搜档网
当前位置:搜档网 › 10.由三角函数的图像求解析式

10.由三角函数的图像求解析式

10.由三角函数的图像求解析式
10.由三角函数的图像求解析式

由B x A y ++=)sin(?ω的图像求解析式

知识点归纳:

1. 利用“五点法”作sin()y A x ω?=+图像,设X x ω?=+,令X =30,,,

,22

2

π

π

ππ

求出相应的x 值,计算得出五点的坐标,描点后得出图象

特 征 图像上升时与x 轴的交点 图像上的“峰点” 图像下降时与x 轴的交点 图像上的“谷点” 图像上升时与x 轴的交点 x 1x 2x 3x

4x 5x

?ω+x

π 23π

π2

sin()A x ω?+

A

A -

注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和?ω+x 之间的对应系

2.函数B x A y ++=)sin(?ω表达式的确定:A (B )由最值确定;ω由周期确定;?由图象上的特殊点(上面的关键点)确定

①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T

π

ω2=

,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期

2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4

T .】 ③?的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+?ωx ,2

?ω=

+x ,π?ω=+3x ,2

34π

?ω=

+x ,从而根据以上等式,解出?

考点 确定函数解析式问题

例1.⑴若函数sin()y A x ω?=+的图像(部分)如下图所示,则ω和?的取值是( ) A 、1,3

π

ω?==

B 、1,3

π

ω?==-

C 、1,26πω?==

D 、1,6

πω?==-

⑵已知函数sin(),y A x x R ω?=+∈(其中0,

0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为()

2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 .

⑶若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2

<

)的最小正周期是π,且(0)3f =,则( )

A .126

ω?π=

=, B .123

ω?π=

=, C .26

ω?π

==,

D .23

ω?π

==,

例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m

经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 .

⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ω?=++,0t =时端点P 在点0P 处,则()h m 与()min t 之间的函数关系式是 .

8m

2m

h

P

练习:

1. 函数)0,0)(sin(π??ω<<>+=A x A y 的图像的两个相邻零点为)0,6

-

(,0)2

π

,且该函数的最大值为2,最小值为-2,则该函数的解析式为( ) A 、)4

23sin(2π

+=x y B 、)42sin(2π+=x y

C 、)623sin(2π+=x y

D 、)6

2sin(2π

+=x y

2.

()()??? ??

<>>∈+=200π?ω?ω,

,,A R x x sin A x f 的图象(部分)如图所()x f 的解析式是

A .()()R x x sin x f ∈??? ??+=62ππ

B.()()R x x sin x f ∈???

??+=622ππ

C.()()R x x sin x f ∈???

??+=32ππ

D.()()R x x sin x f ∈???

?

?+=322ππ

3. 已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02A π

ω?>><<

)的图象与x 轴的

交点中,相邻两个交点之间的距离为2

π

,且图象上一个最低点为2(,2)3M π-.

则()f x 的解析式 . 4. 函数sin()y x ω?=+(,0x R ω∈>,

02?π≤<)的部分图象如图,则

.A 4,2π?πω== .B 6,3π?πω==

.C 4,4π?πω== .D 4

5,4π

?πω=

=

5.已知函数sin()y A x ω?=+(0,||A ?><的一段图象如下图所示.

则()f x 的解析式 .

6. 函数sin()

y A x ω?=+()2

0,,x R πω?><∈

的部分图象如图所示,则函数表达式为 .A )4

8

sin(

π

+

-=x y .B )4

8

sin(

π

-

=x y

.C )48sin(4π

π--=x y .D )4

8sin(4ππ+=x y

7. 已知函数2sin()(0)y x ω?ω=+>)在区间

[]02π,

的图像如图所示:那么ω=( ) A .1

B .2

C .

2

1

D .

3

1 8. 已知函数()2sin()f x x ωφ=+的图像如图所示,则712

f π??

=

???

.

9. 动点),(y x A 在圆12

2

=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知

定时t =0时,点A 的坐标是)2

3

,

21(,则当120≤≤t 时,动点A 的纵坐标y 关于t (单位:秒)的函数关系式是()sin y t ω?=+,0,02

π

ω?><<,则y 关于t 的函数解析式

是 .

y

x

O 2- 4

4-

6 y

1

1 O

三角和反三角函数图像+公式

三角、反三角函数图像 六个三角函数值在每个象限的符号: sinα·cscα cosα·secα tanα·cotα 三角函数的图像和性质: 1-1y=sinx -3π2 -5π2 -7π2 7π2 5π 2 3π2 π2 -π2 -4π-3π -2π4π 3π 2ππ -π o y x 1-1y=cosx -3π 2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π-2π4π 3π 2π π -π o y x y=tanx 3π2 π π2 - 3π2 -π - π2 o y x y=cotx 3π2 π π2 2π -π - π2 o y x 函数 y=sinx y=cosx y=tanx y=cotx 定义域 R R {x |x ∈R 且x≠kπ+ 2 π ,k ∈Z } {x |x ∈R 且x≠kπ,k ∈Z } 值域 [-1,1]x=2kπ+ 2π 时y max =1 x=2kπ-2 π 时y min =-1 [-1,1] x=2kπ时y max =1 x=2kπ+π时 y min =-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性 周期为2π 周期为2π 周期为π 周期为π 奇偶性 奇函数 偶函数 奇函数 奇函数 单调性 在[2kπ-2π,2kπ+2 π ]上都是增函数;在 [2kπ+2π ,2kπ+3 2π]上都是减函数(k ∈Z) 在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函数(k ∈Z) 在(kπ-2 π,kπ+ 2 π )内都是增函数(k ∈Z) 在(kπ,kπ+π)内都是减函数(k ∈Z)

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数公式及图像

锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边/ ∠α的邻边 cot α=∠α的邻边/ ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6π 35346124T πππ=-= T π∴= 2ω= 把(,2)12π代入,2122ππφ?+=得3π?= 所以y=)3 2sin(2π+x 点评:由图像确定解析式,观察图像的特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是 ( ) A .sin 6y x π??=+ ??? B.sin 26y x π??=- ?? ? C.cos 43y x π??=- ??? D.cos 26y x π??=- ?? ? 解:从图象看出,41T =1264πππ+=,所以函数的最小正周期为π,函数应为y=sin 2x 向左平移了6 π个单位,即sin 2()6y x π=+=sin(2)cos(2)cos(2)3236x x x ππππ+=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6 π个单位进行验证化简是求解的关键。对于利用图象的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解

三角函数图像求解析式

: 已知sin()cos()y A x B y A x B ω?ω?=++=++或图像求解析式 1. 利用最值求A ,B . 当 A>0时 =最大值=A+B 最小值-A+B 当 A<0时 =最大值=-A+B 最小值A+B 2. 利用最高点、最低点、零点中的两个点的横坐标之差求出周期,再利用2|| T π ω= 求ω。 3. 利用五个特殊点求?,或代入y 轴上的点求?. 例1、如图,直线 2230x y +-=经过函数 si ()()n f x x ω?=+(0ω>,||?π<)图象的最高点 M 和最低点 N ,则( ) A 、2 π ω= ,4 π ω= B 、ωπ=, 0?= C 、2 π ω=,4 π ?=- D 、ωπ=, 2 π ?= 例2、 1.【2015新课标1】8、函数()cos()f x x ω?=+的部分图像如图 所示,则()f x 的单调递减区间为( ) (A )13(,),44k k k Z ππ- +∈ (B )13 (2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13 (2,2),44 k k k Z -+∈ 2.(2016·全国卷2文)3函数y=Asin (ωx+φ)的部分图象如图所示,则 ( ) A.y=2sin π2x 6? ?- ??? B.y=2sin π2x 3?? - ?? ? C.y=2sin πx+6?? ?? ? D.y=2sin πx+3 ?? ?? ? 3.(2013 年高考大纲卷(文))若函数 ()()sin 0=y x ω?ωω=+>的部分图像如图,则 ( ) A .5 B .4 C .3 D .2 4. (2015·陕西高考理科·T3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin(x+φ)+k,据此函数可知,这段时间水深(单位:m)的最大值为( ) A.5 B.6 C.8 D.10 5.已知函数 ()()() 2sin 0,f x x ω?ω?π=+><的部分图象如图所示, 已知点 ( A , ,06B π?? ? ??,若将它的图象向右平移6 π个单位长度,得到函数 () g x 的图象,则函数()g x 的图象的一条对称轴方程为 ( )

三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|οββ ③终边在y 轴上的角的集合:{ } Z k k ∈+?=,90180|ο οββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈°=57°18ˊ. 1°=180 π≈(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α 原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

由三角函数图象求解析式

已知函数()f x =Acos(x ω?+)的图象如图所示,2 ()2 3 f π =- ,则(0)f =( ) (A )23- (B) 23 (C)- 12 (D) 1 2 2π 3,于是f(0)【解析】选B.由图象可得最小正周期为 =f(2π3),注意到2π3与π2关于7π12对称, 所以f(2π3 ) =-f(π2)=23. 如果函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称,那么||?的最小值 为( ) (A ) 6π (B )4π (C )3π (D) 2 π 【解析】选A. 函数()cos 2y x φ=3+的图像关于点43π?? ??? ,0中心对称w.w.w.k.s.5.u.c.o.m 4232k ππφπ∴? +=+13()6k k Z πφπ∴=-∈由此易得min ||6 π φ=. 已知函数y=sin (ωx+?)(ω>0, -π≤?<π)的图像如图所示,则 ?=________________ 【解析】由图可知, ()544,,2,1255T x πωπ??? = ∴=+ ??? 把代入y=sin 有: 89,510ππ???? +∴= ??? 1=sin 已知函数()2sin()f x x ωφ=+的图像如图所示,则712 f π ?? = ??? 。

【解析】由图象知最小正周期T = 32(445ππ-)= 32π=ωπ2,故ω=3,又x =4 π时,f (x )=0,即2φπ +? 4 3sin()=0,可得4 π φ= ,所以,712f π ?? = ? ?? 2)41273sin(ππ+?=0。 )已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的图象与x 轴的 交点中,相邻两个交点之间的距离为2 π ,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式; (Ⅱ)当[ ,]122 x ππ ∈,求()f x 的值域. 【解析】(1)由最低点为2(,2)3 M π -得A=2. 由x 轴上相邻的两个交点之间的距离为2π得2T =2 π ,即T π=,222T ππωπ=== 由点2(,2)3M π-在图像上得242sin(2)2,)133ππ ???+=-+=-即sin( 故42,32k k Z ππ?π+=-∈ 1126 k π?π∴=- 又(0, ),,()2sin(2)266f x x π ππ ??∈∴= =+故 (2)7[,],2[,]122636x x πππππ ∈∴+∈ 当26x π+=2π,即6x π=时,()f x 取得最大值2;当7266 x ππ+= 即2 x π =时,()f x 取得最小值-1,故()f x 的值域为[-1,2]把函数y =cos(3x +4 π )的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移 4π B.向左平移4 π

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

(完整版)三角函数图像公式大全,推荐文档

幂函数的图形 指数函数的图形 对数函数的图形 三角函数的图形

各三角函数值在各象限的符号 sinα·cscα cosα·secα tanα·cotα 三角函数的性质 函数y=sinx y=cosx y=tanx y=cotx 定义域R R {x|x∈R且 x≠kπ+ 2 π ,k∈Z} {x|x∈R且 x≠kπ,k∈Z} 值域[-1,1]x=2kπ+ 2 π 时 y max=1 x=2kπ- 2 π 时y min=-1 [-1,1] x=2kπ时y max=1 x=2kπ+π时y min=-1 R 无最大值 无最小值 R 无最大值 无最小值 周期性周期为2π周期为2π周期为π周期为π奇偶性奇函数偶函数奇函数奇函数 单调性在[2kπ- 2 π ,2kπ+ 2 π ]上 都是增函数;在 [2kπ+ 2 π ,2kπ+ 3 2 π]上 都是减函数(k∈Z) 在[2kπ-π,2kπ]上都是 增函数;在[2kπ,2kπ+π] 上都是减函数(k∈Z) 在(kπ- 2 π ,kπ+ 2 π )内都 是增函数(k∈Z) 在(kπ,kπ+π)内都 是减函数(k∈Z)

反三角函数的图形 反三角函数的性质 名称反正弦函数反余弦函数反正切函数反余切函数 定义 y=sinx(x∈〔- 2 π , 2 π 〕 的反函数,叫做反正弦 函数,记作x=arsiny y=cosx(x∈〔0,π〕) 的反函数,叫做反 余弦函数,记作 x=arccosy y=tanx(x∈(- 2 π , 2 π )的反函数,叫做反 正切函数,记作 x=arctany y=cotx(x∈(0,π))的 反函数,叫做反余切 函数,记作 x=arccoty 理解 arcsinx表示属于 [- 2 π , 2 π ] 且正弦值等于x的角 arccosx表示属于 [0,π],且余弦值 等于x的角 arctanx表示属于 (- 2 π , 2 π ),且正切值等 于x的角 arccotx表示属于(0, π)且余切值等于x 的角 性 质 定义域[-1,1][-1,1](-∞,+∞)(-∞,+∞) 值域[- 2 π , 2 π ][0,π](- 2 π , 2 π ) (0,π)单调性 在〔-1,1〕上是增函数在[-1,1]上是减 函数 在(-∞,+∞)上是增数在(-∞,+∞)上是减函 数奇偶性 arcsin(-x)=-arcsinx arccos(-x)=π-arcco sx arctan(-x)=-arctanx arccot(-x)=π-arccot x 周期性都不是同期函数 恒等式 sin(arcsinx)=x(x∈[-1, 1])arcsin(sinx)=x(x∈ [- 2 π , 2 π ]) cos(arccosx)=x(x∈ [-1,1]) arccos(cosx)=x(x∈ [0,π]) tan(arctanx)=x(x∈ R)arctan(tanx)=x(x∈ (- 2 π , 2 π )) cot(arccotx)=x(x∈ R) arccot(cotx)=x(x∈ (0,π)) 互余恒等式arcsinx+arccosx= 2 π (x∈[-1,1]) arctanx+arccotx= 2 π (X∈R)

三角函数的图像和性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质 【思路提示】一般所给函数为 y =A sin( ω x +φ)或y =A cos( ω x +φ),A>0,ω>0,要根 据 y = sin x ,y = cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin (x )(0≤ < )是R 上的偶函数,则 等于( ) B . C . D . 42 A 充分不必要条件 B .必要不充分条 C .充要条件 变式 3.设f (x) sin( x ),其中 0,则 f (x)是偶函数的充要条件是( ) A. f (0) 1 B . f (0) 0 C . f '(0) 1 D . f '(0) 0 例2.设f (x) sin(2 x )(x R),则 f(x)是( ) 2 A. 最小正周期为 的奇函数 B . 最小正周期为 的偶函数 C .最小正周期为 的奇函数 D . 最小正周期为 的偶函数 22 结论: (1) 若y Asin( x )是奇函数,则 k (k Z); (2) 若 y Asin( x )是偶函数,则 k + (k 2 Z); (3) 若 y Acos(x )是奇函数,则 k 2(k Z); (4) 若 y Acos( x )是偶函数,则 k (k Z); (5) 若 y A tan(x )是奇函数,则 k 2 (k Z). 变式 1.已知 a R , 函数 f (x) sin x | a | 为奇函数, 则 a 等 于 B . 1 C . 1 D . 1 【评注】由 y sin x 是奇函数, y cosx 是偶函数可拓展得到关于三角函数奇偶性的重要 变式 2.设 R ,则 “ 0”是“f(x) cos(x )(x R)为偶函数 ” 的( ) D .无关条件

由三角函数的图像求解析式

由B x A y ++=)sin(?ω的图像求解析式 知识点归纳: 1. 利用“五点法”作sin()y A x ω?=+图像,设X x ω?=+,令X =30,,, ,2 2 2 π π ππ 求出相应的x 值,计算得出五点的坐标,描点后得出图象 特 征 图像上升时与x 轴的交点 图像上的“峰点” 图像下降时与x 轴的交点 图像上的“谷点” 图像上升时与x 轴的交点 x 1x 2x 3x 4x 5x ?ω+x 0 2π π 2 3π π2 sin()A x ω?+ A A - 注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和?ω+x 之间的对应系 2.函数B x A y ++=)sin(?ω表达式的确定:A (B )由最值确定;ω由周期确定;?由图象上的特殊点(上面的关键点)确定 ①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T π ω2= ,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期 2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4 T .】 ③?的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+?ωx ,2 2π ?ω= +x ,π?ω=+3x ,2 34π ?ω= +x ,从而根据以上等式,解出

? 考点 确定函数解析式问题 例1.⑴若函数sin()y A x ω?=+的图像(部分)如下图所示,则ω和?的取值是( ) A 、1,3 π ω?== B 、1,3 π ω?==- C 、1,26πω?== D 、1,6 πω?==- ⑵已知函数sin(),y A x x R ω?=+∈(其中0,0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为() 2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 . ⑶若函数()2sin()f x x ω?=+,x ∈R (其中0ω>,2 ?π < )的最小正周期是π,且(0)3f =,则( ) A .126 ω?π ==, B .123 ω?π= =, C .26 ω?π ==, D .23 ω?π ==, 例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m 经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 . ⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ω?=++,0t =时端

根据三角函数图像求解析式经典题型分析

根据三角函数图像求解析式经典20题 1是函数π 2sin()2 y x ω???? =+< ?? ?的图象上的一段,则( ) A.10π 116ω?==, B.10π116 ω?= =-, C.π 26 ω?==, D.π 26 ω?==-, 2、若函数k x A y ++=)sin(?ω的最大值为5,最小值为-1,则函数A =____k =_______。 3、下列函数中,图像的一部分如右图所示的是( ) (A )sin()6y x π=+ (B )cos(2)6y x π=- (C )cos(4)3y x π =- (D )sin(2)6y x π=- 4、已知函数()?? ? ? ? <>+=2,0sin π?ω?ωx y 的部分图象如右上图所示,则( ) A. 6 ,1π ?ω== B. 6 ,1π ?ω- == C. 6 ,2π ?ω== D. 6 ,2π ?ω- == 5、将函数sin (0)y x ωω=>的图象向左平移 6 π 个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6 y x π =+ B .sin()6 y x π =- C .sin(2)3y x π =+ D .sin(2)3 y x π =- .6、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8 π = x , 则? 的值为( )A .2π B .π C .2π D .4 π 7、函数)20,0,)(sin(π?ω?ω<≤>∈+=R x x y 的部分图象如图,则

A .4 ,2 π ?π ω= = B .6 ,3 π ?π ω= = C .4,4π?πω== D .4 5,4π ?πω== 8、函数),2 ,0)(sin(R x x A y ∈π ω?+ω=的部分图象如图 所示,则函数表达式为) (A ))48sin(4π+π-=x y (B ))48sin(4π -π=x y (C ))48sin(4π-π-=x y (D ))4 8sin(4π +π=x y 9、函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A ) 10、已知函数k x A y ++=)sin(?ω (A >0,ω>0,|?|<π)在同一周期内,当9 π =x 时取 得最大值1,当9 4π =x 时,取得最小值0,求函数的表达式。 11、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|<π) 的图象的一段如图,求它的解析式。 12、已知函数)sin(?ω+=x A y (A >0,ω>0,|?|< 2 π )的图象如图,求函数的解析式。 y x π 6 - 2 3 π 3 2 y x 2 1 -1 -2 π 12 11 O

由图像或性质求三角函数解析式的方法

求三角函数解析式常用的方法 三角函数是高中数学的一个重点,而三角函数图象与性质又是其中的难点,学生往往不知如何挖掘出有用的信息,去求A 、ω、φ。现就几道例题谈谈常用的求解方法。 1 利用五点法,逆求函数解析式 例1.右图所示的曲线是)sin(?ω+=x A y (0>A ,0>ω)图象的一部分,求这个函数的解析式. 解:由22y -≤≤,得A=2 已知第二个点(,2)12π和第五个点5(,0)6 π 353 46124 T πππ=-= T π∴= 2ω= 把(,2)12π代入,2 122 ππφ?+=得3π?= 所以y=)3 2sin(2π +x 点评:由图像确定解析式,观察图像的 特征,形助数寻找“五点法”中的整体点,从而确定初相?。 2 利用图像平移,选准变换过程切入求解 例2下列函数中,图象的一部分如右图所示的是( ) A .sin 6y x π??=+ ??? B.sin 26y x π? ?=- ??? C.cos 43y x π??=- ??? D.cos 26y x π? ?=- ??? 解:从图象看出, 41T =1264 πππ +=,所以函数的最小正周期为π,函数应为

y=sin 2x 向左平移了 6π个单位,即 sin 2()6y x π=+=sin(2)cos(2)cos(2)3236 x x x πππ π +=-++=-,故选择答案D 。 点评:数形结合,由图像确定周期和初相位后,选准图像平移变换过程切入, 如本题y=sin 2x 向左平移了6π 个单位进行验证化简是求解的关键。对于利用图象 的变换来求解函数的解析式,一定要清楚每一种变换对,,A ω?的影响,注重整体变量观念的应用。 3 特殊化赋值法求解 例3设函数)(),0( )2sin()(x f y x x f =<<-+=?π?图像的一条对称轴是直线8 π = x 。求()y f x =的解析式。 解:对称性特殊赋值切入,8 x π = 是函数()y f x =的图像的对称轴, ()()88 f x f x ππ ∴+=- 令8x π = ,则()(0)4f f π=,即sin() =sin cos 2 π ???+=,tan 1?∴=。 0π?-<< , 34π?∴=- 故3()sin(2)4 y f x x π ===- 点评:特殊赋值这是演绎推理的具体表现,特别是利用对称性待定系数时, 更显示出它的价值 4 利用方程组求解 例4:已知函数()cos()(0,0)f x x ω?ω?π=+>≤≤是R 上的奇函数,其图象关于点)0,4 3( πM 对称,且在区间]3,0[π 上是单调函数。求函数()y f x =的解析式。 解:由图像过原点和其对称性构建方程组切入,由函数()f x 是R 上的奇函数得(0)cos 0(1)f ?== ; 由函数()f x 图象关于点)0,43( πM 对称得:33()cos()0(2)44 f ππω?=+= ; 在()f x 区间[0,]3 π 上是单调函数得:(3)342||T ππω≤= ;

已知三角函数图象求解析式方法例析

已知三角函数图象求解析式方法例析 已知函数y =Asin(ωx+φ)+k(A >0,ω>0)的部分图象,求其解析式,与用“五点法”作函数y =Asin(ωx+φ)+k的图象有着密切联系,最主要的是看图象上的“关键点”与“特殊点”.本文就一般情况例析如下. 一、A 值的确定方法:A 等于图象中最高点的纵坐标减去最低点的纵坐标所得差的一半. 二、 ω值的确定方法: 方法1.在一个周期内的五个“关键点”中,若任知其中两点的横坐标,则可先求出周期T,然后据ω=T π2求得ω 的值. 方法2:“特殊点坐标法”。特殊点包括曲线与坐标轴的交点、最高点和最低点等。在求出了A 与φ的值之后,可由特殊点的坐标来确定ω的值. 三、 φ值的确定方法: 方法1:“关键点对等法”.确定了ω的值之后,把已知图象上五个关键点之一的横坐标代人ωx+φ,它应与曲线y=sinx 上对应五点之一的横坐标相等,由此可求得φ的值.此法最主要的是找准“对等的关键点”,我们知道曲线y =sinx 在区间[0,2π]上的第一至第五个关键点的横坐标依次为0、2 π、π、2 3π、2π,若设所给图象与曲线y=sinx 上对 应五点的横坐标为x J (J =1,2,3,4,5), 则顺次有ωx 1 +φ=

0、 ωx 2 +φ=2 π、ωx 3+φ=π、ωx 4 +φ=2 3π、ωx 5 +φ= 2π,由此可求出φ的值。 方法2:“筛选选项法”,对于选择题,可根据图象的平移方向经过筛选选项来确定φ的值. 方法3:“特殊点坐标法”.(与2中的方法2类同). 四、 k 值的确定方法: K 等于图象向上或向下平移的长度,图象上移时k 为正值,下移时k 为负值. 另外A 、ω、φ的值还可以通过“解方程(组)法”来求得. 例1.图1是函数y=2sin (ωx+φ)(ω>0,φ≤2 π) 的图象,那么正确的是( ) A.ω=11 10, φ=6π B.ω=1110, φ=-6 π C.ω=2,φ=6 π D.ω=2,φ=-6 π , 解:可用“筛选选项法”. 题设图象可看作由y =2sin ωx 的图象向左平移而得到,所以φ>0 排除B 和D ,由A,C 知φ=6 π; ω值的确定可用“关键点对等法”, 图1 因点(1211π,0)是“五点法”中的第五个点, ∴ω〃12 11π+6 π=2π 解得ω=2, 故选C . 例2.图2是函数y =Asin(ωx+φ)图象上的一段, (A >0,ω>0,φ∈(0,2 π)),求该函数的解析式. 12 11π1211π x y 0 2 -2

高中数学三角函数公式大全

第一部分 集合 1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =?=??Y I 注意:讨论的时候不要遗忘了φ=A 的情况。 4.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。 2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2 2 2 2b a b a ab +≤ +≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等) ;⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式 a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。 5.函数的奇偶性 ⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数?f(-x)=-f(x);)(x f 是偶函数?f(-x)= f(x) ⑶奇函数)(x f 在原点有定义,则0)0(=f ; ⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; ⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性; 6.函数的单调性 ⑴单调性的定义: ①)(x f 在区间M 上是增函数,,21M x x ∈??当21x x <时有

经典三角函数公式及其图像大全

经典三角函数公式及其图像大全 三角函数是中学课程里,非常重要的一部分,应将其作为学习的一个重点。 ⒈L 弧长=αR=nπR 180 S 扇=21L R=2 1R 2 α=3602R n ?π 2.S ⊿=2 1a a h ?=2 1ab C sin =2 1bc A sin =2 1ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr =))()((c p b p a p p --- (其中)(2 1c b a p ++=, r 为三角形内切圆半径) 3.正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) 4.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2 =a 2 +b 2 -2ab C cos bc a c b A 2cos 2 22-+= ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθ θ θcsc cos sin cos ?=== y x ctg ③θθθtg r y ?== cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg

三角函数,反三角函数公式大全

三角函数公式 倍角公式 2ta nA tan 2A = 2 Sin 2A=2Si nA?CosA 1-ta n 1 2A 2 2 2 2 Cos2A = CoS 2A-Si n 2A=2Cos 2 A-1=1-2si n 2A 三倍角公式 3 3 sin3A = 3sinA-4(sinA) cos3A = 4(cosA) -3cosA π π tan3a = tana? tan(—+a) ? tan(--a) 3 3 半角公式 积化和差 SinaSinb = 1 1 -[cos(a+b)-cos(a-b)] cosacosb = 一 [cos(a+b)+cos(a-b)] 2 2 1 COSA tan(A)=^°^=^n ^ Sina=— 两角和公式 sin( A+B) = Sin AcosB+cosAs inB cos(A+B) = cosAcosB-si nAsinB sin( A-B) = Sin ACOSB-COSAS inB COS(A-B) = cosAcosB+si nAsinB tan( A+B)= tanA tanB 1- ta nAta nB tan( A-B)= tanA 「tanB 1 tan Ata nB cot(A+B)= cotAcotB -1 cotB cotA COt(A-B)= cotAcotB 1 COtB-COtA .z A * -cos A Sin(I ) ^ 2 A cos()= 2 1 cos A tan 自 =J≡≡ A COt q ) = Sin a+s in b=2s in a 「b cos — 2 Sin a-s in b=2cos Sin a 「 b 2 cosa+cosb = 2co a —b cos — 2 COSa-COSb = -2sin Sin tan A+ta nB=si n(A+B)∕cosAcosB tan A-ta nB=si n(A-B)∕cosAcosB ctgA+ctgB=si n(A+B)∕si nAsi nB -ctgA+ctgB=si n(A+B)∕si nAsi nB a b

三角函数解析式的求法

函数y =Asin (ωx +φ)的图象及三角函数模型的简单应用 ‖知识梳理‖ 1.y =Asin (ωx +φ)的有关概念 T = 2πω ωx +φ 用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示: 3. | 微 点 提 醒 | 1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φ ω个单位长度而非φ个单位长 度. 2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π 2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标. ‖易错辨析‖ 判断下列结论是否正确(请在括号中打”√”或“×”) (1)把y =sin x 的图象上各点的横坐标缩短为原来的1 2,纵坐标不变,所得图象对应的函数解 析式为y =sin 1 2 x .(×)

(2)将y =sin2x 的图象向右平移π 3个单位长度,得到y =sin ????2x -π3的图象.(×) (3)函数f (x )=A sin(ωx +φ)(A ≠0)的最大值为A ,最小值为-A .(×) (4)如果y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T 2 .(√) (5)若函数y =A sin(ωx +φ)为偶函数,则φ=2k π+π 2 (k ∈Z ).(×) ‖自主测评‖ 1.函数y =2sin ????2x +π 4的振幅、频率和初相分别为( ) A .2,1π,π 4 B .2,12π,π 4 C .2,1π,π 8 D .2,12π,-π 8 解析:选A 由振幅、频率和初相的定义可知,函数y =2sin ????2x +π4的振幅为2,频率为1 π,初相为π 4 . 2.函数y =sin ????2x -π3在区间??? ?-π 2,π上的简图是( ) 解析:选A 当x =0时,y =sin ????-π3=-32,排除B 、D ;当x =π 6时,y =0,排除C ,故选A. 3.(教材改编题)为了得到函数y =3sin ????x -π5的图象,只需将y =3sin ????x +π 5的图象上的所有点( )

相关主题