搜档网
当前位置:搜档网 › 绿色荧光蛋白的结构、发光机制及其应用研究

绿色荧光蛋白的结构、发光机制及其应用研究

绿色荧光蛋白的结构、发光机制及其应用研究
绿色荧光蛋白的结构、发光机制及其应用研究

实验绿色荧光蛋白

生物技术实验报告 姓名:张龙龙 学号:2011506066 班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水 母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成. 一.实验目的 1、了解表达用基因克隆引物设计的原理和方法。 2、了解利用原核表达系统表达外源基因的原理、流程及方法。 3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。 二.实验原理 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达 三.实验材料及仪器 1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21; 2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。 四.实验内容 4.1 质粒的提取、酶切及电泳鉴定: 1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ; 酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸 DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T 4 lisase。 2)实验步骤: 质粒的提取与鉴定

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述 生命科学学院 2010级李积锋 1241410007 【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。 【关键词】水母绿色荧光蛋白生色团变种 1绿色荧光蛋白简介 绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。 水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。 2绿色荧光蛋白的表达和成熟 GFP的表达水平受多种因素的影响。在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。目前适用于哺乳动物的表达系统不受影响。GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。 用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如

何帮助GFP折叠和成熟的线索。另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。 3绿色荧光蛋白的应用 3.1报告基因和细胞标记 GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。但在这方面的应用中,最大的缺点就是没有放大作用,它不能象酶一样能通过加工无数的底物分子而将信号放大所以一般都需强启动子以驱动GFP基因在细胞内足量的表达也可用亚细胞分辨率的显微成像系统检测基因产物,靶入的基因被限制于一个细胞器内,GFP的浓度则相对提高了许多倍。 3.2融合标记 应用得最多和最成功的是GFP同宿主蛋白构成融合子来监测宿主蛋白的定位 和最后归宿既有荧光又有宿主蛋白原有的正常功能和定位的融合蛋白效果最佳GFP可融合于宿主蛋白的C端或N端,也可插入其内部迄今为止,GFP已成功地靶入了大部分细胞器中,如质膜、细胞核、内质网、高尔基体、分泌小体、线粒体、液泡和吞噬体等。 3.3 其它 GFP分子生色团的坚固外层保护荧光不被熄灭,但同时也降低了GFP分子的荧光对环境的敏感性通过随机重组和基因定向突变得到了多种对环境敏感的GFP,它们可用作环境指示剂如:对PH敏感GFP的可以测定细胞器内的PH值;通过基因工程,可GFP在中插入磷酸化位点以便用磷酸化控制GFP的荧光。另外,最近报道的利用靶入了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时这种丝是一种能在黑暗中发绿色荧光的纤维。 4应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点:

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

对绿色荧光蛋白(GFP)的了解及应用

对绿色荧光蛋白的了解及应用 学院:生命科学学院 姓名:马宗英 年级:2011 学号:2011012923

前言 绿色荧光蛋白(green fluorescent protein),简称GFP,是一种具有奇妙特性的“光学蛋白质”。这种蛋白质从成分和结构上来说,没有丝毫的特殊性,它的组成单元是20种常见的氨基酸,二级结构也是普通的α螺旋和β片层。但是,这种蛋白质却具有一个非常特别的性质——发出绿色荧光。 【关键词】绿色荧光蛋白生命科学应用 一、绿色荧光蛋白 绿色荧光蛋白最早是由下村修等人于1962年在一种学名Aequorea victoria的水母中发现的。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,吸收蓝光的部分能量,发出绿色荧光。 野生型水母GFP的一级序列已由其cDNA序列推导出来[1],它至少存在4种同源GFP,但这些突变并不影响GFP的基本功能,只是使突变的GFP具有了新的性质。 生色团是GFP发出荧光的物质基础,也是GFP结构中的一个重要组成部分。GFP的生色团位于氨基酸序列64~69位的六肽内,65~67位的丝氨酸、脱氢酪氨酸、甘氨酸通过共价键形成的对羟基苯甲基咪唑环酮是一个独特的、相当稳定的环状三肽结构,构成了GFP生色团的核心[2],见图1。图2为生色团的形成机制。 图1 多管水母中GFP生色团的化学结构和附近序列 图2生色团的形成机制 目前人们对GFP的荧光发光机制并不十分清楚,大家只是认为,GFP是生物发光过程中的能量受体,并且是最终的发光体,不同的生物发光机制各不相同,不同的突变体发光机

制也有很大差异。 二、GFP在生命科学中的应用 1、作为蛋白质标签(protein tagging) 利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染到合适的细胞中进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内的活体观察。由于GFP只有238个氨基酸,相对较小,所以将其与其它蛋白质融合后并不影响自身的发光功能。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更为详尽的观察的新方法。如细胞分裂、染色体复制和分裂、发育和信号转导等过程的研究均是借助绿色荧光蛋白进行标记。 GFP作为蛋白质标签除用于特定蛋白质的标记定位外,还大量用于各种细胞成分的标记如细胞骨架、质膜、细胞核等等。曾经有人将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境监测以及探测信号转导过程等等,以上都可以为传统生物学研究提供新思路和新方法。 2、药物筛选 利用细胞表面标记,通过流体细胞分光光度计或荧光活化细胞筛选仪,可以分离与纯化特殊类型的细胞;同时还可利用不同颜色GFP衍生物标记相关蛋白质,来观察在单细胞内相互作用的靶细胞,再借助于荧光激活细胞分离器、等聚焦显微镜分离出目的细胞,从而可方便地用于大规模筛选新的药物。 另一方面,利用GFP来进行药物筛选由于必须与迁移的信号分子相偶联的限制,其筛选容量相对较低,但是由于GFP在细胞内的穿透性强及独特的发光机制,因而在药物筛选中具有相当大的应用潜力。 3、用于免疫学 可采用基因工程的方法生产GFP标记抗体,以取代传统的免疫学标记方法,建立一种简便、快速的免疫诊断新技术。相比于一般的标记物,GFP对光稳定、对抗体的标记率可达100%,而且因为GFP是直接与抗体结合,所以无需添加任何底物,可以避免非抗原抗体结合的背景干扰等。 线粒体中表达的GFP是研究比较成功的一种小分子抗体,因为它可以在宿主细胞内大量表达,易于基因工程操作,尤其易于构架抗体融合蛋白。因融合抗体具有与抗原结合及发射荧光两种特性,故这一人工分子可用做免疫染色的检测试剂,直接应用于流式细胞仪和免疫荧光的标记及肿瘤的检测等等。 在制备抗体时,为便于表达蛋白的分离纯化,一般在单链抗体的N端或C端插入一6×His 序列,便于用Ni-NTA亲和层析柱纯化目标蛋白。但这一技术也存在一些问题,由于抗体分子内存在二硫键,而在原核表达系统内由于抗体不能正确折叠,容易形成包涵体,表达出来的目标蛋白无活性,需要在氧化还原体系中进行复性。但近来也有报道在动物细胞细胞质中成功表达出具有抗原结合活性的单链抗体,若能成功解决融合抗体的表达问题,则在免疫染色及肿瘤检测这一领域融合抗体将扮演极为重要的角色。 除了以上应用之外,绿色荧光蛋白还普遍应用于跟踪观察微生物、发育机理研究、细胞筛选以及生物传感器等许多生命科学研究中。 三、GFP的突变及其应用 GFP作为一种新型标记物,正受到科学界的广泛关注,而且野生型的GFP也不断地在被改造,著名的生物学家钱永健所完成的单点突变(S65T) 显著提高了GFP的光谱性质,其荧

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

绿色荧光蛋白的研究现状与应用

绿色荧光蛋白的研究现状与应用 【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。 【关键词】绿色荧光蛋白;生色团;报告基因 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。 1 绿色荧光蛋白的理论研究 1.1绿色荧光蛋白的发现 绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。 1.2绿色荧光蛋白的结构和发光原理 1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。GFP的最大和次大的激发波长分别是395nm和475nm。溶液中,395nm激发的荧光发射峰在508nm,375nm激发的荧光发射峰在503nm。 1.3绿色荧光蛋白的优点 绿色荧光蛋白的独特之处即它的优点很多,主要有:荧光反应不需要底物和任何其他辅助因子,只需要在蓝光和紫外光下照射,利用荧光显微镜甚至是直接用肉眼就可以观察,易于检测且灵敏度高;荧光性质稳定,对光漂白有较强的耐受性;无毒害,转化后细胞仍可连续传代;通用性好,无种属特异性;分子量小,易于构建载体;不受假阳性干扰,结果真实可靠;可进行活细胞定时定位观察;易于得到突变体。 2 绿色荧光蛋白的应用 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP 应用研究的先河。也正是由于绿色荧光蛋白的许多优点,使得其应用十分广泛。 2.1作为报告基因 GFP通常用作报告基因,可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。GFP最显著的优势是荧光反应不需要底物和其他辅助因子。有利必有弊,

试验设计——绿色荧光蛋白的表达

分子生物学实验设计报告 绿色荧光蛋白的克隆表达 ——闵霞(2013141241165)李彩云(2013141241095) 一、引言 基因标记技术是近年来发展起来的分子生物学技术。荧光蛋白基因在标记基因方面由于具有独特的优点而广受科学家们的关注。荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP发射绿色荧光。它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。 基因克隆技术包括把来自不同物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。采用重组DNA技术,将不同来源的DNA分子在体外进行特异性切割,重新连接,组装成一个新的杂合DNA 分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子。 本次实验中,分子克隆质粒载体所携带的外源基因是EGFP绿色荧光蛋白,实验的最终目的是将EGFP基因插入表达载体pET-28a中,组成重组子,并导入到大肠杆菌细胞中并诱导其表达,培养出绿色的大肠杆菌菌落。为此,我们要利用碱变性法将大肠杆菌中的质粒DNA提取出来,并通过Bam HI和NotⅠ两种酶的双酶切作用,从而获得目的外源基因片段EGFP和表达载体pET-28a质粒的DNA,然后通过连接酶连接后形成重组子,并通过氯化钙法导入大肠杆菌感受态细胞中,让其在含有Amp和IPTG的LB琼脂平板上生长繁殖,最后通过观察大肠杆菌能否在含有Amp和IPTG的LB平板上长出绿色的菌落,来判断EGFP基因工程菌的构建效果 二、主要路线: 1、质粒DNA的提取 2、琼脂糖凝胶电泳检测质粒DNA 3、酶切连接重组质粒 4、重组质粒的扩增 5、菌落PCR法鉴定阳性克隆 6、目的荧光蛋白基因的表达 1、质粒DNA的提取 实验原理: 1)质粒是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制能力,,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

绿色荧光蛋白(GFP)原核表达分析

石河子大学 分子生物学实验结课论文 绿色荧光蛋白(GFP)原核表达分析 学生姓名 学号 专业 年级、班级 指导教师 所在学院 中国·新疆·石河子 2016年1月 绿色荧光蛋白(GFP)原核表达分析

摘要:本实验主要探讨目的蛋白(GFP)在大肠杆菌中的表达的情况以及鉴定目的蛋白形成的是包涵体还是可溶性蛋白。本实验先对菌液进行培养、活化、然后采用IPTG分别对其不同时间点的诱导,用SDS-PAGE来确定目的蛋白的可溶性及其分子量,掌握GFP 诱导不同时间的表达情况的检测方法。 关键词:绿色荧光蛋白;SDS-PAGE;原核表达 1 前言 1.1实验目的 掌握聚合酶链式反应(PCR)的原理和操作方法;了解重组载体的构建方法;锻炼学生查阅文献资料、设计与优化实验的能力;加强学生对化学生物学中常用研究方法的认知。 1.2实验背景 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。与以往lacZ、CAT 等报告基因相比,有很多无可比拟的优越性: GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;荧光强度高,稳定性高;不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;另外GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;并且通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。正是由于GFP 检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有效的手段。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种

绿色荧光蛋白及其应用

DOI:CNKI:50-1068/S.20120208.1744.051 网络出版时间:2012-02-08 17:44 网络出版地址:https://www.sodocs.net/doc/7a13763957.html,/kcms/detail/50.1068.S.20120208.1744.051.html 绿色荧光蛋白及其应用 四川攀枝花学院生物与化学工程学院韩洪波 摘要:作为一种报告基因,由于其自身独特的发光机制,GFP在分子生物学的研 究中得到越来越广泛深入的应用,如用于特定蛋白的标记定位,活体内的肿瘤检 测、药物筛选等等。GFP的运用,为传统生物学研究提供了新思路和新方法。 关键词:绿色荧光蛋白;性质;应用 1962年,Shimomura 等从维多利亚多管水母(Aequorea victoria)中分离纯化生物发光蛋白质——水母蛋白(aequorin),并观察到一个在紫外光下发出非常 明亮,浅绿色荧光的副产物。[1]1974年,Shimomura等纯化得到了这种自发荧光 的蛋白。1985年Prasher 等构建维多利亚多管水母的cDNA文库,用于克隆水 母蛋白的编码基因,并得到含有GFP片段的蛋白。[2]1992年Prasher 等克隆到 编码全长GFP 的cDNA但直到此时人们对GFP的应用前景还不甚了解。1994 年,Chalfie 等首次在原核的大肠杆菌和真核的秀丽隐杆线虫(Caenorhabditis elegans)中表达了具有荧光性GFP,证明GFP 的荧光产生不需要水母中特异组 分的参与,钱永健及其同事提出GFP中Ser65-Tyr66-Gly67 氨基酸残基形成4- 对羟基苯甲基-5-咪唑啉酮生色团发光的机制,并表明生色团的形成不需要任何 酶或辅助因子的参与,而只需分子氧的存在此后对GFP的研究进入了高潮,并 在1996 年解析了其晶体结构基于已有知识和晶体结构,人们通过突变的方法得 到许多不同荧光性质的GFP同时,受GFP启发,人们开始在其它生物中寻找类 似的荧光蛋白,并相继在珊瑚、海葵、水螅甲壳类动物甚至低等脊索动物中发现 了GFP样蛋白荧光谱覆盖蓝色到远红光,使得荧光蛋白的使用范围不断扩大, 极大地促进了生命科学和医药科学的发展。2008年,诺贝尔化学奖授予Osamu Shimomura,MartinChalfie 和Roger Tsien以表彰他们因发现和发展了绿色荧光 蛋白所做的巨大贡献。[3] 一、GFP的分子结构和发光机制

绿色荧光蛋白的结构和应用

绿色荧光蛋白的结构和应用 【摘要】文章就绿色荧光蛋白(Green fluorescent protein, GFP)的一级结构和其发光基团的形成机理进行了分析,给出了GFP的三维结构,并对GFP的优点、改进方法和实际应用进行概括。 【关键词】GFP 结构改进应用 2008年10月8日,三位美国科学家,美国Woods Hole海洋生物学实验室的Osamu Shimomura(下村修)、哥伦比亚大学的Marin Chalfie和加州大学圣地亚哥分校的Roger Y.Tsien(钱永健)因发现并发展了绿色荧光蛋白(Green fluorescent protein,GFP)而获得2008年度诺贝尔化学奖。 GFP也因此进入了更多人的视角。 一、GFP的一级结构和发色团形成机理 GFP是存在于水母、珊瑚等腔肠动物体内的生物发光蛋白,是Shimomura等人从Aequorea victoria中发现的。GFP含238个氨基酸残基,分子量27kDa。野生型GFP的核苷酸序列和氨基酸序列在1992年即被Prasher等人测定[1]。表1为其氨基酸序列。 GFP不含辅基,也不需要辅助因子,在22℃左右,氧条件下,用蓝光光源激发下可发出绿色荧光[2]。其发色团形成于肽链65至67位的Ser-Tyr-Gly,是分子内自催化环化生成的对羟基吡唑啉酮。首先肽链折叠,Gly67酰胺亲核进攻Ser65的羧基,并脱去一分子水形成

咪唑啉酮,最后在氧作用下Tyr66的α,β-键脱氢,此时芳基和咪唑啉酮形成大的共轭体系,发色团成熟,可以吸收辐射并发出荧光[3]。图1为示意图。 图1:GFP 发色团形成机理 表 1:GFP 的氨基酸序列

相关主题