搜档网
当前位置:搜档网 › 正余弦定理及解三角形专题

正余弦定理及解三角形专题

正余弦定理及解三角形专题
正余弦定理及解三角形专题

正余弦定理专题

1.【2017山东,理9】在C ?AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ?AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是 (A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A

【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =?=?=,选A.

2.【2017北京,理12】在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1

sin 3

α=,cos()αβ-=___________. 【答案】79

-

3.【2017浙江,14】已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos∠BDC =_______.

【解析】取BC 中点E ,DC 中点F ,由题意:,AE BC BF CD ⊥⊥,

△ABE 中,1

cos 4BE ABC AB ∠=

=,1cos ,sin 4DBC DBC ∴∠=-∠==

BC 1sin 2D S BD BC DBC ∴=???∠=

又21

cos 12sin ,sin 4DBC DBF DBF ∴∠=-∠=-∴∠=

cos sin BDC DBF ∴∠=∠=

综上可得,△BCD ,cos BDC ∠=.

4.【2017课标II ,理17】ABC ?的内角A B C 、、所对的边分别为,,a b c ,已知()2

sin 8sin 2

B

A C +=, (1)求cos

B ;

(2)若6a c +=,ABC ?的面积为2,求b 。 【答案】(1)15

cos 17

B =

; (2) b=2 【解析】b=2(1)由题设及

,故

上式两边平方,整理得

解得

(2)由,故

由余弦定理 及

所以b=2.

1.【2016高考新课标2理数】若3

cos()45

π

α-=,则sin 2α=( ) (A )725 (B )15 (C )15- (D )725

-

【答案】D

【解析】2

237cos 22cos 1214

4525ππαα????????

-=--=?-=- ? ? ??????????? ,

且cos 2cos 2sin 24

2ππααα??????

-=-=

???????????,故选D.

2.【2016高考新课标3理数】若3

tan 4

α= ,则2cos 2sin 2αα+=( ) (A)

6425 (B) 4825 (C) 1 (D)1625

【答案】A 【解析】 由3tan 4α=

,得34sin ,cos 55αα==或34

sin ,cos 55

αα=-=-,所以2161264

cos 2sin 24252525

αα+=+?=,故选A .

7.【2016高考天津理数】在△ABC 中,若AB ,120C ∠= ,则AC = ( ) (A )1

(B )2

(C )3

(D )4

【答案】A

【解析】由余弦定理得213931AC AC AC =++?=,选A.

8.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8.

【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C ==?+=,又tan tan tan tan tan 1

B+C

A=

B C -,因

tan tan tan tan tan tan tan 2tan tan tan tan tan 8,

A B C A B C A B C A B C =++=+≥≥即最小值为8.

9.【2016年高考四川理数】(本小题满分12分) 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B C

a b c

+=. (I )证明:sin sin sin A B C =; (II )若2

2

2

6

5

b c a bc +-=

,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4. 【解析】

(Ⅱ)由已知,b 2

+c 2

–a 2

=

6

5

bc ,根据余弦定理,有 cos A=2222b c a bc

+-=35.

所以=

4

5

. 由(Ⅰ),sin Asin B=sin Acos B+cos Asin B ,

所以

45sin B=45cos B+3

5

sin B , 故tan B=sin cos B

B

=4.

10.【2016高考浙江理数】(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B.

(I )证明:A =2B ;

(II )若△ABC 的面积2=4

a S ,求角A 的大小.

【答案】(I )证明见解析;(II )2

π

4

π

【解析】

(Ⅰ)由正弦定理得sin sin 2sin cos B C A B +=,

故()2sin cos sin sin sin sin cos cos sin A B B A B B A B A B =++=++,

于是()sin sin ΒA Β=-.

又A ,()0,πB ∈,故0πA B <-<,所以()πB A B =--或B A B =-, 因此πA =(舍去)或2A B =, 所以,2A B =.

(Ⅱ)由24a S =得21sin 24

a a

b C =,故有1

sin sin sin 2sin cos 2B C B B B ==,

因为sin 0B ≠,所以sin cos C B =. 又B ,()0,πC ∈,所以π

2

C B =

±. 当π2B C +=

时,π2A =; 当π2C B -=时,π

4A =.

综上,π2A =或π

4

A =.

易错起源1、三角恒等变换

例1、(1)已知α为锐角,若cos ? ????α+π6=35,则cos ? ????2α-π6=________.

(2)已知sin α=55,sin(α-β)=-1010

,α,β均为锐角,则角β等于( ) A.5π

12 B.π

3 C.π4

D.π6

答案 (1)24

25

(2)C

解析 (1)因为α为锐角,cos(α+π6)=3

5>0,

所以α+π6为锐角,sin(α+π6)=4

5

则sin(2α+π3)=2sin(α+π6)cos(α+π6)=2×45×35=24

25.

又cos(2α-π6)=sin(2α+π

3),

所以cos(2α-π6)=24

25

.

(2)因为α,β均为锐角, 所以-π2<α-β<π2.

又sin(α-β)=-

10

10

, 所以cos(α-β)=310

10.

又sin α=

55,所以cos α=255

, 所以sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =

55×31010-255×(-1010)=22

. 所以β=π4

.

【变式探究】(1)已知sin ? ????α-π4=7210,cos2α=725,则sin α等于( ) A.45 B .-45 C .-35 D.3

5 (2)3cos10°-1sin170°等于( ) A .4 B .2 C .-2

D .-4

答案 (1)D (2)D

解析 (1)由sin ? ????α-π4=7210, 得sin αcos π4-cos αsin π4=72

10,

即sin α-cos α=7

5

,①

又cos2α=725,所以cos 2α-sin 2

α=725,

即(cos α+sin α)·(cos α-sin α)=7

25,

因此cos α+sin α=-1

5.②

由①②得sin α=3

5

,故选D.

(2)3cos10°-1sin170°=3cos10°-1

sin10°

3sin10°-cos10°

sin10°cos10°=

-1

2

sin20°

-2sin20°

1

2

si n20°=-4,

故选D. 【名师点睛】

(1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现张冠李戴的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 【锦囊妙计,战胜自我】 1.三角求值“三大类型”

“给角求值”、“给值求值”、“给值求角”. 2.三角函数恒等变换“四大策略”

(1)常值代换:特别是“1”的代换,1=sin 2

θ+cos 2

θ=tan45°等;

(2)项的分拆与角的配凑:如sin 2

α+2cos 2

α=(sin 2

α+cos 2

α)+cos 2

α,α=(α-β)+β等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦. 易错起源2、正弦定理、余弦定理

例2、(1)(2016·课标全国丙)在△ABC 中,B =π4,BC 边上的高等于1

3BC ,则cos A 等于( )

A.

31010 B.1010C .-1010D .-310

10

(2)(2015·北京)在△ABC 中,a =3,b =6,A =2π

3,则B =________.

答案 (1)C (2)π

4

解析 (1)设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =2

3a .

由余弦定理得b 2

=a 2

+c 2

-2ac cos B =a 2

+29a 2-2×a ×23a ×22=59

a 2,

∴b =

53

a . ∴cos A =

b 2+

c 2-a

2

2bc

=59a 2+29a 2-a 22×

53a ·2

3

a =-

10

10

. 故选C.

(2)由正弦定理得sin B =b sin A a =6sin

2π33=2

2

因为A 为钝角,所以B =π

4

.

【变式探究】如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.

(1)求sin B sin C ;

(2)若AD =1,DC =

2

2

,求BD 和AC 的长.

(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知

AB 2=AD 2+BD 2-2AD ·BD cos∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos∠ADC .

故AB 2

+2AC 2

=3AD 2

+BD 2

+2DC 2

=6,

由(1)知AB =2AC ,所以AC =1. 【名师点睛】

关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.

【锦囊妙计,战胜自我】

1.正弦定理:在△ABC 中,a sin A =b sin B =c sin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,sin A =a

2R

a ∶

b ∶

c =sin A ∶sin B ∶sin C 等.

2.余弦定理:在△ABC 中,

a 2=

b 2+

c 2-2bc cos A ;

变形:b 2

+c 2

-a 2

=2bc cos A ,cos A =b 2+c 2-a 2

2bc

.

易错起源3、解三角形与三角函数的综合问题 例3 (2015·山东)设f (x )=sin x cos x -cos 2? ????x +π4. (1)求f (x )的单调区间;

(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ? ????

A 2=0,a =1,求△ABC 面积的最大值.

解 (1)由题意知f (x )=sin2x 2-1+cos ?

????2x +π22

sin2x 2-1-sin2x 2=sin2x -1

2

. 由-π2+2k π≤2x ≤π

2+2k π,k ∈Z ,

可得-π4+k π≤x ≤π

4+k π,k ∈Z ;

π2+2k π≤2x ≤3π

2

+2k π,k ∈Z , 可得π4+k π≤x ≤3π

4+k π,k ∈Z .

所以f (x )的单调递增区间是

????

??-π4+k π,π4+k π(k ∈Z ); 单调递减区间是??

??

??π4+k π,3π4+k π(k ∈Z ).

(2)由f ? ????A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =

3

2

. 由余弦定理a 2

=b 2

+c 2

-2bc cos A , 可得1+3bc =b 2

+c 2

≥2bc ,

即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34

.

所以△ABC 面积的最大值为2+34

.

【变式探究】已知函数f (x )=cos 2

x +23sin x cos x -sin 2

x . (1)求f (x )的最小正周期和值域;

(2)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若f (A

2)=2且a 2

=bc ,试判断△ABC 的形状.

解 (1)f (x )=cos 2

x +23sin x cos x -sin 2

x =3sin2x +cos2x =2sin(2x +π

6

),

所以T =π,f (x )∈[-2,2].

【名师点睛】

解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求.

【锦囊妙计,战胜自我】

解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状.

解三角形题型5正、余弦定理判断三角形形状(供参考)(新)

解三角形题型5:正、余弦定理判断三角形形状 1、(2013·陕西高考文科·T9)设△ABC 的内角A , B , C 所对的边分别为a, b, c , 若 cos cos sin b C c B a A +=, 则△ABC 的形状为 ( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 不确定 2、(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =, 则△ABC (A )一定是锐角三角形. (B )一定是直角三角形. (C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 3、如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 4、在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 5、在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 6、A 为ΔABC 的一个内角,且sinA+cosA= 12 7 , 则ΔABC 是______三角形. 7、在△ABC 中,若c C b B a A sin cos cos = =,则△ABC 是( ) A .有一内角为30°的直角三角形 B .等腰直角三角形 C .有一内角为30°的等腰三角形 D .等边三角形 8、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( ) A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 9、(2010辽宁文数17)在ABC ?中,a b c 、、分别为内角A B C 、、的对边, 且2sin (2)sin (2)sin a A b c B c b C =+++ (Ⅰ)求A 的大小; (Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状. 10、在ABC ?中,已知2222()sin()()sin()a b A B a b A B +?-=-?+,判断该三角形的形状。 11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ; ③sinC= B A B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

高中数学必备知识点 正弦与余弦定理和公式

三角函数正弦与余弦的学习,在数学中只要记住相关的公式即可。日常考试 正弦和余弦的相关题目一般不会很难,是很多数学基础不是很牢的同学拿分的好题目。但对于有些同学来说还是很难拿分,那是为什么呢? 首先,我们要了解下正弦定理的应用领域 在解三角形中,有以下的应用领域: (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦 正弦定理 在△ABC中,角A、B、C所对的边分别为a、b、c,则有 a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径) 其次,余弦的应用领域 余弦定理 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB : sinC = a : b : c; 在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解是唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题 (3)相关结论: a/sinA=b/sinB=c/sinC=(a+b)/(sinA+sinB)=(a+b+c)/(sinA+sinB+sinC) c/sinC=c/sinD=BD=2R(R为外接圆半径) (4)设R为三角外接圆半径,公式可扩展为:a/sinA=b/sinB=c/sinC=2R,即当一内角为90°时,所对的边为外接圆的直径。灵活运用正弦定理,还需要知道它的几个变形sinA=a/2R,sinB=b/2R,sinC=c/2R asinB=bsinA,bsinC=csinB,asinC=csinA (5)a=bsinA/sinB sinB=bsinA/a 正弦、余弦典型例题 1.在△ABC中,∠C=90°,a=1,c=4,则sinA 的值为 2.已知α为锐角,且,则α的度数是() A.30° B.45° C.60° D.90° 3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是() A.75° B.90° C.105° D.120° 4.若∠A为锐角,且,则A=() A.15° B.30° C.45° D.60° 5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点, EF⊥BC,垂足为F,求sin∠EBF的值。

三角函数正弦定理和余弦定理

(文) 已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1)若m //n ,求证:ΔABC 为等腰三角形; (2)若m ⊥p ,边长c = 2,角ΔABC 的面积 . 答案: 证明:(1)//,sin sin ,m n a A b B ∴=u v v Q 即22a b a b R R ? =? ,其中R 是三角形ABC 外接圆半径,a b =. ABC ∴?为等腰三角形 (2)由题意可知//0,(2)(2)0m p a b b a =-+-=u v u v 即 a b ab ∴+= 由余弦定理可知, 2 2 2 4()3a b ab a b ab =+-=+- 2()340ab ab --=即4(1)ab ab ∴==-舍去. 11 sin 4sin 223 S ab C π ∴==??= 来源:09年高考上海卷 题型:解答题,难度:中档

(文)在ABC ?中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。(Ⅱ)求)4 2sin(π - A 的值。 答案: (1)解:在ABC ? 中,根据正弦定理, A BC C AB sin sin = ,于是522sin sin ===BC A BC C AB (2)解:在ABC ? 中,根据余弦定理,得AC AB BC AC AB A ?-+=2cos 2 22 于是A A 2cos 1sin -== 5 5, 从而5 3sin cos 2cos ,54cos sin 22sin 22=-== =A A A A A A 10 2 4 sin 2cos 4 cos 2sin )4 2sin(= -=- π π π A A A 来源:09年高考江西卷 题型:解答题,难度:容易 在⊿ABC 中,,A B 为锐角,角,,A B C 所对应的边分别为,,a b c ,且

必修五解三角形正弦定理和余弦定理

学案正弦定理和余弦定理 导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 自主梳理 1.三角形的有关性质 (1)在△ABC中,A+B+C=________; (2)a+b____c,a-bb?sin A____sin B?A____B; (4)三角形面积公式:S△ABC=1 2ah= 1 2ab sin C= 1 2ac sin B=_________________; (5)在三角形中有:sin 2A=sin 2B?A=B或________________?三角形为等腰或直角三角形; sin(A+B)=sin C,sin A+B 2=cos C 2. 自我检测 1.(2010·上海)若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABC() A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 2.(2010·天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A等于() A.30°B.60°C.120°D.150° 3.(2011·烟台模拟)在△ABC中,A=60°,b=1,△ABC的面积为3,则边a的值为() A.27 B.21 C.13 D.3

4.(2010·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2, sin B +cos B =2,则角A 的大小为________. 5.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3 ,则a =________. 探究点一 正弦定理的应用 例1 (1)在△ABC 中,a =3,b =2,B =45°,求角A 、C 和边c ; (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c . 变式迁移1 (1)在△ABC 中,若tan A =13 ,C =150°,BC =1,则AB =________; (2)在△ABC 中,若a =50,b =256,A =45°,则B =________. 探究点二 余弦定理的应用 例2 (2011·咸宁月考)已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2- b 2=a c . (1)求角B 的大小; (2)若c =3a ,求tan A 的值. 变式迁移2 在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3 ,b =13,a +c =4,求a . 探究点三 正、余弦定理的综合应用 例3 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),试判断该三角形的形状. 变式迁移3 (2010·天津)在△ABC 中,AC AB =cos B cos C . (1)证明:B =C ; (2)若cos A =-13 ,求sin ????4B +π3的值. 1.解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它 是对正、余弦定理,三角形面积公式等的综合应用. 2.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求

正余弦定理与解三角形整理(有答案)

正余弦定理考点梳理: 1. 直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。 (1)三边之间的关系:a2+b2=c2。(勾股定理) A (2)锐角之间的关系:A+B=90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 C B 2. 2.斜三角形中各元素间的关系: a 如图6-29 ,在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。 (1)三角形内角和:A+B+C=_____ (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 3. 正弦定理: a b c 2R 。(R为外接圆半径)sin A sin B sin C a b c = ==2R的常见变形: sin A sin B sin C (1)sin A∶sin B∶sin C=a∶b∶c; (2) a b == sin A sin B c = sin C a+b+c =2R; sin A+sin B+sin C (3) a=2R sin_ A,b=2R sin_ B,c=2R sin_ C; a b c (4)sin A=,sin B=,sin C=. 2R 2R 2R 4. 三角形面积公式:S=1 2 ab sin C= 1 1 bc sin A=ca sin B. 2 2 5. 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦 的积的两倍。 2 2 2 a b c 2bccos A 2 2 2 b a c 2accosB 2 2 2 c b a 2ba cosC 或 cos A cos B cos C 2 2 2 b c a 2bc 2 2 2 a c b 2ac 2 2 2 b a c 2ab 余弦定理的公式:. 6. (1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.

三角函数之正余弦定理

教师寄语:天才=1%的灵感+99%的血汗 1 戴氏教育中高考名校冲刺教育中心 【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!!】 主管签字:________ §3.6 正弦定理和余弦定理 一、考点、热点回顾 2014会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识.自主学习 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余 弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并 可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解

2020年高考数学复习利用正余弦定理破解解三角形问题专题突破

2020 年高考数学复习利用正余弦定理破解解三角形问题专题突破 考纲要求: 1. 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题 1 2.会利用三角形的面积公式解决几何计算问题S ab sin C . 2 基础知识回顾: a b c 1. ===2R,其中R 是三角形外接圆的半径. sin A sin B sin C 由正弦定理可以变形:(1) a∶b ∶c=sin A∶sin B∶sin C;(2) a=2 Rsin A,b=2Rsin B,c=2Rsin C. 2 .余弦定理:a2=b 2+c2-2 bccos A,b 2=a2+c2-2accos B,c2=a2+b2-2abcos C. b 2+c2-a2a2+c2-b2a2+b 2-c2 变形:cos A =,cos B=,cos C= 2bc 2ac 2ab 4. 三角形常用的面积公式 1 1 1 1 abc (1)S=a·h a(h a表示a边上的高).(2) S=absinC =acsinB =bcsinA = 2 2 2 2 4R

1 (3)S=2r(a+b+c)(r 为内切圆半径).应用举例: 类型一、利用正(余)弦定理解三角形 【例1】已知中,,点在边上,且.(1 )若,求; (2 )求的周长的取值范围. 【答案】(1 );(2 ). 所以: 中,利用正弦定理得:

由于: 则: ,, 由于:,则:, 得到:, 所以的周长的范围是:. 【点睛】 本题考查了用正弦定理、余弦定理解三角形,尤其在求三角形周长时解题方法是利用正弦定理将边长转化为角的问题,然后利用辅助角公式进行化简,求出范围,一定要掌握解题方法。 【例2】已知在中,所对的边分别为,. (1 )求的大小; (2)若,求的值. 【答案】(1 )或(2)1

利用正余弦定理解三角形资料

复习课: 解三角形 枣庄十八中 秦真 教学目标 重点:能够运用正弦定理余弦定理并结合三角形有关知识解决与三角形面积,形状有关的问题。 难点:如何选择适当的定理,公式,方法解决有关三角形的综合问题. 能力点:定理公式方法的适当选取,培养学生自主解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:在用正弦定理解三角形问题中会出现判断几解问题中易出现错误 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.正弦定理: 2sin sin sin a b c R A B C ===,其中R 是三角形外接圆半径. 2.余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+- ,2 2 2 2cos c a b ac C =+- , 222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222 cos 2a b c C ab +-= 3.111 sin sin sin 222 ABC S ab C bc A ac B ?= == 4.在三角形中大边对大角,反之亦然. 5.射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+

6.三角形内角的诱导公式 (1)sin()sin A B C +=,cos()cos A B C +=-,tan tan()C A B =+,cos sin 22 c A B +=,sin cos 22 C A B +=,... 在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA ·tanB ·tanC; 7.解三角形常见的四种类型 (1)已知两角A 、B 与一边a ,由A+B+C=180°及 sin sin sin a b c A B C == ,可求出角C ,再求,b c . (2)已知两边,b c 与其夹角A ,由2 2 2 2cos a b c bc A =+-,求出a ,再由余弦定理,求出角B 、C. (3)已知三边,,a b c ,由余弦定理可求出角A 、B 、C. (4)已知两边a 、b 及其中一边的对角A ,由正弦定理 sin sin a b A B = ,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由 sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况,其判断方法,如下表: 8. 三、【范例导航】 题型(一):正、余弦定理 1正弦定理主要有两个方面的应用:(1)已知三角形的任意两个角与一边,由三角形内角和定理,可以 计算出三角形的第三个角,由正弦定理可以计算出三角形的另两边;(2)已知三角形的任意两边和其中一边的对角,应用正弦定理,可以计算出另一边的对角的正弦值,进而确定这个角和三角形其他的边和角. 2余弦定理有两方面的应用:(1)已知三角形的两边和它们的夹角可以由余弦定理求出第三边,进而求出其他两角;(2)已知三角形的三边,利用余弦定理求出一个角,进而求出其他两角. 例1.在?ABC 中,已知a =c = ,45B =o ,求b 及A ;

高中数学:三角函数与正余弦定理专题

高三文科数学:三角函数与正余弦定理专题 一、选择题: 1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-2 2 B.22 C.3 2 D .1 2.(2013·江西高考)若sin α 2=3 3,则cos α=( ) A .-2 3 B .-1 3 C.1 3 D.2 3 3.已知tan ????α-π 6=3 7,tan ????π 6+β=2 5,则tan(α+β)的值为( ) A.29 41 B.1 29 C.1 41 D .1 4.把y =sin 1 2x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω的值为( ) A .1 B .4 C.1 4 D .2 5.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移1 2个单位 D .向右平移1 2个单位 6.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 二、填空题: 7.已知角α的终边经过点(3,-1),则sin α=________. 8.已知扇形周长为10,面积是4,求扇形的圆心角为________. 9.函数y =cos ????2x +π 6的单调递增区间为________. 10.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a ,3sin A =5sin B , 则角C =________.

三、解答题: 11. (2015·山东高考)设2()sin cos cos ()4f x x x x π =-+ (1)求()f x 的单调区间 (2)在锐角ABC ?中,角,,A B C 的对边分别为,,a b c .若()02A f =,1a =, 求ABC ?面积的最大值 12.已知2tan =θ, 求(Ⅰ)θ θθθsin cos sin cos -+;(Ⅱ)θθθθ22cos 2cos .sin sin +-的值.

如何正确理解正余弦定理解三角形

1.1 正弦定理和余弦定理教案(共两课时) 教学目标 根据教学大纲的要求,结合学生基础和知识结构,来确定如下教学目标: (一)知识目标 (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法; (2) 会运用正弦定理与三角形内角和定理解三角形的两类基本问题。 (3) 掌握余弦定理的两种表示形式; (4) 掌握证明余弦定理的向量方法; (5) 会运用余弦定理解决两类基本的解三角形问题。 (二)能力目标 让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题。 (三)情感目标 (1) 培养学生在方程思想指导下处理解三角形问题的运算能力; (2) 培养学生合情推理探索数学规律的数学思想能力,通过三角形函数、正弦定理、余弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 教学重点 正弦定理、余弦定理的探索和证明及其基本应用。 教学难点 (1) 正弦定理和余弦定理的证明过程。 (1) 已知两边和其中一边的对角解三角形时判断解的个数。 (2) 勾股定理在余弦定理的发现和证明过程中的作用。 教学方法 启发示探索法,课堂讨论法。 教学用具 粉笔,直尺,三角板,半圆,计算器。 、教学步骤 第一课时正弦定理 (一) 课题引入 如图1.1-1,固定?ABC的边CB及∠B,使边AC绕着顶点C转动。 A

思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? (图1.1-1) (二) 探索新知 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角 三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (让学生进行讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b = , b a 从而 sin sin a b A B = sin c C = A D B (图1.1-3) 让学生思考:是否可以用其它方法证明这一等式? 证明二:(等积法)在任意斜△ABC 当中 S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 两边同除以abc 21 即得:A a sin =B b sin =C c sin 证明三:(外接圆法) 如图所示,∠A=∠D ∴ R CD D a A a 2sin sin === (R 为外接圆的半径) 同理 B b sin =2R ,C c sin =2R 由于涉及边长问题,从而可以考虑用向量来研究这个问题。

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

2017年高考试题:正余弦定理解三角形

2017年高考文科数学新课标Ⅰ卷第11题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知0)cos (sin sin sin =-+C C A B ,2=a ,2=c ,则=C ( ) A. 12π B.6π C.4π D.3 π 本题解答:0cos sin sin sin )sin(0)cos (sin sin sin =-++?=-+C A C A C A C C A B 0sin sin cos sin 0cos sin sin sin cos sin cos sin =+?=-++?C A A C C A C A A C C A 4 31tan 1cos sin cos sin 0sin cos π = ?-=?-=? -=?=+?A A A A A A A A 。 根据正弦定理得到: 21222 2sin sin sin sin =? ==?=a A c C C c A a ,C 是锐角6 π=?C 。 2017年高考理科数学新课标Ⅰ卷第17题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 已知ABC ?的面积为A a sin 32 。 (Ⅰ)求C B sin sin ; (Ⅱ)若1cos cos 6=C B ,3=a ,求ABC ?的周长。 本题解答:(Ⅰ)ABC ?的面积为 A a sin 32222sin 2 3 sin 3sin 21a A bc A a A bc =?=? 3 2 sin sin 1sin sin 23sin sin sin sin 2322=?=?=?C B C B A A C B 。 (Ⅱ)61cos cos 1cos cos 6=?=C B C B ,3261sin sin cos cos 32sin sin -=-?=C B C B C B 3 21cos 21cos 21)cos(π =?=?-=-?-=+?A A A C B 。 根据余弦定理得到:921 29cos 22222222=-+??-+=?-+=bc c b bc c b A bc c b a ①。 根据(Ⅰ)得到:898 9 3)23(23sin 232222=?=?=??=bc bc bc a A bc ②。 ②代入①中得到:3382172)(17982222222=?+=++=+?=+?=-+bc c b c b c b c b ABC c b ??=+?33的周长为:333+=++c b a 。 2017年高考文科数学新课标Ⅱ卷第16题:ABC ?的内角A 、B 、C 的对边分别为a 、b 、c 。 若A c C a B b cos cos cos 2+=,则=B 。 本题解答:根据射影定理得到:b A c C a =+cos cos ,b B b A c C a B b =?+=cos 2cos cos cos 2

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定理夯基提能作业本文

2019-2020年高三数学一轮复习第四章三角函数解三角形第七节正弦定理和余弦定 理夯基提能作业本文 1.在△ABC中,若=,则B的值为( ) A.30° B.45° C.60° D.90° 2.(xx广东,5,5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=且bc.已知·=2,cos B=,b=3.求: (1)a和c的值; (2)cos(B-C)的值.

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理 教学目标 掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式. 教学重难点 掌握正弦定理和余弦定理的推导,并能用它们解三角形. 知识点清单 一. 正弦定理: 1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即a b c2R( 其中R 是三角形外接圆的半 径) sin A sinB sinC 2. 变 形:1) a b c a b c sin sin sinC sin sin sinC 2)化边为 角: a:b:c sin A:sin B: sinC ; a sin A; b sin B a sin A b sinB c sinC c sin C 3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC 4)化角为边:sin A a;sin B b ; sin A a sin B b sinC c sinC c 5)化角为边:sin A a sinB b,sinC c 2R2R2R 3. 利用正弦定理可以解决下列两类三角形的问题: ①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a , 解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A ; 求出 b 与c c sinC ②已知两边和其中—边的对角,求其他两个角及另一边。例:已知边 a,b,A, 解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边 c sinC 4. △ABC中,已知锐角A,边b,则 ① a bsin A 时,B 无解; ② a bsin A 或 a b 时, B 有一个解;

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

三角函数正余弦定理

§4.1 弧度制及任意角的三角函数 知识梳理: 1.弧度制 (1)弧度与角度的换算:360°= rad ,180°=________rad ,1°= rad ≈0.01745rad ,反过来1rad = ≈57.30°=57°18′. (2)若圆心角α用弧度制表示,则弧长公式l =_____;扇形面积公式S 扇=________=__________. 2.任意角的三角函数 (1)任意角的三角函数的定义 设α是一个任意角,它的终边上任意一点P (x ,y )与原点的距离为r (r >0),则sin α=__________,cos α=__________,tan α=__________ (x≠0). (3)三角函数值在各象限的符号 sin α cos α tan α 基础自测: 如果sin α>0,且cos α<0,那么α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 已知α是锐角,那么2α是( ) A .第一象限角 B .第二象限角 C .小于180°的正角 D .第一或第二象限角 若点P 在2π 3 的终边上,且|OP |=2,则点P 的 横坐标为( ) A .1 B .-1 C .3 D .-3 若点P ()x ,y 是30°角终边上异于原点的一点,则y x 的值为________. 半径为R 的圆的一段弧长等于23R ,则这段 弧所对的圆心角的弧度数是____________. 例题分析: 如图所示,已知扇形AOB 的圆心角 ∠AOB =120°,半径R =6,求: (1)AB ︵ 的长;(2)弓形ACB 的面积. 扇形AOB 的周长为8 cm .若这个扇形的面 积为3 cm 2,求圆心角的大小. 已知角α的终边经过点P (3m -9,m +2). (1)若m =2,求5sin α+3tan α的值; (2)若cos α≤0且sin α>0,求实数m 的取值范围. 作业: 1.若sin θcos θ<0,则角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角 D .第二或第四象限角 2.(2014·全国)已知角α的终边经过点(-4,3),则cos α=( ) A .45 B .3 5 C .-3 5 D .-45 3.已知角α的终边经过点P (-4a ,3a )(a <0),则2sin α+cos α的值为( ) A .-25 B .2 5 C .0 D .25或-2 5 4.已知弧度数为2的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ) A .2 B .2sin1 C .2 sin1 D .sin2 5.函数y =sin x |sin x |+|cos x |cos x +tan x |tan x |的值域是( ) A .{-1,1} B .{1,3} C .{1,-3} D .{-1,3} 6.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针

相关主题