搜档网
当前位置:搜档网 › 电磁感应解题技巧及练习

电磁感应解题技巧及练习

电磁感应解题技巧及练习
电磁感应解题技巧及练习

基础回顾

(一)法拉弟电磁感应定律

1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E =n ΔΦ/Δt (普适公式)

当导体切割磁感线运动时,其感应电动势计算公式为E =BLVsin α 2、E =n ΔΦ/Δt 与E =BLVsin α的选用

①E =n ΔΦ/Δt 计算的是Δt 时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=B ΔS/Δt 即B 不变 ΔΦ/Δt=S ΔB/Δt 即S 不变 ② E =BLVsin α可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用

V 平=ω(R 1+R 2)/2代入也可用E =n ΔΦ/Δt 间接求得出 E =BL 2

ω/2(L 为导体长度, ω为角速度。)

(二)电磁感应的综合问题

一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E 和r 。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析力学研究对象( 如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。 【常见题型分析】

题型一 楞次定律、右手定则的简单应用

例题(2006、广东)如图所示,用一根长为L 、质量不计的细杆与一个上弧长为L 0 、下弧长为d 0 的金属线框的中点连接并悬挂于o 点,悬点正下方存在一个弧长为2 L 0、下弧长为2 d 0、方向垂直纸面向里的匀强磁场,且d 0 远小于L 先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是

A 、金属线框进入磁场时感应电流的方向为a →b →c →d →

B 、金属线框离开磁场时感应电流的方向a →d →c →b →

C 、金属线框d c 边进入磁场与ab 边离开磁场的速度大小总是相等

D 、金属线框最终将在磁场内做简谐运动。

题型二 法拉第电磁感应定律的简单应用

例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef ,处在坚直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦滑动,此时abcd 构成一个边长为L的正方形,棒的电阻力为r ,其余部分电阻不计,开始时磁感强度为B 。

(1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K ,同时保持棒静止,求棒中的感应电流,在图上标出感应电流的方向。

(2)在(1)情况中,始终保持棒静止,当t=t 1 秒未时需加的垂直于棒的水平拉力为多大? (3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v 向右做匀速运动时,若使棒中不产生感应电流,则磁感强度怎样随时间变化(写出B 与t 的关系式)?

d a c

B 0

e b f

题型三 电磁感应中的电路问题

题型特点:闭合电路中磁通量发生变化或有部分导体在做切割磁感线运动,在回路中将产生感应电动势,回路中将有感应电流。从而讨论相关电流、电压、电功等问题。其中包含电磁感应与力学问题、电磁感应与能量问题。

解题基本思路: 1.产生感应电动势的导体相当于一个电源,感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于电源的内阻.

2.电源内部电流的方向是从负极流向正极,即从低电势流向高电势.

3.产生感应电动势的导体跟用电器连接,可以对用电器供电,由闭合电路欧姆定律求解各种问题.

4.解决电磁感应中的电路问题,必须按题意画出等效电路,其余问题为电路分析和闭合电路欧姆定律的应用.

例1.如图所示,两个电阻的阻值分别为R 和2R ,其余电阻不计,电容器的电容量为C ,匀强磁场的磁感应强度为B ,方向垂直纸面向里,金属棒a b 、cd 的长度均为l ,当棒a b 以速度v 向左切割磁感应线运动时,当棒cd 以速度2v 向右切割磁感应线运动时,电容 C 的电量为多大? 哪一个极板带正电?

例2. 如右图所示,金属圆环的半径为R ,电阻的值为2R .金属杆oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R .另一金属杆ob 一端固定在O 点,另一端B 固定在环上,电阻值也是R .加一个垂直圆环的磁感强度为B 的匀强磁场,并使oa 杆以角速度ω匀速旋转.如果所有触点接触良好,ob 不影响oa 的转动,求流过oa 的电流的范围.

题型四 电磁感应中的动力学问题

解决此类问题首先要建立一个“动→电→动”的思维顺序,此类问题中力现象、电磁现象相互联系、相互制约和影响,分析方法和步骤可概括为:

b

v

b

b R

1、弄清电磁感应类型,用法拉第电磁感应定律和楞次定律求解电动势大小和方向。

2、根据等效电路图,求解回路电流大小及方向。

3、分析导体棒的受力情况及导体棒运动后对电路中电学参量的“反作用”。

4、从宏观上推断终极状态。

5、列出动力学方程或平衡方程进行求解。

例题1:如右图所示,两根平行金属导端点P、Q用电阻可忽略的导线相连,两导轨间的距离l=0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过

=0.10Ω程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m的电阻为r

/m,导轨的金属杆紧靠在P、Q端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0 s时金属杆所受的安培力.

例题2:如右图所示,处于匀强磁场中的两根足够长、

电阻不计的平行金属导轨相距1m,导轨平面与水平面成

θ=37°角,下端连接阻值为R的电阻.匀强磁场方向与导轨平面垂直,质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.

(1)求金属棒沿导轨由静止开始下滑时的加速度大小;

(2)当金属棒下滑速度达到稳定时,电阻R消耗的功率为8W,求该速度的大小;

(3)在上问中,若R=2Ω,金属棒中的电流方向由a到b,求磁感应强度的大小与方向.(g=10m/s2,sin37°=0.6,c0s37°=0.8)

,方向垂直例题3:t=0时,磁场在xOy平面内的分布如图所示.其磁感应强度的大小均为B

于xOy平面,相邻磁场区域的磁场方向相反.每个同向磁场区域的宽度均为l

.整个磁场以速

度v沿x轴正方向匀速运动.

(1)若在磁场所在区间,xOy平面内放置一由a匝线圈串联而成的矩形导线框abcd,线框的

、ab=L,总电阻为R,线框始终保持静止.求

bc边平行于x轴.bc=l

B

①线框中产生的总电动势大小和导线中的电流大小;

②线框所受安培力的大小和方向.

(2)该运动的磁场可视为沿x轴传播的波,设垂直于

纸面向外的磁场方向为正,画出L=0时磁感应强度

的波形图,并求波长 和频率f.

例题4:如上页中图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 0、M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。 (1)由b 向a 方向看到的装置如上页右图所示,请在此图中画出

ab 杆下滑过程中某时刻的受力示意图;

(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;

(3)求在下滑过程中,ab 杆可以达到的速度最大值。

例题5如图所示,竖直平面内有一半径为r 、内阻为R 1、粗细均匀的光滑半圆形金属球,在M 、N 处与相距为2r 、电阻不计的平行光滑金属轨道ME 、NF 相接,EF 之间接有电阻R 2,已知R 1=12R ,R 2=4R 。在MN 上方及CD 下方有水平方向的匀强磁场I 和II ,磁感应强度大小均为B 。现有质量为m 、电阻不计的导体棒ab ,从半圆环的最高点A 处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道中够长。已知导体棒ab 下落r/2时的速度大小为v 1,下落到MN 处的速度大小为v 2。

(1)求导体棒ab 从A 下落r/2时的加速度大小。

(2)若导体棒ab 进入磁场II 后棒中电流大小始终不变,求磁

场I 和II 之间的距离h 和R 2上的电功率P 2。

(3)若将磁场II 的CD 边界略微下移,导体棒ab 刚进入磁场II 时速度大小为v 3,要使其在外力F 作用下做匀加速直线运动,加速度大小为a ,求所加外力F 随时间变化的关系式。

例题4

例题6用密度为d电阻率为ρ、横截面积为A的薄金属条制成为长为L的闭合正方形框abb`a`,如图所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行。设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计,可认为方框的aa`边和bb`边都处在磁极间,极间磁感应强度大小为B,方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力)

(1)求方框下落的最大速度υ

m

(设磁场区域在竖直方向足够长);

(2)当方框下落的加速度为g/2时,求方框的发热功率P;

(3)已知方框下落时间为t时,下落高度为h,其速度为υ

t (υ

t<

υ

m

),若在同一时间

t

L a L b

S S S S 金属方框

磁极金属方框激发磁场的通电线圈

题型五电磁感应中的功能问题

电磁感应过程的实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用。因此要维持安培力的存在,必须有“外力”克服安培力做功,此过程中,其他形式的能转化为电能,当感应电流通过用电器时,电能又转化为其他形式的能。

“外力”克服安培力做多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能。

求解安培力做功的主要方法有:

1. 运用功的定义求解

[例1]空间存在以、为边界的匀强磁场区域,磁感应强

度大小为B,方向垂直纸面向外,区域宽为。现有一矩形线框

处在图1中纸面内,它的短边与重合,长度为,长边的长

度为,如图1所示,某时刻线框以初速度沿着与垂直的

方向进入磁场区域,同时某人对线框施一作用力,使它的速度大小和方向保持不变。设该线框的电阻为R,从线框开始进入磁场到完全离开磁场的过程中,人对线框作用力所做的功等于多少?图1

求解

2. 用动能定理

[例2] 位于竖直平面内的矩形导线框,长

长,线框的质量,

电阻R=,其下方有一匀强磁场区域,该区域的上、下

边界和均与平行,两边界间的距离为,

且,磁场的磁感应强度,方向与线框平面垂直。如上图所示,令线框从

边离磁场区域上边界的距离为处自由下落,已知线框的边进入磁场

以后,边到达边界之前的某一时刻线框的速度已达到这一阶段的最大值。问从线

框开始下落,到边刚刚到达磁场区域下边界的过程中,磁场作用于线框的安培力做的总功为多少?()

3. 用能量转化及守恒定律求解

[例3]如右图所示,金属棒在离地高处从静止开始沿

弧形轨道下滑,导轨水平部分有竖直向上的匀强磁场B,水

平部分导轨上原来放有一个金属棒。已知棒的质量为

。且与棒的质量之比,水平导轨足

够长,不计摩擦,求整个过程中回路释放的电能是多少?

题型六、电磁感应中的动量和能量问题

在机械能转化为电能的电磁感应现象中,是什么力在做功呢?是安培力在做功,安培力

做负功,是将机械能转化为电能(发电机),必须明确发生电磁感应现象中,是安培力做功导致能量的转化。

(1)由t

N

??=φε决定的电磁感应现象中,无论磁场发生的增强变化还是减弱变化,磁

场都通过感应导体对外输出能量(指电路闭合,下同)。磁场增强时,是其它形式的能量转化为磁场能中的一部分对外输出;磁场削弱时,是消耗磁场自身储存的能量对外输出。

(2)由θεsin Blv =决定的电磁感应现象中,由于磁场本身不发生变化,一般认为磁场并不输出能量,而是其它形式的能量,借助安培的功(做正功、负功)来实现能量的转化。

(3)解决这类问题的基本方法:用法拉第电磁感应定律和楞次定律确定感应电动的大小和方向;画出等效电路,求出回路中电阻消耗电功率表达式;分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的变化所满足的方程。 例题1如图,金属杆a 在离地h 高处从静止开始沿弧形轨道下滑,导轨的水平部分有竖直向上的匀强磁场B ,水平部分导轨上原来放有一金属杆b 。已知a

质量之比为m a :m b =3:4,水平导轨足够长,不计摩檫,求 (1)a 和b 的最终速度分别是多大?

(2)整个过程中回路释放的电能是多少?

(3)若已知a 、b 杆的电阻之比Ra :Rb=3:4,其余电阻不计,

整个过程中a 、b 上产生的热量分别是多少?

例题2如图(a )所示,光滑的平行长直金属导轨置于水平面内,间距为L 、导轨左端接有阻值为R 的电阻,质量为m 的导体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B 。开始时,导体棒静止于磁场区域的右端,当磁场以速度v 1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f 的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。

(1)求导体棒所达到的恒定速度v 2;

(2)为使导体棒能随磁场运动,阻力最大不能超过多少? (3)棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大? (4)若t =0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v -t 关系如图(b )所示,已知在时刻t 导体棋睥瞬时速度大小为v t ,求导体棒做匀加速直线运动时的加速度大小。

例题3如图(a)所示,一端封闭的两条平行光滑导轨相距L,

距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右

两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,

右段区域存在磁场B

,左段区域存在均匀分布但随时间线性变

化的磁场B(t),如图(b),两磁场方向均竖直向上。在圆

弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合

回路,从金属棒下滑开始计时,经过时间t

滑到圆弧顶端。

设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。

(1)问金属棒在圆弧内滑动时,回路中感应电流的大小和方

向是否发生改变?为什么?

内,回路中感应电流产生的焦耳热量。

(2)求0到时间t

(3)探讨在金属棒滑到圆弧底端进入匀强磁场B

的一瞬间,

回路中感应电流的大小和方向。

例题4如图所示,两条水平虚线之间有垂直于纸面向里,宽度为d,磁感应强度为B的匀强磁场.质量为m,电阻为R的正方形线圈边长为L(L

B.线圈可能先加速后减速

C.线圈的最小速度一定是mgR/B2L2

D.线圈的最小速度一定是()L

2

-

d

h

g+

例题5如图所示,在磁感应强度大小为B 、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U ”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m 的匀质金属杆A 1和A 2,开始时两根金属杆位于同一竖起面内且杆与轨道垂直。设两导轨面相距为H ,导轨宽为L ,导轨足够长且电阻不计,金属杆单位长度的电阻为r 。现有一质量为

2

m 的不带

电小球以水平向右的速度v 0撞击杆A 1的中点,撞击后小球反弹落到下层面上的C 点。C 点与杆A 2初始位置相距为S 。求: (1)回路内感应电流的最大值;

(2)整个运动过程中感应电流最多产生了多少热量;

(3)当杆A 2与杆A 1的速度比为1:3时,A 2受到的安培力大小。

题型七、 电磁感应中的图象问题

从近几年的高考试题来看,图线和图形的变换是出题的热点之一,它能检测学生灵活处理物理新情景问题的能力,也能检测学生的应变能力.从深层次的科学素养角度来说,物理是实验的科学,实验要收集、处理数据.图形图像的出现能形象地显示各物理量之间的函数关系,是研究物理学科的一把金钥匙.应用图像法解题要求同学们能做到三会:⑴会识图:认识图像,理解图像的物理意义;⑵会作图:依据物理现象、物理过程、物理规律作出图像,且能对图像进行变形或转换;⑶会用图:能用图像分析实验.用图像描述复杂的物理过程,用图像法来解决物理问题.为进一步增强对图像的认识,本文将以电磁感应中的图像问题归结为下以五类.

(一)图像选择问题

例1 如图1,一个边长为l 的正方形虚线框内有垂直于纸面向里的匀强磁场; 一个边长也为l 的正方形导线框所在平面与磁场方向垂直; 虚线框对角线ab 与导线框的一条边垂直,ba 的延长线平分导线框.在t=0时, 使导线框从图示位置开始以恒定速度沿ab 方向移动,直到整个导线框离开磁场区域.以i 表示导线框

中感应电流的强度,取逆时针方向为正.图2中表示i-t 关系的图示中,可能正确的是

(二)图像作画问题 例2 如图3所示,水平放置的两根平行金属导轨,间距L =0.3m .导轨左端连接R =0.6Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为t =0.3Ω,导轨电阻不计,使金属棒以恒定速度r =1.0 m/s 沿导轨向右穿越磁场,计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图4中画出.

图5

求解物理图像的描绘问题的方法是,首先和解常规题一样,仔细分析物理现象,弄清物理过程,然后求解有关物理量或分析相关物理量间的函数关系,最后正确地作出图像.在描绘图像时,要注意物理量的单位,坐标轴标度的适当选择用函数图像的特征等.

(三)图像变换问题

例3矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低面向里,磁

感应强度B 随时间变化的规律如图所示.若规定顺时针方向为感应电流I 的正方向,图7中正确的是

图2

图3

图4

图6

图7

处理有关图像变换的问题,首先要识图,即读懂已知图像表示的物理规律或物理过程,然后再根据所求图像与已知图像的联系,进行图像间的变换.

(四)图像分析问题

例4 如图8所示,一对平行光滑轨道放置在水平面上,两轨道间距l=0.20 m,电阻R=1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向

垂直轨道面向下.现在一外力F沿轨道方向拉杆,

使之做匀加速运动,测得力F与时间t的关系如图

9所示.求杆的质量m和加速度a.

在定性分析物理图像时,要明确图像中的横轴与纵轴所代表的物理量,要弄清图像的物理意义,借助有关的物理概念、公式、定理和定律作出分析判断;而对物理图像定量计算时,要搞清图像所揭示的物理规律或物理量间的函数关系,并要注意物理量的单位换算问题,要善于挖掘图像中的隐含条件,明确有关图线所包围的面积、图像在某位置的斜率(或其绝对值)、图线在纵轴和横轴上的截距所表示的物理意义.

(五)图像应用问题

例5 如图10所示,顶角θ=45°,的金属导轨MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中.一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向右滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均为r,导体棒与导轨接触点的a和b,导体棒在滑动过程

中始终保持与导轨良好接触.t=0时,导体棒位于顶角O处,求:

⑴t时刻流过导体棒的电流强度I和电流方向.

⑵导体棒作匀速直线运动时水平外力F的表达式.

⑶导体棒在0~t时间内产生的焦耳热Q.

⑷若在t0时刻将外力F撤去,导体棒最终在导轨上静止时的坐标x.

图8

图9

在应用图像法求解物理问题时,要根据题意把抽象的物理过程用图线表示出来,将物理量间的关系转化为几何关系,运用图像直观、简明的特点,分析解决物理问题. 题型八 电磁感应电路中的感应电量问题 例1.如图所示,在匀强磁场中固定放置一根串接一电阻R 的直角形金属导轨ao B (在纸面内),磁场方向垂直纸面朝里,另有两根金属导轨c 、d 分别平行于oa 、o B

放置.保持导轨之间接触良好,金属导轨的电阻不计.现经历以下四个过程:①以速率V 移动d ,使它与o B 的距离增大一倍;②再以速率V 移动c ,使它与oa 的距离减小一半;③然后,再以速率2V 移动c ,使它回到原处;④最后以速率2V 移动d ,使它也回到原处.设上述四个过程中通过电阻R 的电量的大小依次为Q 1、Q 2、Q 3和Q 4,则

A. Q 1=Q 2=Q 3=Q 4 B . Q 1=Q 2=2Q 3=2Q 4 C. 2Q 1=2Q 2=Q 3=Q 4 D. Q 1≠Q 2=Q 3≠Q 4

电磁感应中的常见模型

一、单导轨模型

例1. 平行轨道PQ 、MN 两端各接一个阻值R 1=R 2 =8 Ω的电热丝,轨道间距L=1 m,轨道很长,本身电阻不计,轨道间磁场按如图所示的规律分布,其中每段垂直纸面向里和向外的磁场区域宽度为2 cm ,磁感应强度的大小均为B=1 T ,每段无磁场的区域宽度为1 cm ,导体棒ab 本身电阻r=1Ω,与轨道接触良好,现让ab 以v =10 m/s 的速度向右匀速运动.求: (1)ab 处在磁场区域时,ab 中的电流为多大?ab 两端的电压为多大?ab 所受磁场力为多大? (2)整个过程中,通过ab 的电流是否是交变电流?若是,则其有效值为多大?并画出通过ab 的电流随时间的变化图象.

×

×

× ×

×

c

二、双导轨模型

例6.如图所示,平行且足够长的两条光滑金属导轨,相距0.5m,与水平面夹角为30°,不电阻,广阔的匀强磁场垂直穿过导轨平面,磁感应强度B=0.4T,垂直导轨放置两金属棒ab 和cd,长度均为0.5m,电阻均为0.1Ω,质量分别为0.1 kg和0.2 kg,两金属棒与金属导轨接触良好且可沿导轨自由滑动.现ab棒在外力作用下,以恒定速度v=1.5m/s沿着导轨向上滑动,cd棒则由静止释放,试求:(取g=10m/s2)

(1)金属棒ab产生的感应电动势;

(2)闭合回路中的最小电流和最大电流;

(3)金属棒cd的最终速度.

完整版电磁感应练习题及答案

《电磁感应》练习题 高二级 _______ 班姓名_________________ ________________ 号 1. B 2. A 3. A 4. B 5. BCD 6. CD 7. D 8. C 一.选择题 1 ?下面说法正确的是() A ?自感电动势总是阻碍电路中原来电流增加 B ?自感电动势总是阻碍电路中原来电流变化C.电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 2. 如图所示,一个矩形线圈与通 有相同大小电流的平行直导线在同一平面,而且处在两导线的中央,则( A ) A .两电流方向相同时,穿过线圈的磁通量为零 B .两电流方向相反时,穿过线圈的磁通量为零 C.两电流同向和反向时,穿过线圈的磁通量大小相等 D ?因两电流产生的磁场不均匀,因此不能判断穿过线圈的磁通量是否为零 3. 一矩形线圈在匀强磁场中向右做加速运动如图所示 ( A ) A. 线圈中无感应电流,有感应电动势 B .线圈中有感应电流,也有感应电动势 C. 线圈中无感应电流,无感应电动势 D. 无法判断 4?如图所示,AB为固定的通电直导线,闭合导线框P与AB在同一 平面内。当P远离AB做匀速运动时,它受到AB的作用力为( B ) A .零B.引力,且逐步变小C .引力,且大小不变D .斥力,且逐步变小 5. 长0.1m的直导线在B = 1T的匀强磁场中,以10m/s的速度运动,导 线中产生的感应电动势:() A .一定是1V B .可能是0.5V C . 可能为零D.最大值为1V 6. 如图所示,在一根软铁棒上绕有一个线圈,a、b 是线圈的两端,a、b分别与平行导轨M、 N相连,有匀强磁场与导轨面垂直,一根导体棒横放在两导轨上,要使a点的 电势均比b点的电势高,则导体棒在两根平行的导轨上应该(BCD ) A .向左加速滑动 B .向左减速滑动C.向右加速滑动 D .向右减速滑动 7 .关于感应电动势,下列说法正确的是() A .穿过闭合电路的磁感强度越大,感应电动势就越大 B .穿过闭合电路的磁通量越大,感应电动势就越大 C .穿过闭合电路的磁通量的变化量越大,其感应电动势就越大 D .穿过闭合电路的磁通量变化的越快,其感应电动势就越大A [n v I ,设磁场足够大,下面说法正确的是 4题

论电磁感应现象的发现发展历程

论电磁感应的发现历程 古之成大事者,不惟有超世之才,亦必有坚忍不拔之志。昔禹之治水,凿龙门,决大河,而放之海。方其功之未成也,盖亦有溃冒冲突可畏之患,惟能前知其当然,事至不惧而徐为之图,是以得至于成功。电磁感应的发现与发展,凝结了无数人的智慧。 伟大的哲学家康德曾经说过:“各种自然现象之间是相互联系和相互转化的。”在1820年,丹麦物理学家、化学家奥斯特在一次实验中发现了电流的磁效应,这一惊人发现使当时整个科学界受到很大的震动,从此拉开了电磁联系的序幕,“物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的各种其他现象的零散的罗列,我们将把整个宇宙纳在一个体系中。” 奥斯特发现电流的磁现象后不久,各国各地的科学家们展开了对称性的思考:电和磁是一对和谐对称的自然现象,既然存在磁化和静电感应现象,那么磁体或电流也应能在附近导体中感应出电流来。于是,当时许多著名的科学家如法国的安培、菲涅尔、阿拉果和英国的沃拉斯顿等都纷纷投身于探索磁与电的关系之中。 仅仅空有满腔热血是远远不够的,还需要有科学的方法以及持之以恒的毅力,勇于突破思维的局限。安培曾做了很多实验,以期能实现“磁生电”,但他把分子电流理论看的

过分重要,完全被自己的理论囚禁起来了,以致尽管在一次实验中展现出了磁生电的迹象,但却没有引发他的正确认识。 1823年,瑞士物理学家科拉顿曾企图用磁铁在线圈中运动获得电流。他把一个线圈与电流计连成一个闭合回路。为了使磁铁不至于影响电流计中的小磁针,特意将电流计用长导线连后放在隔壁的房间里,他用磁棒在线圈中插入或拔出,然后一次又一次地跑到另一房间里去观察电流计是否偏转。由于感应电流的产生与存在是瞬时的暂态效应,他当然观察不到指针的偏转,发现电磁感应的机会也失之交臂。 为了证明磁能生电,1820年至1831年期间,法拉第用实验的方法探索这一课题,最初也是像上述物理学家一样,利用通常的思想方法,做了大量的实验,但磁生电的迹象却始终未出现。失败并没有使他放弃实验,因为他坚信自然力是统一的、和谐的,电和磁是彼此有关联的。 1825年,斯特詹发明了电磁铁,这给法拉第的研究带来了新的希望。1831年,法拉第终于在一次实验中获得了突破性进展。而这次实验就是著名的法拉第圆环实验。 这一实验使法拉第豁然开朗:由磁感应电的现象是一种暂态效应。发现了这一秘密后,他设计了另外一些实验,并证实了自己的想法。就这样经过近10年的思考与探索,法拉第克服了思维定势采用了新的实验方法,终于发现了电磁

电磁感应定律练习

电磁感应定律练习 班级 1.发现电流磁效应的科学家是() A. 奥斯特 B. 安培 C. 法拉第 D. 库仑 2.当线圈中的磁通量发生变化时,下列说法中正确的是:( ) A. 线圈中一定有感应电动势 B. 线圈中有感应电动势,其大小与磁通量成正比 C. 线圈中一定有感应电流 D. 线圈中有感应电动势,其大小与磁通量的变化量成正比3.如图所示,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中, 下列判断中正确的是( ) A. 金属环在下落过程中的机械能守恒 B. 金属环在下落过程中动能的增加量小于其重力势能的减少量 C. 金属环的机械能先减小后增大 D. 磁铁对桌面的压力始终大于其自身的重力 4.用均匀导线做成的单匝正方形线框,每边长为0.2米,正方形的一半放在和纸面垂直向里的匀强磁场中,如图示,当磁场以20T/s的变化率增强时,线框中点a、b两点电势差是:()A. Uab=0.2V B. Uab=-0.2V C. Uab=0.4V D. Uab=-0.4V 5.如图所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的 条形磁铁,磁铁的S极朝下.在将磁铁的S极插入线圈的过程中,下列正确的是 A. 通过电阻的感应电流的方向为由b到a,线圈与磁铁相互排斥 B. 通过电阻的感应电流的方向为由a到b, 线圈与磁铁相互排斥 C. 通过电阻的感应电流的方向为由a到b,线圈与磁铁相互吸引 D. 通过电阻的感应电流的方向为由b到a, 线圈与磁铁相互吸引 6.空间存在竖直向上的匀强磁场,将一个不会变形的单匝金属圆线圈放入该磁场中,规定图甲所示的线圈中的电流方向为正。当磁场的磁感应强度B随时间t按图乙所示的规律变化时,能正确表示线圈中感应电流随时间变化的图线是()7.关于感应电动势,下列几种说法中正确的是:() A. 线圈中的磁通量变化越大,线圈中产生的感应电动势一定越大 B. 穿过线圈的磁通量越大,线圈中的感应电动势越大 C. 线圈放在磁场越强的位置,线圈中的感应电动势越大 D. 线圈中的磁通量变化越快,线圈中产生的感应电动势越大 8.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=100cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的() A. 线圈中的感应电流方向为逆时针方向 B. 电阻R两端的电压随时问均匀增大 C. 前4s通过电阻R的电荷量为4×10﹣2C D. 线圈电阻r消耗的功率为4×10﹣2W 9.一个边长为10 cm的正方形金属线框置于匀强磁场中,线框匝数n=100,线框平面与磁场垂直,电阻为20 Ω。磁感应强度随时间变化的图象如图所示.则前两秒产生的电流为_ _ 10.一个200匝、面积为2 20cm的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05 s由0.1 T均匀增加到0.5 T。在此过程中穿过线圈的磁通量的变化是___________ Wb;线圈产生的感应电动势的大小是________ V。 11.如图所示,10匝线圈上方有一竖立的条形磁体,此时线圈的磁通量为0.02Wb,现把条形磁体插入线圈,线圈的磁通量变为0.10Wb,该过程经历的时间为0.4s。求: (1)该过程线圈的磁通量的变化量; (2)该过程线圈产生的感应电动势。 12.如图所示,磁感应强度B=1T的匀强磁场垂直纸面向里,纸面的平行导轨宽l=1m,金属棒PQ 以1m/s速度紧贴着导轨向右运动,与平行导轨相连的电阻R=1Ω,其他电阻不计。 (1)运动的金属棒会产生感应电动势,相当电源,用电池、电阻和导线等符号画出这个装置的等效电路图。 (2)通过电阻R的电流方向如何?大小等于多少? 13.如图甲所示,有一面积2 100 s cm =,匝数n=100匝的闭 合线圈,电阻为10 R=Ω,线圈中磁场变化规律如图乙所示, 磁场方向垂直纸面向里为正方向,求 (1)t=1s时,穿过每匝线圈的磁通量为多少? (2)t=2s,线圈产生的感应电动势为多少?

电磁感应练习题及答案

电磁感应补充练习答案 1、 现将电池组、滑动变阻器、带铁芯的线圈 A 、线圈 法中正确的是:A A .电键闭合后,线圈A 插入或拔出都会引起电流计 指针偏转 B .线圈A 插入线圈B 中后,电键闭合和断开的瞬间 电流计指针均不会偏转 C. 电键闭合后,滑动变阻器的滑片 P 匀速滑动,会 使电流计指针静止在中央零刻度 D. 电键闭合后,只有滑动变阻器的滑片 动,电流计指针才能偏转 2、 如图所示,某同学用一个闭合线圈穿入蹄形磁铁由 到3位置,最后从下方S 极拉出,则在这一过程中, 方向是:D A.沿abed 不变; B 沿deba 不变; C.先沿abed ,后沿deba ; D.先沿deba ,后沿 P 加速滑 B 、电流计及电键如图连接。下列说 S abed 1位置经2位置 线圈的感应电流的 3、 如图所示,矩形线框 abed ,与条形磁铁的中轴线位于同一平面 内,线框内通有电流I ,则线框受磁场力的情况:D A. a b 和ed 受力,其它二边不受力; B. ab 和Cd 受到的力大小相等方向相反; C. ad 和be 受到的力大小相等,方向相反; D. 以上说法都不对。 4、 用相同导线绕制的边长为 强磁场,如图所示。在每个 线框进入磁场的过程中, M 、 N 两点间的电压分别为 U a , U b , U e 和U d O 下列判 断正确的是:B A. U a V U b V U C V U d B. U a V U b V U d V U e C. U a = U b V U e = U d D. U b V U a V U d V U 5、 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻 忽略的金属棒与两导轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻 均不计,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,棒在竖直向 上的恒力F 作用下加速上升的一段时间内,力 F 做的功与安培力做的功的代 数和等于:A A.棒的机械能增加量 C.棒的重力势能增加量 Word 资料 L 或2L 的四个闭合导体线框,以相同的速度匀速进入右侧匀 B.棒的动能增加量 D.电阻R 上放出的热量 R 质量不能

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

电磁感应定律练习

4.穿过某线圈的磁通量随时间变化的关系,如右下图所示,在下列 几段时间内,线圈中感应电动势最小的是( ) A .0 ~2 s B .2 s ~4 s C .4 s ~5 s D .5 s ~10 s 5.如图所示,ab 和cd 是位于水平面内的平行金属导轨,其电阻可忽略不计,ac 之间连接一个阻值为R 的电阻,ef 为一个垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并沿轨道方向无摩擦地滑动,ef 长为l ,电阻可忽略,整个装置处于匀强磁场中,磁场方向垂直于纸面向里.磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 受到的安培力为( ) A .v B 2l 2R B .vBl R C .vB 2l R D .vBl 2R 17.如图所示,一水平放置的平行导体框宽度L =0.5 m ,接有R =0.2 Ω的电阻,磁感应强度B =0.4 T 的匀强磁场垂直导轨平面方向向下,现有一导体棒ab 跨放在框架上,并能无摩擦地沿框架滑动,框架及导体ab 电阻不计,当ab 以v =4.0 m/s 的速度向右匀速滑动时,试求: (1)导体ab 上的感应电动势的大小及感应电流的方向,ab 两端电压? (2)要维持ab 向右匀速运动,作用在ab 上的水平外力为多少?方向怎样? (3)电阻R 上产生的热功率多大? 如图所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角的绝缘斜面上,两导轨间距L=1m , 导轨的电阻可忽略。M 、P 两点间接有阻值为R 的电阻。一根质量m=1kg 、电阻r=0.2 的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好。整套装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直斜面向下。自图示位置起,杆受到大小为(式中v 为杆ab 运动的速度,力F 的单位为N )、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R 的电流随时间均匀增大。(g 取10m/s 2,)⑴试判断金属杆在匀强磁场中做何种运动,并请写出推理过程;⑵求电阻的阻值R ;⑶金属杆ab 自静止开始下滑通过位移x = 1m 电阻R 产生的焦耳热Q 1=0.8J,求所需的时间和该过程中拉力做的功W

高中物理电磁感应精选练习题与答案

【例1】 (2004,上海综合)发电的基本原理是电磁感应。发现电磁感应现象的科学家是( ) A .安培 B .赫兹 C .法拉第 D .麦克斯韦 解析:该题考查有关物理学史的知识,应知道法拉第发现了电磁感应现象。 答案:C 【例2】发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。 解析:该题考查有关物理学史的知识。 答案:奥斯特 安培 法拉第 库仑 ☆☆对概念的理解和对物理现象的认识 【例3】下列现象中属于电磁感应现象的是( ) A .磁场对电流产生力的作用 B .变化的磁场使闭合电路中产生电流 C .插在通电螺线管中的软铁棒被磁化 D .电流周围产生磁场 解析:电磁感应现象指的是在磁场产生电流的现象,选项B 是正确的。 答案:B ★巩固练习 1.关于磁通量、磁通密度、磁感应强度,下列说法正确的是( ) A .磁感应强度越大的地方,磁通量越大 B .穿过某线圈的磁通量为零时,由B =S Φ可知磁通密度为零 C .磁通密度越大,磁感应强度越大 D .磁感应强度在数值上等于1 m 2的面积上穿过的最大磁通量 解析:B 答案中“磁通量为零”的原因可能是磁感应强度(磁通密度)为零,也可能是线圈平面与磁感应强度平行。答案:CD 2.下列单位中与磁感应强度的单位“特斯拉”相当的是( ) A .Wb/m 2 B .N/A ·m C .kg/A ·s 2 D .kg/C ·m 解析:物理量间的公式关系,不仅代表数值关系,同时也代表单位.答案:ABC 3.关于感应电流,下列说法中正确的是( ) A .只要穿过线圈的磁通量发生变化,线圈中就一定有感应电流 B .只要闭合导线做切割磁感线运动,导线中就一定有感应电流 C .若闭合电路的一部分导体不做切割磁感线运动,闭合电路中一定没有感应电流 D .当穿过闭合电路的磁通量发生变化时,闭合电路中一定有感应 电流 答案:D 4.在一长直导线中通以如图所示的恒定电流时,套在长直导线上的闭合线环(环面与导线垂直,长直导线通过环的中心),当发生以下变化时,肯定能产生感应电流的是( ) A .保持电流不变,使导线环上下移动 B .保持导线环不变,使长直导线中的电流增大或减小 C .保持电流不变,使导线在竖直平面顺时针(或逆时针)转动 D .保持电流不变,环在与导线垂直的水平面左右水平移动

(完整版)法拉第电磁感应定律练习题40道

xxxXXXXX学校XXXX年学年度第二学期第二次月考XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号 一、选 择 题二、填空 题 三、计算 题 四、多项 选择 总分 得分 一、选择题 (每空?分,共?分) 1、彼此绝缘、相互垂直的两根通电直导线与闭合线圈共面,下图中穿过线圈的磁通量可能为零的是 2、伟大的物理学家法拉第是电磁学的奠基人,在化学、电化学、电磁学等领域都做出过杰出贡献,下列陈述中不符合历史事实的是() A.法拉第首先引入“场”的概念来研究电和磁的现象 B.法拉第首先引入电场线和磁感线来描述电场和磁场 C.法拉第首先发现了电流的磁效应现象 D.法拉第首先发现电磁感应现象并给出了电磁感应定律 3、如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量Φa和Φb大小关系为: A.Φa>Φb B.Φa<Φb C.Φa=Φb D.无法比较 4、关于感应电动势大小的下列说法中,正确的是() 评卷人得分

A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 5、对于法拉第电磁感应定律,下面理解正确的是 A.穿过线圈的磁通量越大,感应电动势越大 B.穿过线圈的磁通量为零,感应电动势一定为零 C.穿过线圈的磁通量变化越大,感应电动势越大 D.穿过线圈的磁通量变化越快,感应电动势越大 6、如图所示,均匀的金属长方形线框从匀强磁场中以匀速V拉出,它的两边固定有带金属滑轮的导电机构,金属框向右运动时能总是与两边良好接触,一理想电压表跨接在PQ两导电机构上,当金属框向右匀速拉出的过程中,电压表的读数:(金属框的长为a,宽为b,磁感应强度为B) A.恒定不变,读数为BbV B.恒定不变,读数为BaV C.读数变大 D.读数变小 7、如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势ε与导体棒位置x关系的图像是 8、如图所示,一个高度为L的矩形线框无初速地从高处落下,设线框下落过程中,下边保持水平向下平动。在线框的下方,有一个上、下界面都是水平的匀强磁场区,磁场区高度为2L,磁场方向与线框平面垂直。闭合线圈下落后,刚好匀速进入磁场区,进入过程中,线圈中的感应电流I0随位移变化的图象可能是

电磁感应单元测试题(含详解答案)

第十二章电磁感应章末自测 时间:90分钟满分:100分 第Ⅰ卷选择题 一、选择题(本题包括10小题,共40分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分) 图1 1.如图1所示,金属杆ab、cd可以在光滑导轨PQ和RS上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是() A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左 C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左 解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确. 答案:B 图2 2.(2009年河北唐山高三摸底)如图2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有() A.线圈与蹄形磁铁的转动方向相同 B.线圈与蹄形磁铁的转动方向相反 C.线圈中产生交流电 D.线圈中产生为大小改变、方向不变的电流 解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对

图3 线圈中心轴做匀速圆周运动,所以产生的电流为交流电. 答案:AC 3.如图3所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流() 解析:据楞次定律,P中产生正方向的恒定感应电流说明M中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D正确. 答案:D 图4 4.(2008年重庆卷)如图4所示,粗糙水平桌面上有一质量为m的铜质矩形线圈,当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力N及在水平方向运动趋势的正确判断是() A.N先小于mg后大于mg,运动趋势向左 B.N先大于mg后小于mg,运动趋势向左 C.N先小于mg后大于mg,运动趋势向右 D.N先大于mg后小于mg,运动趋势向右 解析:由题意可判断出在条形磁铁等高快速经过线圈时,穿过线圈的磁通量是先增加后减小,根据楞次定律可判断:在线圈中磁通量增大的过程中,线圈受指向右下方的安培力,在线圈中磁通量减小的过程中,线圈受指向右上方的安培力,故线圈受到的支持力先大于mg 后小于mg,而运动趋势总向右,D正确. 答案:D 5.如图5(a)所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同线圈Q,P和Q 共轴,Q中通有变化电流,电流随时间变化的规律如图(b)所示,P所受的重力为G,桌面对P的支持力为F N,则() 图5 A.t1时刻F N>G B.t2时刻F N>G C.t3时刻F N

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

教科版必修(32)《电磁感应现象的发现》word教案

2012-2013学年第一学期高二物理学案(008) 班级 高二( )班 学生姓名 ______ _ 完成时间: (学案A 等级要求:书写规范,全部完成,有用红笔订正,正确率80%以上) 课题:电磁感应现象的发现 课型:新授课 单元5课时:第1课时 【学习目标】 1、 法拉第和电磁感应现象,知道感应电流的产生是由于穿过闭合回路的磁通量发生改变 而引起的 2、 了解电源电动势的概念 目标1:法拉第和电磁感应现象 自主学习 1、丹麦物理学家 偶然发现,接通电流时导线附近的小磁针忽然 。 奥斯特实验发现了 ,说明电流能够产生磁场,它使人们第一次认识到电和磁之间确实存在着某种联系,为此后一系列电磁规律的发现奠定了基础。 2、电能产生磁,那磁能不能生电,开始思考并研究这个问题的物理学家是 3、电磁感应现象 如果螺线管中有电流,电流计的指针就会 实验发现当 磁铁时,电流计的指针会偏 转说明,此时螺线管内有 5、磁通量用Φ表示,Φ= ,其中B 表示 ,S 表示 。磁通量的单位是 ,简称 ,符号为 。 6、产生电流的原因:通过闭合回路的 发生改变。 我能做 1、首先发现电流磁效应和电磁感应现象的科学家分别是( )

A.安培和法拉第 B.奥斯特和法拉第 C.库仑和法拉第 D. 奥斯特和麦克斯韦 2、如图所示,矩形区域abcd内有匀强磁场,闭合线圈由位置1通过这个磁场运动到位置2.线圈在运动过程的哪几个阶段有感应电流,哪几个阶段没有感应电流?为什么? 目标2:了解电源电动势的概念 自主学习 1、在下面的电路图里,闭合开关的时候,灯泡会亮,是由的 原因,普通的1号干电池的电动势是。 2、电动势,描述, 称为电动势。电动势的符号是,它的单位与电压的单位同样是 ,符号是。 3、 在这个实验中,电流计会偏转,是在充当电 源的。 这个电源的电动势和一般的干电池电源不一样,是由于 通过螺线管的 的改变,感应产生的,我们称 为。 (简单的理解就是螺线管在这里充当电源) 我能做: 1、安培于1821年时用类似于图的通电线圈进行过探求感应电流的实验,但没有发现电磁感应现象,他失败的原因是() A.他的实验电路有问题 B.他的仪器连接有问题 C.他只关注到稳定时的情形 D.他没有留意磁铁插入或拔出的瞬间情形

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

第八章__电磁感应习题及答案大学物理

8章习题及答案 1、如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正) 2、一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加. (C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ] 3、半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直, 线圈电阻为R ;当把线圈转动使其法向与B 的夹角=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是 (A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比. (D) 与线圈面积成反比,与时间无关. [ ] 4、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. B I (D) I (C) b c d b c d b c d v v I

5、一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴, 以匀角速度旋转(如图所示).设t =0时,线框平面处于纸面 内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C)t abB ωωcos 2 1. (D) ω abB | cos ω t |. (E)ωabB |sin ωt |. 6、如图所示,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向), BC 的长度为棒长的3 1 ,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等. (B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点. [ ] 7、如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Blv . (B) Blv sin . (C) Blv cos . (D) 0. [ ] 8、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为 垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水 平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 9、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动 时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为: (A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω. (D) =2l B ω,U a – U c =22 1l B ω-. v c a b d N M B B a b c l ω

(完整版)电磁感应单元测试题(含详解答案)

第十二章 电磁感应章末自测 时间:90分钟 满分:100分 第Ⅰ卷 选择题 一、选择题(本题包括10小题,共40分,每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选的得0分 ) 图1 1.如图1所示,金属杆ab 、cd 可以在光滑导轨PQ 和RS 上滑动,匀强磁场方向垂直纸面向里,当ab 、cd 分别以速度v 1、v 2滑动时,发现回路感生电流方向为逆时针方向,则v 1和v 2的大小、方向可能是( ) A .v 1>v 2,v 1向右,v 2向左 B .v 1>v 2,v 1和v 2都向左 C .v 1=v 2,v 1和v 2都向右 D .v 1=v 2,v 1和v 2都向左 解析:因回路abdc 中产生逆时针方向的感生电流,由题意可知回路abdc 的面积应增大,选项A 、C 、D 错误,B 正确. 答案: B 图2 2.(2009年河北唐山高三摸底)如图2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO ′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有( ) A .线圈与蹄形磁铁的转动方向相同 B .线圈与蹄形磁铁的转动方向相反 C .线圈中产生交流电 D .线圈中产生为大小改变、方向不变的电流 解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A 正确、B 错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对

图3 线圈中心轴做匀速圆周运动,所以产生的电流为交流电. 答案:AC 3.如图3所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流( ) 解析:据楞次定律,P中产生正方向的恒定感应电流说明M中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D正确. 答案: D 图4 4.(2008年重庆卷)如图4所示,粗糙水平桌面上有一质量为m的铜质矩形线圈,当一竖直放置的条形磁铁从线圈中线AB正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力N及在水平方向运动趋势的正确判断是( ) A.N先小于mg后大于mg,运动趋势向左 B.N先大于mg后小于mg,运动趋势向左 C.N先小于mg后大于mg,运动趋势向右 D.N先大于mg后小于mg,运动趋势向右 解析:由题意可判断出在条形磁铁等高快速经过线圈时,穿过线圈的磁通量是先增加后减小,根据楞次定律可判断:在线圈中磁通量增大的过程中,线圈受指向右下方的安培力,在线圈中磁通量减小的过程中,线圈受指向右上方的安培力,故线圈受到的支持力先大于mg后小于mg,而运动趋势总向右,D正确. 答案:D 5.如图5(a)所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同线圈Q,P和Q共轴,Q中通有变化电流,电流随时间变化的规律如图(b)所示,P所受的重力为G,桌面对P的支持力为F N,则( ) 图5 A.t1时刻F N>G B.t2时刻F N>G C.t3时刻F N

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

电磁感应习题解答电磁场习题解答

第十三章 电磁感应 一 选择题 3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v v v 解:导线ab 的感应电动势v BL =ε,当 ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以R L B L R B F F v 22===ε 安外。 所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 2 12 C. )cos(22θωω+t B L D. B L 2ω E. B L 22 1ω 解:???= ==??=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E ) 6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( ) A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向; C . (3 t + 1)R ,顺时针方向; D . (3 t + 1)R ,逆时针方向; 解:由??? ???-=?S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图 v

新编《电磁感应》精选练习题(含答案)

《电磁感应》单元测试题 一、选择题: 1、下列几种说法中止确的是(?) (A)线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 (B)线圈中磁通量越入,线圈中产牛的感应电动势一定越大 (C)圈圈放在磁场越强的位置,线圈中产生的感应电动势一定越大 (D)线圈中磁通量变化越快,线圈中产生的感应电动势越大 2、关于自感现象,下列说法中正确的是() (A)感应电流不一定和原电流方向相反 (B)线圈中产生的自感电动势较大的其自感系数一定较大 (C)对于同一线圈,当电流变化较快时,线圈中的自感系数也较大 (D)对于同一线圈,当电流变化较快时,线圈中的自感电动势电较大 3、如图所示,在直线电流附近有一根金属棒ab,当金属棒以b端为圆心,以ab为半径,在过导线的平面内匀速旋转达到图中的位置时(?). (A)a端聚积电子???(B)b端聚积电子 (C)金属棒内电场强度等于零(D)u a>u b 4、如图所示,匀强磁场中放置有固定的abc金属框架,导体棒ef在框架上匀速向右平移,框架和棒所用材料、横截面积均相同,摩擦阻力忽略不计.那么在ef,棒脱离框架前,保持一定数值的物理量是( ) (A)ef棒所受的拉力(B)电路中的磁通量 (C)电路中的感应电流??(D)电路中的感应电动势 5、如图所示,A、B是两盏完全相同的白炽灯,L是电阻不计的电感线 圈,如果断开电键S1,闭合S2,A、B两灯都能同样发光.如果最初S1 是闭合的.S2是断开的.那幺,可能出现的情况是( ) (A)刚一闭合S2,A灯就立即亮,而B灯则延迟一段时间才亮 (B)刚闭合S2时,线圈L中的电流为零 (C)闭合S2以后,A灯变亮,B灯由亮变暗 (D)再断S2时,A灯立即熄火,B灯先亮一下然后熄灭 6、如图所示,闭合矩形线圈abcd与长直导线MN在同一平面内,线圈的ab、dc两边与直导线平行,直导线中有逐渐增大、但方向不明的电流,则( ?) (A)可知道线圈中的感应电流方向 (B)可知道线圈各边所受磁场力的方向 (C)可知道整个线圈所受的磁场力的方向 (D)无法判断线圈中的感应电流方向,也无法判断线圈所受磁场力的方向 7、如图所示,将一个与匀强磁场垂直的正方形多匝线圈从磁场中匀速拉出的过程 中,拉力做功的功率(?) (A)与线圈匝数成正比 (B)与线圈的边长成正比 (C)与导线的电阻率成正比(D)与导线横截面积成正比 8、两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的下端接有电 阻R,导轨自身的电阻可忽略不计.斜面处在一匀强磁场中,磁场方向垂直斜面 向上.质量为m、电阻可不计的金属棒ab,在沿着斜面与棒垂直的恒力F作用 下沿导轨匀速上滑,并上升h高度,如图所示.在这过程中(??). (A)作用于金属棒上的各力的合力所做的功等于零

相关主题