2+6,其中斜边AB =2,求这个三角形的面积。 析解:在Rt △ABC 中,根据勾股定理,得 BC 2+AC 2=2 2 即(BC +AC )2-2BC 2AC =4 又由已知得BC +AC = 6 所以(6)2-2 BC 2AC =4 解得BC 2AC =1 所以S =12BC 2AC =12 说明:若要直接求出BC 与AC 的值,再求三角形的面积,比较繁杂,但由S =12 BC 2AC B C A 图2 图1

勾股定理简单应用

勾股定理应用的教学设计 教学目标 1 ?会用勾股定理进行简单的计算。 2.通过探究,会运用勾股定理解释生活中的实际问题 教学重点 勾股定理的应用。 教学难点 实际问题向数学问题的转化 教学过程 通过小组合作学习探究,研究勾股定理在实际中的应用 一、 复习旧知 复习勾股定理以及一些简单的计算 ⑴勾股定理: ____________________________________________________ (2)求出下列直角三角形中未知的边. 通过四个问题,让学生明白勾股定理在实际生活中的应用,以及如何去使用勾股定理 问题1.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口, 则圆形盖半径至 少为多少米? ? 问题2.如图所示,一旗杆在离地面 5 m 处断裂,旗杆顶部落在离底部 12 m 处,问旗杆 折断前有多咼? 合作探究 B A 2 C C C

问题4.如图,一个5米长的梯子AB 斜着靠在竖直的墙A0上,这时A0的距离为3米. ① 球梯子的底端B 距墙角0多少米? ② 如果梯的顶端A 沿墙下滑1米至C,请同学们猜一猜,底端 B 也将滑动1米吗? 算一算,底端滑动的距离。(结果保留 1位小数). 三. 深化新知 “引葭赴岸”是《九章算术》中的一道题“今有池方一丈,葭生其中央,出水一尺 , 引 葭赴岸,适与岸齐。问水深、葭长各几何?” 四、课堂小结 本节课你有什么收获?你认为用勾股定理解决实际问题的关键是什么? 五、运用新知 1校园里有两棵树,相距15米,一棵树高10米,另一棵树高18米,一只小鸟从一棵树 的顶端飞到另一棵树的顶端,小鸟至少要飞 ___________ 米。 2如图,一根12米高的电线杆两侧各用 15米的铁丝固定,两个固定点之间的距离 问题3.如下图,要将楼梯铺上地毯,则需要 _____ 米长的地毯.

勾股定理与面积计算

图14.1.3G F E D C B A 勾股定理与面积计算 1.(1)如图①,S 1、S 2和S 3分别是以直角三角形的两直 角边和斜边长为直径的半圆的面积,你能找出S 1、S 2和S 3之间的关 系吗请说明 理由 (2)如图②,如果直角三角形的两直角边分别为6cm ,8cm ,你能根据(1)的结论求出阴影部分的面积吗你能得出什么结论吗 2.如图(2)Rt ⊿ABC 中,∠ACB=900,AC=6,BC=8,S 1、S 2和S 3分 别是以直角三角形的两直角边和斜边长为边长的等边三角形。你能找出S 1、S 2和S 3之间的关系吗请说明理由 3. 如图(3)Rt ⊿ABC 中,∠ACB=900,AB=3,S 1、S 2和S 3分别是以直角三角形的三边为斜边 的等腰直角三角形,则图中阴影部分的面积为 。 4. 如图(4) 以Rt ⊿ABC 的三边为边长向形外画正方形,以AB 为边的正方形的 面积为100cm 2,则这三个正方形的面积共为 cm 2。 (2) (3) (41 242334图14.1.4 B 8题图

5、如图,所有的四边形都是正方形,所有的三角形都是直角三角形, 其中最大的正方形E的面积为81cm2,则正方形A、B、C、D的面积之和为。 6、如图14.1.4,是一个“羊头型”的图案,其作法是:从正方形1开始以它的一边为斜边向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,依次类推。若正方形1的面积为64cm2,则正形7的边长为。 7.如图所示的弦图中,大正方形的面积为13,小正方形的面积为1,直角三角形的短直角边为a,较长直角边为b,求(a+b)= 。 8. 有一块土地的形状如图,∠B=∠D=90°,AB=20m,BC=15m,CD=7m,请计算这块土地面积。

专题勾股定理与折叠问题

专题:勾股定理在折叠问题中应用 .知识要点 (1) 折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等 (2) 利用线段关系和勾股定理,运用方程思想进行计算. 二典例解析 (一)三角形的折叠 1. 如图,Rt/ABC中,/ C=90,AC=6 AB=10 D为BC上一点,将AC沿AD折叠,使点C落 在AB上,求CD的长 2. 如图,Rt/ABC中,/ C=90,D为AB上一点,将/ ABC沿DE折叠,使点B与点A重合, ①若AC=4 BC=8求CE的长 ②若AC=24 BC=32求折痕DE的长 D C E

(二)矩形的折叠 1. 如图,折叠矩形纸片ABCD先折出折痕(对角线)BD再折叠,使AD落在对角线BD上, 得折痕DG 若AB = 2,BC = 1,求AG

2. 如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm BC=10cm 求EC的长. 变式:如图.在直角坐标系中,矩形ABC0的边0A在x轴上,边0C在y轴上,点B的坐标为(1, 3),将矩形沿对角线AC 翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为 ______________ 3. 如图,矩形纸片ABCD AB=4cm BC=8cm现将A C重合,使纸片折叠压平,设折痕为EF ①求DF的长; ②求重叠部分△ AEF的面积; ③求折痕EF的长. B E

(三)正方形的折叠 1?将边长为8cm的正方形ABCD折叠,使D落在BC边的中点E处,点A落在F处,折痕为MN ①求线段CN的长; ②求AM ③求折痕MN的长 MN折叠,使点B落在CD边上变式:如图,四边形ABCD是边长为9的正方形纸片,将其沿 的B处,点A对应点为A,且BC 3,则AM的长是 ________________

勾股定理方程思想.doc

【适用年级】八年级上 【执教教师】宁波镇海蛟川书院滕丽 【教学目标】能根据勾股定理列方程,体会方程的思想方法。 【教学过程】 教学板块教师教学学生活动媒体插入揭示课题,师:同学们,我们已经学习了勾股定理。我们知道任意的一个幻灯片:明确任务直角三角形,它的两条直角边的平方和等于斜边的平方,这个勾股定理结论就称为勾股定理,即如果 a,b 为直角三角形的两条直角边 长, c 为斜边长,则a2 b2 c2。在直角三角中,如果已知两 边的长,利用勾股定理就可以求第三边的长;那么如果已知一 条边长及另两边的数量关系,能否求各边长呢这就是今天我们 所要学习内容。 讲解例 1 师:我们先来看一个简单的问题。读题思考幻灯片: 出示例 1 例 1 在△ ABC中,∠ C=Rt∠, 题目 (1) 如果 BC=16,AB:AC=5:3, 求 AB、 AC的长 . (2) 如果 AC=5, AB=BC+1, 求 AB、 BC的长 . 师:在第 (1) 小题中,已知了直角三角形ABC的一条边 BC的长 及另两边的数量关系: AB:AC=5:3 ,根据这个数量关系,可以 把 AB设成 5x, AC 为 3x, 根据勾股定理得 2 AB 2就BC AC 2 能列出含 x 的方程,从而求出 x 的值。下面我们一起来解答这 个小题。 解: (1) 设 AB=5x, 则 AC=3x(x>0) 出示解答由勾股定理得 162+(3x) 2=(5x) 2过程解得: x 2=16 ∵ x>0∴ x=4 ∴AB=20,AC=12. 师: 下面我们来看第 (2) 小题 , 同学们你们会求吗 ( 停顿 ) 出示解答师 : 是的。我们可以从 AB=BC+1这个数量关系入手,设 BC= x, 则过程 AB=x+1,根据勾股定理列方程。下面我们一起来解答这个小题。 (2) 设 BC= x, 则 AB=x+1 (x>0) 由勾股定理得 x2+ 5 2=( x+1) 2 解得: x=12 ∴ BC=12,AB=13. 师:我们总结一下步骤: 在直角三角形中(已知两边的数量关系)出示流程设其中一边为 x 利用勾股定理列方程图 解方程求各边长 这就是我们今天所学习的《勾股定理的方程思想求边长》,你

公开课-勾股定理中的方程思想

《勾股定理中的方程思想》教学设计 课题:《勾股定理中的方程思想》教学设计 科目:数学年级:八年级课时:第1课时 一、学习目标 知识与技能: 1.掌握勾股定理的内容,进一步利用勾股定理解决问题; 2.经历对几何图形的观察、分析,初步学会寻找或构造直角三角形的方法; 3.会运用方程的思想解决与勾股定理有关的问题. 过程与方法: 1.通过用代数式、方程等表述数量关系的过程,体会模型的思想,建立符号意识; 2.在观察、实验、猜想、证明等数学活动中,发展演绎推理能力,清晰地表述自己的想法; 3.学会独立思考,体会方程思想、数形结合思想、转化思想、建模思想. 情感态度价值观: 培养合情推理能力,提高合作交流意识,体会数学源于生活又服务于生活,激发学习热情。 三、重点、难点、关键 重点:运用方程思想解决与勾股定理有关的问题 难点:当几何图形中多个直角三角形时,寻找或构造合适的直角三角形,利用勾股定理解决问题. 关键:在现实情境中捕捉直角三角形,然后应用勾股定理针对性解决 四、学情分析 在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些实际问题,同时也具备了一定的合作意识与能力,并对“做数学”有相当的兴趣和积极性,但探究问题的能力还是有限,对生活中的实际问题与勾股定理的联系还不明确,自主学习能力还有待加强。 五、教学背景 勾股定理是几何中最重要的定理之一,它也是直角三角形的一条重要性质.同时由勾股定理及其逆定理,能够把形的特征转化成数量关系,它把形与数密切地联系起来,因此,它在理论上也有重要地位.方程思想是初中数学中一种基本的数学思想方法.方程可以清晰的反应已知量和未知量之间的关系,架起沟通已知量和未知量的桥梁.本节课为后续进一步学习运用方程思想解决问题起着铺垫作用。 六、教学准备 多媒体课件,直尺。

勾股定理计算题训练

勾股定理计算题训练 1如图楼梯,高BC是3米,斜边AB长是5米,现在楼梯上铺地毯,需要地毯的长度为()。 A、5米 B、6米 C.7米D、8米 2一旗杆离地面6米处折断,旗杆顶部落在离旗杆8米处,旗杆折断之前有多少米? 3如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由。

4如图AD=4,AB=3,∠A=90o,BC=13,CD=12。 求四边形ABCD的面积。 C B A 5小刚测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m, 把竹竿的顶端拉向岸边,竿顶和岸边的水 面刚好相齐,河水的深度为多少米?

6、一架方梯长25米,如图,斜靠在一面墙上, 梯子底端离墙7米, (1)这个梯子的顶端距地面有多高? (2)如果梯子的顶端下滑了4米,那么梯子的 底端在水平方向滑动了几米? 7、在△ABC 中,∠ACB=900,AC=5,BC=12。 求(1)△ABC 的面积S △ABC 。 (2)求斜边AB 的长度。 (3)求高CD 的长度。 A C B A D O

51312D C B A 8、如图,铁路上A ,B 两点相距25km ,C , D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B , 已知DA=15km ,CB=10km ,现在要在铁路 AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处? 9如图,三个村庄A 、B 、C 之间的距离分别为 km AB 5=,km BC 12=,km AC 13=,要从B 修 一条公路BD 直达AC ,公路的造价为26000 元km /,求修这条公路的最低造价是多少? A D E B C

利用勾股定理解决折叠问题及答案

小专题(二) 利用勾股定理解决折叠与展开问题 类型1 利用勾股定理解决平面图形的折叠问题 1.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为( ) A.252 cm B.152 cm C. 254 cm D.154 cm 2.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( ) A .1 cm B .1.5 cm C .2 cm D .3 cm 3.(青岛中考)如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB =6,BC =9,则BF 的长为( ) A .4 B .3 2 C .4.5 D .5 4.如图,长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A .3 B .4 C .5 D .6 5.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为( ) A .3 B.154 C .5 D.15 2

6.如图,在长方形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是( ) A.210-2 B.6 C.213-2 D.4 7.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE 的周长为________. 8.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是________. 9.如图,已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的锐角A翻折,使得点A落在BC边的中点D处,折痕交AC边于点E,交AB边于点F,则DE的值为________. 10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=________. 11.为了向建国六十六周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是: ①先裁下了一张长BC=20 cm,宽AB=16 cm的长方形纸片ABCD, ②将纸片沿着直线AE折叠,点D恰好落在BC边上的F处, 请你根据①②步骤解答下列问题:计算EC,FC的长.

勾股定理练习题(含答案)

勾股定理练习题 张颐甜 一、基础达标: 1. 下列说法正确的是( ) A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2; B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2; C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2; D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+ 3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( ) A 、2k B 、k+1 C 、k 2-1 D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( ) (A 2d (B d - (C )2d (D )d 8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :7 9.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( ) A .17 B.3 C.17或3 D.以上都不对 10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则 三角形的形状是( )

1.巧用勾股定理解决折叠与展开问题

巧用勾股定理解决折叠与展开问题 类型1利用勾股定理解决平面图形的折叠问题 1.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF 的长. 2.长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,求AB的长. 3.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.求D,E两点的坐标. 4.有一长方形纸片ABCD,按如图方式折叠,使点B与点D重合,折痕为EF. (1)求证:△DEF是等腰三角形; (2)若AD=3,AB=9,求BE的长.

5.有一块直角三角形纸片,两直角边AC=6 cm,BC=8 cm. (1)如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,则CD=________cm; (2)如图2,若将直角∠C沿MN折叠,点C与AB中点H重合,点M,N分别在AC,BC上,则AM2,BN2与MN2之间有怎样的数量关系?并证明你的结论.

类型2利用勾股定理解决立体图形的展开问题 6.如图,一圆柱体的底面周长为24 cm,高AB为5 cm,BC是直径,一只蚂蚁从点A出发沿着圆柱体的 表面爬行到点C的最短路程是() A.6 cm B.12 cm C.13 cm D.16 cm 7.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路 程是____________m(精确到0.01 m). 8.如图,长方体的高为5 cm,底面长为4 cm,宽为1 cm. (1)点A1到点C2之间的距离是多少? (2)若一只蚂蚁从点A2爬到C1,则爬行的最短路程是多少? 9.如图,圆柱形玻璃杯高为12 cm,底面周长为18 cm,在杯外离杯底4 cm的点C处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4 cm的点A处. (1)求蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离; (2)若将蜂蜜的位置改为在杯内离杯底4 cm的点C处,其余条件不变,请你求出此时蚂蚁吃到蜂蜜所爬行的最短距离.

相关主题