搜档网
当前位置:搜档网 › 光纤损耗全参数.docx

光纤损耗全参数.docx

光纤损耗全参数.docx
光纤损耗全参数.docx

实用标准文案

光纤损耗

1.光纤的衰减的几种因素及光缆的特性:

造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。

本征 : 是光纤的固有损耗,包括: 瑞利散射,固有吸收等。

弯曲 : 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

挤压 : 光纤受到挤压时产生微小的弯曲而造成的损耗。

杂质 : 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

不均匀 : 光纤材料的折射率不均匀造成的损耗。

对接 : 光纤对接时产生的损耗,如: 不同轴(单模光纤同轴度要求小于0.8 μm ),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

光缆特性

1)拉力特性

光缆能承受的最大拉力取决于加强件的材料和横截面积,一般要求大于1km 光缆的重量,多数光缆在100 ~400kg 范围。

2)压力特性

光缆能承受的最大侧压力取决于护套的材料和结构,多数光缆能承受的最大侧压力在100 ~400kg/10cm。

3)弯曲特性

弯曲特性主要取决于纤芯与包层的相对折射率差△以及光缆的材料和结构。实用光纤最小弯曲半径一般为 20 ~ 50mm ,光缆最小弯曲半径一般为200 ~ 500mm ,等于或大于光纤最小弯曲半径。在以上条件下,光辐射引起的光纤附加损耗可以忽略,若小于最小弯曲半径,附加损耗则急剧增加。

4)温度特性

光纤本身具有良好的温度特性。光缆温度特性主要取决于光缆材料的选择及结构的设计,采用松套管

二次被覆光纤的光缆温度特性较好。温度变化时,光纤损耗增加,主要是由于光缆材料(塑料)的热膨

胀系数比光纤材料(石英)大2~ 3 个数量级,在冷缩或热胀过程中,光纤受到应力作用而产生的。在我国,

对光缆使用温度的要求,一般在低温地区为-40 ℃~ +40 ℃,在高温地区为-5 ℃~ +60 ℃。

2.光纤的连接损耗:

1.永久性光纤连接(又叫热熔):

这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。一般用在长途接续、永久或半永久

固定连接。其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03db/点。2Km熔接一个点,但连接时,需要专用设备(熔接机)和专业人员进行操作,而且连接点也需要专用容器保护起来。

2.应急连接(又叫)冷熔:

应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。这种方法的主要特点是连接迅

速可靠,连接典型衰减为0.1~0.3db/点。但连接点长期使用会不稳定,衰减也会大幅度增加,所以只能

短时间内应急用。

3.活动连接 :

活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接起来的一种方法。这种方法灵活、简单、方便、可靠,多用在建筑物内的计算机网络布线中。其典型衰减为 1db/ 接头。

注:系统衰减余量一般不少于4db 。

例:发射功率 : -16dbm

功率计接收灵敏度: - 29.5dbm

线路衰减 : 1.5km ×3.5db/km=5.25db

连接衰减 : 接头 2 个衰减为 : 2 点×1db/ 点 =2db

实用标准文案

熔接两个点为 : 2 点×0.07db/点=0.14db

衰减余量=- 16dbm -(- 29.5dbm)- 5.25db-0.14db-2db= 6.11(db)

经过上面的计算,可以看出系统容量大于4db ,以上选择可以满足要求.

就是说光发射的光功率经过该系统,减去系统造成所有的损耗,剩余的功率应该与功率计接受的灵

敏度相差至少 4dB ,也就是系统容量要大于 4dB 。(灵敏度即是功率计能探测的最小光功率)

按光在光纤中的传输模式可分为:单模光纤和多模光纤。

多模光纤的纤芯直径为50~62.5 μm ,包层外直径125 μm ,损耗一般为2~4db/Km单模光纤的纤芯

直径为 8.3 μm (或 9μm ),包层外直径125 μm 。光纤的工作波长有短波长0.85 μm 、长波长1.31 μm 和1.55 μm 。光纤损耗一般是随波长加长而减小,0.85 μm 的损耗为 2.5db/km,1.31μm的损耗为0.35db/km,1.55 μm 的损耗为 0.20db/km,这是光纤的最低损耗,波长 1.65 μm 以上的损耗趋向加大。

光纤通信中常用单位的定义:

1. dB = 10 log10 ( P out/ P in )

P out :输出功率; P in :输入功率

2. dBm = 10 log10 ( P / 1mw)

是通信工程中广泛使用的单位;

通常表示以 1 毫瓦为参考的光功率;

example:–10dBm表示光功率等于100uw 。

插入损耗和回波损耗

1 插入损耗:插入损耗为-10lg[( 输出功率 )/( 输入功率 )] ,插入损耗越小越好。

2 回波损耗:回波损耗为-10 lg [(反射功率)/(入射功率)],回波损耗越大越好。

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

光纤通信的基本原理

光纤通信的基本原理 光纤是由单根玻璃光纤、紧靠纤心的包层、一次涂履层以及套塑保护层组成。纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高,因此当光从折射率高的一侧射入折射率低的一侧时,只要入射角度大于一个临界值,就会发生反射现象,能量将不受损失。这时包在外围的覆盖层就象不透明的物质一样,防止了光线在穿插过程中从表面逸出。 由发光二极管LED 或注入型激光二极管ILD 发出光信号沿光纤传播,在另一端则有PIN 或APD 光电二极管作为检波器接收信号。为确保信号的有效传输,在光发送端之前需增加光放大器,以提高入纤的光功率,在接收端的光电检测器之后将微信号进行放大,以提高接收能力。 光纤类型 根据光在光纤中的传播方式可将光纤划分为两种类型:即多模光纤和单模光纤。多模光纤又根据其包层的折射率进一步分为突变型折射率光纤和渐变型折射率光纤。多模光纤主要用于短距离、低速率的通信,用于干线传输网建设的光纤主要有三种,即G.652 常规单模光纤、G.653 色散位移单模光纤和G.655 非零色散位移光纤。而其中的G.65 3 光纤除了在日本等国家的干线网上有应用之外,在我国的干线网上几乎没有应用。G.655 光纤中的新型光纤最多,如低色散斜率光纤、大有效面积光纤、无水峰光纤等。 G.652 单模光纤:在C 波段1530 ~1565 nm 和L 波段1565 ~1625nm 的色散较大,系统速率达到2.5 Gbit/s 以上时,需要进行色散补偿,在10 Gbit/s 时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光纤。 G.653 色散位移光纤:在C 波段和L 波段的色散很小,在1550nm 是零色散,系统速率可达到20 Gbit/s 和40 Gbit/s ,是单波长超长距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM 扩容时会出现非线性效应,产生四波混频(FWM ),导致信号串扰,因此不太适用于DWDM 。 G.655 非零色散位移光纤:在C 波段和L 波段的色散较小,避开了零色散区,既抑制了四波混频,也可以开通高速系统。新型的G.655 光纤可以使有效面积扩大到一般光纤的1.5 ~2 倍,大有效面积可以降低功率密度,减少光纤的非线性效应。 光纤的优点 传输频带宽、通信容量大。 光纤传输损耗低、中继距离长。 光纤传输的信号不受电磁的干扰、保密性强、使用安全。 光纤具有抗高温和耐腐蚀的性能,因而可以抵御恶劣的工作环境。 光纤的体积小、重量轻,便于敷设。 制作光纤的原材料丰富,石英光纤的主要成分是二氧化硅(SiO 2 )。 光缆的制造: 光缆的制造过程一般分以下几个过程: 光纤的筛选:选择传输特性优良和张力合格的光纤。 光纤的染色:应用标准的全色谱来标识,要求高温不退色不迁移。

光纤接入的优点

光纤接入的优点: 速度绝对快,数据绝对安全 1.传输速度快:光纤接入能够提供10Mbps、100Mbps、1000Mbps的高速带宽;实现双向数据同步传输,上网速度快、质量稳定、丢包率低、更具安全性,能满足用户对各种业务的需求,比如CRM、ERP、视频、语音、VPN等。 2.传输距离远:光纤连接距离可达70公里;衰减小,光纤每公里衰减比目前容量最大的通信同轴电缆的每公里衰减要低一个数量级以上;容量大,光纤工作频率比目前电缆使用的工作频率高出8~9 个数量级,故所开发的容量很大。 3.抗扰能力强,因为光纤是非金属的介质材料,不受强电干扰、电气信号干扰和雷电干扰,抗电磁脉冲能力也很强,保密性好。 4.光纤网络提供数据业务,有完善的监控和管理系统,能适应将来宽带综合业务数字网的需要,打破“瓶颈”,使信息高速公路畅通无阻。 5.扩容便捷,一条带宽为2M的标准光纤专线很容易就可以升级到4M 、10M 、20M ,最大可达100M ,并且无需更换任何设备。 电信通光纤接入的优势: 1、提供一级电信运营商的资源;双线独享光纤,南北互联。 2、拥有自己的IP资源,可按用户要求进行IP地址指向的最优分配 3、必要时,提供双路由备份(我公司光纤可覆盖地区内) 4、提供一周7天,一天24小时,一年365日全天候技术支持响应;承提供全天网络监控;

5、故障处理10分钟内响应在4小时派工程师前往提供现场服务。 6、故障恢复后2小时内提供书面故障报告 7、如遇计划性中断,提前48小时通知 8、根据客户需求提供流量监测报告 9、1对1服务,1名客户服务代表负责负责1位客户的售后服务工作 10、由高级工程师提供全程技术支持

光纤损耗全参数

光纤损耗 1.光纤的衰减的几种因素及光缆的特性: 造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。 本征: 是光纤的固有损耗,包括: 瑞利散射,固有吸收等。 弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。 挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗。 杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。 不均匀: 光纤材料的折射率不均匀造成的损耗。 对接: 光纤对接时产生的损耗,如: 不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。 光缆特性 1) 拉力特性 光缆能承受的最大拉力取决于加强件的材料和横截面积,一般要求大于1km光缆的重量,多数光缆在100~400kg范围。 2) 压力特性 光缆能承受的最大侧压力取决于护套的材料和结构,多数光缆能承受的最大侧压力在100~400kg/10cm。 3)弯曲特性 弯曲特性主要取决于纤芯与包层的相对折射率差△以及光缆的材料和结构。实用光纤最小弯曲半径一般为20~50mm,光缆最小弯曲半径一般为200~500mm,等于或大于光纤最小弯曲半径。在以上条件下,光辐射引起的光纤附加损耗可以忽略,若小于最小弯曲半径,附加损耗则急剧增加。 4)温度特性 光纤本身具有良好的温度特性。光缆温度特性主要取决于光缆材料的选择及结构的设计,采用松套管二次被覆光纤的光缆温度特性较好。温度变化时,光纤损耗增加,主要是由于光缆材料(塑料)的热膨胀系数比光纤材料(石英)大2~3个数量级,在冷缩或热胀过程中,光纤受到应力作用而产生的。在我国,对光缆使用温度的要求,一般在低温地区为-40℃~+40℃,在高温地区为-5℃~+60℃。 2.光纤的连接损耗: 1.永久性光纤连接(又叫热熔): 这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。一般用在长途接续、永久或半永久固定连接。其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03db/点。2Km熔接一个点,但连接时,需要专用设备(熔接机)和专业人员进行操作,而且连接点也需要专用容器保护起来。 2.应急连接(又叫)冷熔: 应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。这种方法的主要特点是连接迅速可靠,连接典型衰减为0.1~0.3db/点。但连接点长期使用会不稳定,衰减也会大幅度增加,所以只能短时间内应急用。 3.活动连接: 活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接起来的一种方法。这种方法灵活、简单、方便、可靠,多用在建筑物内的计算机网络布线中。其典型衰减为1db/接头。注:系统衰减余量一般不少于4db。 例:发射功率: -16dbm 功率计接收灵敏度: -29.5dbm 线路衰减: 1.5km×3.5db/km=5.25db 连接衰减: 接头2个衰减为: 2点×1db/点=2db

电机损耗计算

Power loss:这个名词,出现在11及之前的版本。指的是感应电流对应的铜耗。比如鼠笼式异步电机转子导条铜耗,永磁体涡流损耗等。在12及更高版本中,该名词已更名为Solidloss。 Solidloss:如上解释,出现在12及更高版本中,指的是大块导体中感应电流产生的铜耗。Coreloss:铁耗。指的是根据硅钢片厂商提供的损耗曲线,求得的铁耗。 Ohmic_loss:感应电流产生的损耗的密度分布。也就是Powerloss或Solidloss的密度。Stranded Loss R:电压源(非外电路中的)对应的绞线铜耗。 Stranded Loss:电流源,外电路中的电压源或电流源,对应的绞线铜耗。 铜耗问题,阐述如下。 铜耗分为2部分,一是主动导体产生的,比如异步和同步电机定子绕组;二是被动导体产生的,比如鼠龙式异步电机转子导条。主动导体一般是多股绞线(也就是stranded),被动导体一般是大块导体(solid)。它们分别对应stranded loss(R)和solid loss。 主动导体损耗:需要设置导体为stranded,并施加电压源,电流源或外电路。当施加的是电压源时,并且给定电机相电阻和端部漏电感(此处针对二维模型)值,则后处理中results/create transient report/retangular report/stranded loss R就是主动导体的损耗,比如异步或同步电机的定子铜耗。当施加的是电流源,外电路中的电压源或电流源时,后处理中results/create transient report/retangular report/stranded loss就是主动导体的损耗。建议选用电压源方法计算铜耗,因为电阻值是由用户指定的,而不是软件根据截面积和长度自动计算出来的,这样可以算得比较准确。 被动导体损耗:只需要给定被动导体的电导率,并且set eddy effect,则后处理中solidloss 即是被动导体的损耗,比如鼠龙式异步电机转子导条。这有点类似于涡流损耗的计算方法,因为涡流损耗和被动导体损耗,都是在非零电导率的导体上产生的。 以上方法,基于Ansoft maxwell 13.0.0及以上版本,并且适用于任何电机。 铁耗分析 对常规交流电机(同步或者异步电机),只有定子铁心才会产生铁耗,转子铁心是没有铁耗的,学过电机的人都明白的。因此,只需要对定子铁心给出B-P曲线(也就是铁损曲线)。注意,B-P曲线分为单频和多频两种,能给出多频损耗曲线最好,这样maxwell算得准些。设置完铁损曲线以后,还要记得在excitations/set core loss,对定子铁心勾选才行。此时,不需要给定子和转子铁心再施加电导率,这是初学者容易忽视的问题。后处理中,通过result/create transient reports/core loss查看铁耗随时间变化曲线。 再谈一下什么情况下需要做涡流损耗分析。对永磁电机,永磁体受空间高次谐波的影响,会在表面产生涡流损耗;对实心转子电机,由于是大块导体,因此涡流损耗占绝大部分。以上两种情况需要考虑做涡流损耗分析。现以永磁电机为例,具体阐述。对永磁体设置电导率,然后对每个永磁体分别施加零电流激励源,在excitations/set eddy effect,对永磁体勾选。注意,若只考虑永磁体的涡流损耗,而不考虑电机其他部分(定转子铁心)的涡流损耗,则只需要给永磁体赋予电导率值,其他部件不需要赋电导率,这是初学者容易搞错的地方。简而言之,只对需要考虑涡流损耗的部件,施加电导率,零电流激励和set eddy effect。后处理中,通过results/create transient reports/retangular report/solid loss查看涡流损耗随时间变化曲线。最后,再次强调一下,做涡流损耗分析,需要skin depth based refinement 网格剖分才行。

光纤通信第一、二章复习

一、填空: 1、通信系统的容量通常用比特率·距离积表示,对于光纤通信系统,若仅从光纤的角度考虑,容量受色散限制。 2、G.652光纤有两个低损耗传输窗口,分别为 1.3μm 与 1.55μm 。 3、多模光纤的色散主要是模间色散和模内色散,单模光纤色散主要包括:(1) 模内色散,(2) 偏振模色散。 4、在阶跃折射率分布光纤中,只传输单模的条件是归一化频率V小于 2.405 ,此单模为HE11 模。 5、在光纤通信系统中,光功率通常用dBm来表示,如果耦合进光纤中的光功率为-13 dBm,则相当于0.05 mW光功率。 6、光纤从横截面上看由3部分组成,即:(1) 纤芯,(2) 包层,(3) 涂层。 7、光纤的数值孔径代表光纤的集光能力。 8、光纤耦合器是实现光信号分路/合路的功能器件,是对同一波长的光功率进行分路/合路;波分复用/解复用器的功能是,将若干路不同波长的信号复合后送入同一根光纤中传送,或相反的作用。 9、色散位移光纤与G.652光纤的不同之处是零色散波长移到1.55微米处,其目的是减小该窗口的色散。 10、从通信的角度看,单模光纤与多模光纤在性能上的主要区别为单模光纤色散小。 11、在光通信中,表征光纤性能的两个主要参数是(1)损耗,(2)色散。 12、非零色散位移光纤与色散位移光纤的区别是零色散波长偏离1.55微米波段,其目的是减小非线性效应。

13、渐变折射率分布多模光纤相对于阶跃折射率分布多模光纤的优点是模间色散小。 14、在光纤通信系统中,光功率通常用dBm来表示,单模光纤中为避免产生非线性效应,要求光纤中总功率不超过50mW,则相当于17 dBm。 15、大有效面积光纤的优点是可以减小非线性效应。 16、在1.55 m窗口,单从色散角度考虑,应选择色散位移光纤(非零色散位移光纤或色散位移光纤),但同时考虑四波混频影响,应选择非零色散位移光纤。 17、单模光纤的群速度色散导致的光脉冲展宽与(1)光源线宽及(2)光纤长度有关。 18、从光纤的集光能力考虑,希望数值孔径越大(添“大”或“小”)越好,而从通信速率角度考虑,则希望数值孔径越小(添“大”或“小”)越好。 19、单模光纤除群速度色散外,还有(1)偏振模色散及(2)高阶色散,后者一般只在高速系统中才考虑。 20、渐变折射率分布光纤同普通多模光纤相比,可以减小模间色散,进而提高通信容量。 24、光纤损耗主要包括:材料吸收损耗、散射损耗和辐射损耗。21、光纤是一种具有非线性效应的介质,请举出其中的两种:受激拉曼散射,受激布里渊散射(或克尔效应)。 22、群速度色散补偿的方法有:(1)在线补偿,使用色散补偿光纤,(2)后补偿,使用色散元件,(3)前补偿,预啁啾补偿。 23、大有效面积光纤的优点是可以减小非线性效应。 二、计算题(10分)(光速C=3×108米/秒) 1、某阶跃折射率分布光纤的纤芯折射率为n1=1.5,包层与纤芯的相对折射率差Δ=0.003,纤芯直径2a = 7μm,试问: (1)该光纤的第一高次模的截止波长λc =? (2)当分别用波长为λ1 = 0.85μm及λ2 = 1.3μm的光波激励该光纤时,能否实 现单模传输?

光纤接入网资料

2.基T PDII的有源光网络 准同步数字系列(PDII)以其廉价的特性和灵活的组网功能,曾大虽:应用于接入网中。尤其近年來推出的SPDH设备将SDH概念引入PDI【系统,进一步提高J'系统的可靠性和灵活性,这种改良的PDH系统在相当长一段时间内,仍会广泛应用。

用于各种经适配处理的净负荷(即网络卩点接口比特流中可用于电信业务的部分)在物理媒质如光纤、微波、卫星等上进行传送。该标准于1986年成为美国数字体系的新标准。国际电信联盟标准部(ITU-T)的前身国际电报电话资询委员会(CCITT)于1988年接受SONET 概念,并与美国标准协会(ANSI)达成协议,将SONET修改后重新命需为同步数字系列(SynchronousDigital Hierarchy, SDH),使之成为同时适应于光纤、微波、卫星传送的通用技术体制。 SDH网是对原有PDH (PlesiochronousDigitalHierarchy准同步数字系列)网的一次革命。PDH是异步复接,在任一网络节点上接入接出低速支路信号都要在该节点上进行复接、码变换、码速调整、定时、扰码、解扰码等过程,并且PDH只规立了电接口,对线路系统和光接口没有统一规左,无法实现全球信息网的建立。随着SDH技术引入,传输系统不仅具有提供信号传播的物理过程的功能,而且提供对信号的处理、监控等过程的功能。SDH通过多种容器C 和虚容器VC以及级联的复帧结构的定义,使其可支持多种电路层的业务,如各种速率的异步数字系列、DQDB、FDDI、ATM等,以及将来可能岀现的各种新业务。段开销中大量的备用通逍增强了 SDH网的可扩展性。通过软件控制使原来PDH中人工更改配线的方法实现了交叉连接和分插复用连接,提供了灵活的上/下电路的能力,并使网络拓扑动态可变,增强了网络适应业务发展的灵活性和安全性,可在更大几何范围内实现电路的保护、髙度和通信能力的优化利用,从而为增强组网能力奠左基础,只需几秒就可以重新组网。特别是SDH自愈环,可以在电路出现故障后,几十亳秒内迅速恢复。SDH的这些优势使它成为宽带业务数字网的基础传输网。 在接入网中应用SDH(同步光网络)的主要优势在于:SDH可以提供理想的网络性能和业务可靠性:SDH固有的灵活性使对于发展极其迅速的蜂窝通信系统采用SDH系统尤其适合。当然,考虑到接入网对成本的髙度敏感性和运行环境的恶劣性,适用于接入网的SDH 设备必须是髙度紧凑,低功耗和低成本的新型系统,其市场应用前景看好。 接入网用SDH的最新发展趋势是支持IP接入,目前至少需要支持以太网接口的映射, 于是除了携带话音业务量以外,可以利用部分SDH净负荷来传送IP业务,从而使SDH也能支持IP 的接入。支持的方式有多种,除了现有的PPP方式外,利用VC12的级联方式来支持IP传输也是一种效率较高的方式。总之,作为一种成熟可靠提供主要业务收入的传送技术在可以预见的将来仍然会不断改进支持电路交换网向分组网的平滑过渡。

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

光纤通信期末复习总结

一.选择填空 光纤的传输性质:损耗和色散。色散分为模式色散、材料色散、波导色散。0.85μm、1.3μm、1.55μm左右是光纤通信中常用的低损耗窗口。 光纤中的各种导模 方程为:J0(u)=0, 根 2.405,5.520,8.654。J1(u)=0,根: 3.832 7.016,10.173 。J2(u)=0,根5.136,8.417,11.620。截止频率:TE0m、TM0m、HE2m模,J0(u)=0。②HE1m EHνm模,Jν(u)=0。③HEνm(ν>1 模,。 模截止频率为零,称基模或主模,V 2.405 件。光纤中模式数量由V 序:TE(M)01、HE21、EH11、HE12、HE31单模光纤的基本分析 定工作波长下,传输基模HE11模(或LP 是理想的阶跃型的,光纤归一化频率﹤2.405时, LP01模。定义满足下式的λc 的截止波长:(2π/λc)n0a√2Δ=2.405当传输光波长大于λc时, 光纤中单模传输的条件。 单模光纤的发展与演变 纤(G.652光纤) 折射率分布,零色散波长1.31μm, 损耗、大带宽。②色散位移光纤(G.653光纤),损耗低于0.2dB/km 1.55μm 散位移光纤NZ-DSF(G.655光纤) 密集波分复用DWDM EDFA发展出现,小色散(1~6ps/nm·km 降低四波混频FWM 布,零色散波长小于1530nm 大于1565nm为负色散。 两种大有效面积NZ-DSF 布:三角形+ 散补偿光纤:在1550nm 与G.652连接使用抵消其正色散。 双简并型半导体中电子的统计分布 热平衡状态下的情况,两种费米能级 和Efv来表征。价带中分布与P 导带中分布与N型相似,因而在E fV E fC 辐射跃迁:竖直跃迁,直接带隙半导体, 发光效率高。无辐射跃迁:间接跃迁, 间接带隙半导体,发光效率低。 DFB激光器的优点:单纵模振荡、谱线 窄,波长稳定性好、动态谱线好、线性 眼图分析法:分析码间串扰和噪声。垂 直张开度V1/V2表示系统抗噪声能力, 也称信噪比边际;水平张开度t1/t2反 光交换方式:空分、时分、波分。 光传送网的分层结构:SDH网络:电路层、 通道层、复用段层、再生段层、物理层 (光纤)→WDH光网络:电路层、电通道

造成光纤衰减的多种原因

造成光纤衰减的多种原因 1、造成光纤衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。 本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。 弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成损耗。 挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。 杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。 不均匀:光纤材料的折射率不均匀造成的损耗。 对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。 当光从光纤的一端射入,从另一端射出时,光的强度会减弱。这意味着光信号通过光纤传播后,光能量衰减了一部分。这说明光纤中有某些物质或因某种原因,阻挡光信号通过。这就是光纤的传输损耗。只有降低光纤损耗,才能使光信号畅通无阻。 2、光纤损耗的分类 光纤损耗大致可分为光纤具有的固有损耗以及光纤制成后由使用条件造成的附加损耗。具体细分如下: 光纤损耗可分为固有损耗和附加损耗。 固有损耗包括散射损耗、吸收损耗和因光纤结构不完善引起的损耗。 附加损耗则包括微弯损耗、弯曲损耗和接续损耗。 其中,附加损耗是在光纤的铺设过程中人为造成的。在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。光纤微小弯曲、挤压、拉伸受力也会引起损耗。这些都是光纤使用条件引起的损耗。究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。附加损耗是可以尽量避免的。下面,我们只讨论光纤的固有损耗。 固有损耗中,散射损耗和吸收损耗是由光纤材料本身的特性决定的,在不同的工作波长下引起的固有损耗也不同。搞清楚产生损耗的机理,定量地分析各种因素引起的损耗的大小,对于研制低损耗光纤合理使用光纤有着极其重要的意义。 3、材料的吸收损耗 制造光纤的材料能够吸收光能。光纤材料中的粒子吸收光能以后,产生振动、发热,而将能量散失掉,这样就产生了吸收损耗。我们知道,物质是由原子、分子构成的,而原子又由原子核和核外电子组成,电子以一定的轨道围绕原子核旋转。这就像我们生活的地球以及金星、火星等行星都围绕太阳旋转一样,每一个电子都具有一定的能量,处在某一轨道上,或者说每一轨道都有一个确定的能级。距原子核近的轨道能级较低,距原子核越远的轨道能级越高。轨道之间的这种能级差别的大小就叫能级差。当电子从低能级向高能级跃迁时,就要吸收相应级别的能级差的能量。 在光纤中,当某一能级的电子受到与该能级差相对应的波长的光照射时,则位于低能级轨道上的电子将跃迁到能级高的轨道上。这一电子吸收了光能,就产生了光的吸收损耗。 制造光纤的基本材料二氧化硅(SiO2)本身就吸收光,一个叫紫外吸收,另外一个叫红外吸收。目前光纤通信一般仅工作在0.8~1.6μm波长区,因此我们只讨论这一工作区的损耗。 石英玻璃中电子跃迁产生的吸收峰在紫外区的0.1~0.2μm波长左右。随着波长增大,其吸收作用逐渐减小,但影响区域很宽,直到1μm以上的波长。不过,紫外吸收对在红外区工作的石英光纤的影响不大。例如,在0.6μm波长的可见光区,紫外吸收可达1dB/km,在0.8μm波长时降到0.2~0.3dB/km,而在1.2μm波长时,大约只有0.ldB/km。

EPON技术在光纤接入网领域的优势

EPON技术在光纤接入网领域的优势 一、 光纤接入网的发展 连接骨干网(或城域网)和用户、实现“最后一公里”业务接入的网络设备及传输介质,我们通常称之为接入网。 随着技术的不断进步和新业务的不断诞生,接入网经历了从窄带到宽带、从单语音业务(POTS)到多业务、从时分复用到报文传输、从铜缆介质到光缆介质、从有源分路到无源分光、从近距离到近距离的长期发展过程。 由于光纤介质能提供的巨大带宽及天然的材料成本优势,接入网非常自然地选择了光纤接入网(OFAN)发展方向。根据中间分路的技术选择不同,光纤接入网分为有源光纤接入网(AON)和无源光纤接入网(PON),而后者在技术体系和设备实现层面更加简洁化、标准化,并在带宽资源、易用性、维护成本等方面优于前者。 PON技术也是经历了不同实现方式、不断标准体系的发展历程。目前EPON(以太网无源光网络,遵循IEEE标准)和GPON(Gigabit-Capable PON,遵循ITU标准)成为发展和应用得最好的两种PON的技术分支。 其中,EPON技术在最近几年迅速发展并获得大量成功应用,已经被业界公认为是实现“最后一公里”业务接入的最佳技术选择,是接入网建设与升级的必经之路。 如今,EPON技术不仅已经开始被各大电信运营商大量部署在面向广大家庭或企事业单位的公共接入网络中,而且开始广泛适用于广电“三网合一”、智能电网、铁路通信、视频监控、物联网等工程建设中。 EPON技术在多个方面具有技术的先进性,不但能很好满足当今各种业务的需求,而且能满足未来的新业务需求。因此,该技术在未来的若干年,必将获得全面的应用和巨大的发展。 二、 EPON技术的特点 EPON在物理层采用PON技术,在链路层采用以太网协议。具有以下特点: 1、技术先进:EPON技术采用PON的拓扑结构实现了以太网的接入。PON加以太网的技 术组合吸取了两种技术的先进性,形成了简洁明了的EPON技术体系,降低了EPON 系统设备的复杂性。 2、兼容性好:以太网技术是当今网络时代应用最多的技术。EPON技术在链路层采用以 太网协议,EPON系统设备也因此可以很好的实现与其他网络设备的兼容对接。 3、性能好:EPON系统设备中每个PON端口提供上下行分别1Gbps的带宽。下一代 EPON(即10G EPON)更能提供高达10G的对称或非对称上下行带宽。

光纤损耗大的几个因素

光纤损耗大存在的因素 光纤熔接包处损耗变大,是常见的故障,原因通常有3个: 1、光纤熔接处开裂,可能的原因有:当初熔接时存在缺陷;光缆遭受外力拉伸;熔接点塑料护套、固定金属棒与光纤热膨胀系数差异,反复的温度变化引起伸缩。显然排除故障时必须重新熔接光纤。 2、熔接包内盘纤变形失园而出现角度,导致损耗变大。可能的原因有:光缆遭受外力拉伸;因温度变化热涨冷缩引起。排除故障时只需重新整理盘纤,保证圆形、消除角度。 3、熔接包内进水并侵入熔接处的裸纤,导致光信号散射损失。排除故障时要打开熔接包清除积水,并晒干熔接处,尽量散尽水分,或者重新熔接。 光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗 光纤使用中引起的传输损耗主要有 1接续损耗 2光纤本质造成的损耗、 3熔接不当所报造成的损耗和 4活动接头(光纤适配器及光纤跳线)造成的损耗和 5非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗) 接续损耗 (1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳等原因;其中影响最大的是模场直径不一致。 (2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质品牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行 挑选经验丰富的施工人员光缆配盘时尽量做到整盘配置(单盘≥500-800米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 (3)挑选经验丰富训练有素的接续人员进行接续和测试 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式 电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。 1、电力变压器损耗计算公式 (1)有功损耗:ΔP=P0+KTβ2PK-------(1) (2)无功损耗:ΔQ=Q0+KTβ2QK-------(2) (3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3) Q0≈I0%SN,QK≈UK%SN 式中:Q0——空载无功损耗(kvar) P0——空载损耗(kW) PK——额定负载损耗(kW) SN——变压器额定容量(kVA) I0%——变压器空载电流百分比。 UK%——短路电压百分比 β——平均负载系数 KT——负载波动损耗系数 QK——额定负载漏磁功率(kvar) KQ——无功经济当量(kW/kvar) 上式计算时各参数的选择条件: (1)取KT=1.05; (2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;

(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%; (4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h; (5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。 2、电力变压器损耗的特征 P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗; 磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。 涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。 PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。 负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。 变压器的全损https://www.sodocs.net/doc/7a16285226.html,/耗ΔP=P0+PC 变压器的损耗比=PC /P0 变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。 变损电量的计算:变压器的损失电量有铁损和铜损两部分组成。铁损与运行时间有关,铜损与负荷大小有关。因此,应分别计算损失电量。 1、铁损电量的计算:不同型号和容量的铁损电量,计算公式是: 铁损电量(千瓦时)=空载损耗(千瓦)×供电时间(小时)

超低损耗光纤的制造工艺研究

超低损耗光纤的制造工艺研究■肖华12 劳雪刚12 沈震强12 翟云霄12 (1.江苏亨通光电股份有限公司 江苏 苏州 215200) (2.江苏亨通光导新材料有限公司 江苏 苏州 215200) 0. 引言 随着5G第一阶段的标准公布,其大规模的应用试验将全面展开,预计我国在2020年将实现5G的全面商用,同时在“中国制造2025”“宽带中国”“全光网络”等国家战略的持续推进下,光纤光缆产业势必将迎来新一轮的井喷式发展;如今的光纤应用越来越广泛,衍生出针对具体场景的传能光纤、掺铒光纤、掺镱光纤、光子晶体光纤、耐高温光纤等品类,但主流的大宗产品还是通信网络用单模光纤,特别是在400G 甚至更高级别的通信系统中,信噪比恶化和光纤的非线性效应成为制约通信距离的主要因素,传统的G.652光纤无法满足长距离传输系统的需求,新型超低损耗大有效面积光纤就成为新时代超高速骨干传送网的主要选择。 光纤损耗,又称光纤衰减,指光在光纤中行进时,光强度在单位距离的减少量。当光强度低到一定程度后,光纤尾端的接收器就无法准确地识别信号。此时,就需要建立中继站来保证信号的有效传输。在长距离传输中,低损耗即意味着可以减少中继站,能大幅地降低建设成本。据业内预计,2020年400G将逐渐普及,此时对超低损耗光纤的需求也将与日俱增。 光纤的母材被称作光纤预制棒。光纤的大多数光学性能,包括衰减,主要由预制棒本身决定,因此,制作超低损耗光纤,主要是要在光纤预制棒的组分、结构、品质上做文章。本文会在讨论光纤衰减机理的同时,描述以气相轴向沉积法(VAD)为基础的向光纤预制棒掺杂碱金属的方法,实现制造超低损耗光纤的目的。 1. 光纤衰减机理 1.1 光纤的衰减来源 光纤的衰减可以分为紫外吸收,红外吸收,瑞利散射,羟基吸收,金属离子吸收等。紫外吸收和红外吸收属于石英的本征吸收,分别由二氧化硅分子的电子跃迁和分子振动引起,通常来说不会有太大改变。羟基吸收和金属离子吸收对光纤衰减影响很大,但目前已经有比较成熟的方法最小化其影响,包括氯气脱羟和氟蚀刻等。 瑞利散射尽管属于石英的本征吸收,但由于目前市面上的光纤芯部均非纯粹的二氧化硅,因此瑞利散射数值还远未达到二氧化硅的自身极限。根据计算,二氧化硅的理论衰减极限在1550nm波段大约为0.15dB/km。图1将超低损光纤的总衰减分解为了红外衰减(IR),紫外衰减(UV),瑞利散射(RS)和氢氧离子吸收(OH)。从图1看,在1550nm波段,瑞利散射带来的衰减与总衰减十分接

光纤宽带的优势有哪些

现在一个公司对网络的要求是越来越高了,无论是传统企业还是新型企业,光纤宽带已经越来越多的成为企业的上网首选。 光纤接入的优点: 1、传输速度快:北京电信通光纤接入能够提供10Mbps、100Mbps、1000Mbps 的高速带宽;实现双向数据同步传输,上网速度快、质量稳定、丢包率低、更具安全性,能满足用户对各种业务的需求,比如CRM、ERP、视频、语音、VPN 等。 2、传输距离远:光纤连接距离可达70公里; 衰减小,光纤接入每公里衰减比目前容量最大的通信同轴电缆的每公里衰减要低一个数量级以上;容量大,光纤工作频率比目前电缆使用的工作频率高出8~9 个数量级,故所开发的容量很大。 3、抗扰能力强,因为光纤是非金属的介质材料,不受强电干扰、电气信号干扰和雷电干扰,抗电磁脉冲能力也很强,保密性好。 4、光纤宽带网络提供数据业务,有完善的监控和管理系统,能适应将来宽带综合业务数字网的需要,打破“瓶颈”,使信息高速公路畅通无阻。 5、扩容便捷,一条带宽为2M的标准光纤专线很容易就可以升级到4M 、10M 、20M ,最大可达100M ,并且无需更换任何设备。 目前采用光纤接入的企业有如下特点: 1、电子商务式 客户是典型的电子商务式公司,对互联网依存度很高,网络即是生命线,需要非常稳定的网络接入服务 2、电子政务式 客户利用互联网作为政务办公的首选方式,对互联网依存度也很高,很多政务都必须在互联网上完成,也需要非常稳定的网络接入服务 3、数据传输型

客户需要利用互联网传输大量的业务数据或者文件数据,很多影视作品制作、营收数据汇总、业务资料传输都需要稳定的大带宽的互联网接入 4、日常办公型 因公司人员众多,普通的ADSL等接入互联网方式已经无法满足日常办公需要了,采用光纤接入方式接入互联网 5、其他类型用户 北京地区的客户选择光纤专线接入宽带的理由主要是为了解决企业在网络应用方面的一些问题: 1、如公司网站所用的服务器,网站必须使用稳定的光纤宽带和固定IP地址才能被不同地区的客户来访问,因为只有固定的IP地址才能让网络的物理地址始终是在那个地方。以达到在线上销售产品和品牌的宣传,同时网站也是要一个比较稳定的网络上、下速度和比较小的延时。 2、企业应用的ERP软件,此同样是和网站的应用基本一样,保证网络的稳定和安全;还能满足CRM、视频、语音、VPN等业务的需求。 3、公司与公司的分支机构建立的专用通道称为点对点光纤专线接入,只有固定的IP地址和稳定的网速才能保证两点之间或多点之间的网络畅通。通过专线接入宽带后实现专网,把各个地区的分部组建成一个大的区域网或一个互联互通的网络。

电气相关计算公式

电气相关计算公式 一电力变压器额定视在功率Sn=200KVA,空载损耗Po=0.4KW,额定电流时的短路损耗PK=2.2KW,测得该变压器输出有功功率P2=140KW时,二次则功率因数2=0.8。求变压器此时的负载率和工作效率。 解:因P22×100% 2÷(Sn×2)×100% =140÷(200×0.8)×100%=87.5% =(P 2/P1)×100% P1=P2+P0K =140+0.4+(0.875)2×2.2 =142.1(KW) 所以 =(140×142.08)×100%=98.5% 答:此时变压器的负载率和工作效率分别是87.5%和98.5%。

有一三线对称负荷,接在电压为380V的三相对称电源上,每相负荷电阻R=16,感抗X L=12。试计算当负荷接成星形和三角形时的相电流、线电流各是多少? 解;负荷接成星形时,每相负荷两端的电压,即相电压为U入Ph===220(V) 负荷阻抗为Z===20() 每相电流(或线电流)为 I入Ph=I入P-P===11(A) 负荷接成三角形时,每相负荷两端的电压为电源线电压,即==380V 流过每相负荷的电流为 流过每相的线电流为 某厂全年的电能消耗量有功为1300万kwh,无功为1000万kvar。求该厂平均功率因数。 解:已知P=1300kwh,Q=1000kvar 则 答:平均功率因数为0.79。 计算: 一个2.4H的电感器,在多大频率时具有1500的电感? 解:感抗X L=则 =99.5(H Z) 答:在99.5H Z时具有1500的感抗。 某企业使用100kvA变压器一台(10/0.4kv),在低压侧应配置多大变比的电流互感器? 解:按题意有 答:可配置150/5的电流互感器。 一台变压器从电网输入的功率为150kw,变压器本身的损耗为20kw。试求变压器的效率? 解:输入功率 P i=150kw 输出功率 PO=150-20=130(KW)

相关主题