搜档网
当前位置:搜档网 › 韦达定理(根与系数的关系)全面练习题及答案

韦达定理(根与系数的关系)全面练习题及答案

韦达定理(根与系数的关系)全面练习题及答案
韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系)

韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么

1212,b c x x x x a a

+=-= 说明:定理成立的条件0?≥

练习题

一、填空:

1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .

2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .

4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .

5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .

6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .

7、以13+,13-为根的一元二次方程是 .

8、若两数和为3,两数积为-4,则这两数分别为 .

9、以23+和23-为根的一元二次方程是 .

10、若两数和为4,两数积为3,则这两数分别为 .

11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .

12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .

13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:

(1)2212x x += ; (2)2

111x x += ; (3)=-221)(x x = ;?(4))1)(1(21++x x = .

三、选择题:

1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )

(A )0 (B)正数 (C)-8 (D )-4

2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12

21221x x x x ( )

(A )-7 (B ) 3 (C ) 7 (D) -3

3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 3

1 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( )

(A)0322=-+x x (B) 0322=+-x x

(C)0322=--x x (D )0322=++x x

5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )

(A )5或-2 (B) 5 (C ) -2 (D) -5或2 6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( )

(A )-21 (B) -6 (C ) 21 (D) -2

5 7、分别以方程122--x x =0两根的平方为根的方程是( )

(A)0162=++y y (B) 0162=+-y y

(C )0162=--y y (D)0162=-+y y

四、解答题:

1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.

2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.

3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.

4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.

5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.

6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.

7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.

8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.

(1) 是否存在实数k ,使12123(2)(2)2

x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.

(2) 求使

1221

2x x x x +-的值为整数的实数k 的整数值.

?

答案:

?

?

届中考复习《一元二次方程的根与系数的关系》专题测试含答案

精心整理北京市朝阳区普通中学2018届初三中考数学复习 一元二次方程的根与系数的关系专题复习练习题 1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2B.1C.-2D.-1 2 3 4.p,q 5.) 6.2的值为( A.-1B.9C.23D.27 7.已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( ) A.x2+3x-2=0B.x2+3x+2=0 C.x2-3x-2=0D.x2-3x+2=0 8.已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-

6,则a的值为( ) A.-10B.4C.-4D.10 9.菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( ) A.-3B.5C.5或-3D.-5或3 10.2 x1x2 11. 12.+n= 13. 14. 15. 16. 17. (1)求m的取值范围; (2)当x12+x22=6x1x2时,求m的值. 18.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根. (1)求k的取值范围; (2)是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若

不存在,说明理由. 19.不解方程,求下列各方程的两根之和与两根之积. (1)x2+2x+1=0; (2)3x2-2x-1=0; (3)2x2+3=7x2+x; 2 20. (1) (2) 21. (1) (2) 10. 11. 13.10 14.10-400 15.m>1/2 16.x2-10x+9=0 17.解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m-1)≥0,整理得:4-4m+4

初三上学期一元二次方程-韦达定理(根与系数的关系)全面练习题及答案

韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

根与系数的关系练习题

一元二次方程根与系数的关系习题 主编:闫老师 [准备知识回顾]: 1、一元二次方程 ) 0(02≠=++a c bx ax 的求根公式为 )04(2422≥--±-=ac b a ac b b x 。 2、一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=? (1) 当0>?时,方程有两个不相等的实数根。 (2) 当0=?时,方程有两个相等的实数根。 (3) 当0

在分解二次三项式c bx ax ++2的因式时,如果可用公式求出方程 )0(02≠=++a c bx ax 的两个根21x x 和,那么))((212x x x x a c bx ax --=++.如果 方程)0(02≠=++a c bx ax 无根,则此二次三项式c bx ax ++2不能分解. [基础运用] 例1:已知方程02)1(32=+--x k x 的一个根是1,则另一个根是 , =k 。 解: 变式训练: 1、已知1-=x 是方程0232=++k x x 的一个根,则另一根和k 的值分别是多少? 2、方程062=--kx x 的两个根都是整数,则k 的值是多少? 例2:设21x x 和是方程03422=-+x x ,的两个根,利用根与系数关系求下列各式的值: (1)2 22 1x x + (2))1)(1(21++x x (3)2 11 1x x + (4)221)(x x -

韦达定理(根与系数的关系)全面练习题及答案

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间关系 从暑假开始,我们系统学习了一元二次方程解法及一元二次根判别式和一元二次方程根与系数之间关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中第六章解直角三角形. 一、基本内容 1.一元二次方程含义:含有一个未知数,且未知数次数最高是2整式方程叫一元二次方程. 2.一般形式:ax 2+bx+c=0(a ≠0) 3.解法: ①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)形式可直接开平方.如(3x-1)2=5两边开平方得: 513±=-x 513±=x 3 51,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=- x x 9 13191322+=+-x x 94)31(2=-x 3 231±=-x 3231±=x 3 1,121-==∴x x 此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式推导用这种方法. ③公式法:)0(2)0(02≥??±-=≠=++a b x a c bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)形式,将一元二次方程转化成ax+b=0,cx+d=0形式,变成两个一元一次方程来解. 4.根判别式:△=b 2-4ac b 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4a c ≥0 方程有实根. 有三种应用: ①不解方程确定方程根情况. ②利用方程根条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.

一元二次方程根与系数的关系(韦达定理)专题训练(有答案)--

一元二次方程根与系数的关系(韦达定理) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 1212,b c x x x x a a +=-= 说明:(1)定理成立的条件0?≥ (2)注意公式重12b x x a +=-的负号与b 的符号的区别 已知x1,x2是方程2x 2-x-5=0的两个根 考点:根与系数的关系.专题:应用题. 分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可. 解:∵x1,x2是方程2x 2-x-5=0的两个根 ∴x1+x2=-b/a=12,x1×x2=c/a=-5/2 本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a . (1)计算对称式的值 例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -. (2)定性判断字母系数的取值范围

例二 一个三角形的两边长是方程 的两 根,第三边长为2,求k 的取值范围。 例三 已知关于x 的方程221(1)104 x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =. 例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根. (1) 是否存在实数k ,使12123(2)(2)2 x x x x --=-成立若存在,求出k 的值;若

(完整版)根与系数关系知识讲解及练习

韦达定理:对于一元二次方程2 0(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,则 1212,b c x x x x a a +=-= 说明:(1)定理成立的条件0?≥ (2)注意公式重12b x x a +=-的负号与b 的符号的区别 根系关系的几大用处 ① 验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次 方程的两根; 例如:已知方程x 2-5x+6=0,下列是它两根的是( ) A . 3,-2 B. -2, 3 C. -2,-3 D. 3, 2 ② 求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于x 1 和x 2的代数式的值,如; ③ 求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次 方程的一般式. ④ 求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另 一个数及未知数系数. (后三种为主) (1)计算代数式的值 例 若12,x x 是方程2 220070x x +-=的两个根,试求下列各式的值: (1) 22 12x x +; (2) 12 11x x +; (3) 12(5)(5)x x --; (4) 12||x x -. 解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=- (1) 2222 121212()2(2)2(2007)4018x x x x x x +=+-=---= (2) 1212121122 20072007 x x x x x x +-+===-

(3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=- (4) 12||x x -= ===说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222121212()2x x x x x x +=+-, 121212 11x x x x x x ++=,22 121212()()4x x x x x x -=+-, 12||x x -=2212121212()x x x x x x x x +=+, 33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想. (2)构造新方程 理论:以两个数为根的一元二次方程是 。

一元二次方程的根与系数的关系教学案(一)

一元二次方程的根与系数的关系教学案(一) 一、素质教育目标 (一)知识教学点: 掌握一元二次方程的根与系数的关系并会初步应用. (二)能力训练点: 培养学生分析、观察、归纳的能力和推理论证的能力. (三)德育渗透点: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.培养学生去发现规律的积极性及勇于探索的精神. 二、教学重点、难点、疑点及解决方法 1.教学重点:根与系数的关系及其推导. 2.教学难点:正确理解根与系数的关系. 3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系. 三、教学步骤 (一)明确目标 一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知

一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程 1.复习提问 (1)写出一元二次方程的一般式和求根公式. (2)解方程①x2-5x+6=0,②2x2+x-3=0. 观察、思考两根和、两根积与系数的关系. 在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗? 2.推导一元二次方程两根和与两根积和系数的关系. 设x1、x2是方程ax2+bx+c=0(a≠0)的两个根.

根与系数的关系

21.2.4 一元二次方程根与系数的关系(第二课时) 导学探究 1.一元二次方程的一般形式是_______________. 2. 一元二次方程的求根公式是______________________. 3. 判别式与一元二次方程根的情况: 4. 一元二次方程ax 2 +bx +c =0(a ≠0)有两个实数根x 1,x 2与系数a,b,c 的关系是什么? 典例探究 1.已知一元二次方程两根的关系求参数或参数的范围 总结: 已知一元二次方程两根x1,x2的不等关系求原方程中的字母参数时,一般考虑韦达定理和根的判别式,尤其是根的判别式不要忘记,这是保证方程有根的基本条件. 练1.已知x1,x2是关于x 的一元二次方程x 2 ﹣(2k+1)x+k 2 +2k=0的两个实数根,且x1,x2满足x 1?x 2﹣x 12﹣x 22≥0,求k 的取值范围. 【例2】(2015?丹江口市一模)已知关于x 的方程x 2 ﹣2(m+1)x+m 2 ﹣3=0 (1)当m 取何值时,方程有两个实数根? (2)设x 1、x 2是方程的两根,且(x 1﹣x 2)2 ﹣x 1x 2=26,求m 的值. 总结: 1. 一元二次方程ax 2+bx+c=0(a ≠0)根的情况与判别式△的关系如下: 24b ac -是一元二次方程20(0)ax bx c a ++=≠的根的判别式,设2=4b ac ?-,则 (1)当0?>时,__________________________________; (2)当=0?时,___________________________________ (3)当0?<时,原方程____________________________. 【例1】已知关于x 的方程2 120,3 x kx --=设方程的两个根为x 1,x 2,若12122()x x ,x x +>求k 的取值范围. 如果x 1,x 2是一元二次方程ax 2 +bx+c=0(a ≠0)的两个实数根,则有 1212,b c x x x x a a +=-?=.这是著名的韦达定理.

初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理 一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。 韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征; 利用韦达定理逆定理,构造一元二次方程辅助解题等。 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。 【例题求解】 【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。 思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例 【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么 b a a b +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2 思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。 注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1)恰当组合;(2)根据根的定义降次;(3)构造对称式。 【例3】 已知关于x 的方程:04)2(2 2 =---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。 (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。 思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。 【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。

根与系数的关系

一元二次方程的根与系数的关系 教学目的 1.使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会初步运用. 2.培养学生分析、观察以及利用求根公式进行推理论证的能力. 教学重点、难点 重点:韦达定理的推导和初步运用. 难点:定理的应用. 教学过程 一、复习提问 1.一元二次方程ax2+bx+c=0的求根公式应如何表述? 2.上述方程两根之和等于什么?两根之积呢? 二、新课讲解 一元二次方程ax2+bx+c=0(a≠0)的两根为 由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”) 如果ax2+bx+c=0(a≠0)的两个根是x 1,x2,那么 例1已知方程5x2+k x-6=0的一个根是2,求它的另一根及k的值. 讲解例1

例2利用根与系数的关系,求一元二次方程2x2+3x-1=0两根的(1)平方和;(2)倒数和. 三、学生练习 1.下列各方程两根之和与两根之积各是什么? (1)x2-3x-18=0;(2)x2+5x+4=5; (3)3x2+7x+2=0;(4)2x2+3x=0. 2.方程5x2+kx-6=0两根互为相反数,k为何值? 3.方程2x2+7x+k=0的两根中有一个根为0,k 为何值? 4、已知两个数的和等于8,积等于9,求这两个数. 提示:这是一道“根与系数的关系定理”的应用题,要注意此类题的解题步骤:(1)运用定理构造方程; (2)解方程求两根; (3)得出所欲求的两个数. 四、课堂小结 1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理. 2.要掌握定理的四个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.三是已知方程求两根的各种代数式的值;四是已知两根的代数式的值,构造新方程; 五、布置作业: 1、本节不留书面作业。 2、探究性作业:课本55页探索。

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间的 关系 我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元,从暑假开始我们将学习几何,二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次. 中的第六章解直角三角形一、基本内容的整式方程叫一元且未知数的次数最高是1.一元二次方程含义:含有一个未知数,2. 二次方程20) +bx+c=0(a一般形式:ax≠2.: 3.解法22如=b(b≥0)0)和(x+a)的形式可直接开平方:①直接开平方法形如 x.=b(b≥2: 两边开平方得(3x-1)=551?51??,?x?x5?x53?13x?1??21332 :② 配方法:例03x??2x?11222解:1?2x3x??xx?3311212?xx??? 939321412??x?(x)??3393121?,xx????x?121333因 为很多公式的推导用这种方,.但要掌握此类解法在解一元二次方程时,一般不用. 法?b??2)??0(?0axbx??c?0(a?)的求根公式是x:③公式法a2将一元二次方程转,:方程右边为零.左边分解成(ax+b)(cx+d)的形式④因式分解法. 变成两个一元一次方程来解化成ax+b=0,cx+d=0的形式,2-4ac =b根的判别式:△4.2. 方程有两个不相等实根b-4ac>0 2-4ac=0 方程有两个相等实根. b2-4ac<0 方程无实根. b2-4ac≥0 b方程有实根. 有三种应用: ①不解方程确定方程的根的情况. ②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m或k的取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完 全平. 来证<0Δ或>0Δ一定有,无论取何值k)或m(叙述不论,方式 cb2. +bx+c=0(a≠0)的根,则5.根与系数间的关系,某x,x是ax?x,x?x?x??212121aa: 应用. 求方程中m或k的值或另一根①不解方程,. 求某些代数式的值②不解方程,. 的取值范围m或k③利用两根的关系,求方程中. 使它与原方程有某些关系④建立一个方程,. ⑤一些杂题 : 二、本次练习: 填空题(一)22mx??x3mx?2x?m m=____. 1.关于x是一元二次方程的方程,则2常数化成一元二次方程的形式是____.其一次项系数是 2.将方程4x____,-kx+k=2x-1____. 项是222x=____. 则代数式(x+2)+(x-2)的值相等的值与8(x,-2)3.522 +( )=(x- )4.x?x 22k=____.

根与系数关系知识讲解及练习

0b0a,如果方程有两个实数韦达定理:对于一元二次方,10?? 1)定理成立的条件说明:(b??x?x的负号与b)注意公式重的符号的区别(221a根系关系的几大用处 ①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;? 例如:已知方程2-5x+6=0,下列是它两根的是( x) -3 D. 3, 2, 3,-2 B. -2, 3 C. -2 A.②求代数式的值:在不解方 程的情况下,可利用根与系数的关系求关于x和x的代数式21的值,如;? ③求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式.? ④求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数. (后三种为主) (1)计算代数式的值 2x,x?2x?x2007?0的两个根,试求下列各式的值:是方程若例 211122?(x?5)(x?5)|x?x|xx?.(4) ; (2) ; (1) ; (3) 212112xx21x?x??2,xx??2007解:由题意,根据根与系数的关系得:21122222?2(?2007)?4018xx?(x??x)?(x?x2)?2 (1) 212112x?x11?2221????(2) xxxx?200720072211(x?5)(x?5)?xx?5(x?x)?25??2007?5(?2)?25??1972 (3) 212211 222?4(?2007)2)(??22008x)??(xx)x?4x????|xx|(x (4) 21122211说明:利用根与系数的关系求值,要熟练掌握以下等式变形: x?x112222212???4xx?xx?)?(xx2)?x??xx(x?xx)(,,, 212121212211xxxx2121.222,4?|x?x|)x(x??xx?xxxx22121112221112333等等.韦达定理体现了整体思想.)x?x)?3xxx?x(?(x?x21121212(2)构造新方程 为根的一元二次方程是。理论:以两个数 x+y=5 解方程组例??????????? xy=6??? 是方程z-5z+6=0 ,解:显然,xy=3 =2,z由方程①解得 z21=3 =2,y∴原方程组的2的两根① 解为 x11=2 =3,y???????????????? x22显然,此法比代入法要简单得多。)定性判断字母系数的取值范围(3一个三角形的两边长是方程的两根,第三边长为2,求k的取值范围。例 为的两根,则c=2 a、bb解:设此三角形的三边长分别为a、、c,且由题意知2-4 k≤0,k≥4或×△=k-4×22≥为所求。∴

一元二次方程根与系数的关系习题精选(含答案)

一元二次方程根与系数的关系习题精选(含答案) 一.选择题(共22小题) 1.(2014?宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是() A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0 2.(2014?昆明)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1?x2等于() A.﹣4 B.﹣1 C.1D.4 3.(2014?玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是() A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在 4.(2014?南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为() A.10 B.9C.7D.5 5.(2014?贵港)若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c的值是()A.﹣10 B.10 C.﹣6 D.﹣1 6.(2014?烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是() A.﹣1或5 B.1C.5D.﹣1 7.(2014?攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是()

A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1 8.(2014?威海)方程x2﹣(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是()A.﹣2或3 B.3C.﹣2 D.﹣3或2 9.(2014?长沙模拟)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣2,则另一个根是()A.2B.1C.﹣1 D.0 10.(2014?黄冈样卷)设a,b是方程x2+x﹣2015=0的两个实数根,则a2+2a+b的值为()A.2012 B.2013 C.2014 D.2015 11.(2014?江西模拟)一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于() A.﹣6 B.6C.3D.﹣3 12.(2014?峨眉山市二模)已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的两个实数根,则的最大值是() A.19 B.18 C.15 D.13 13.(2014?陵县模拟)已知:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,则a、b的值分别是() A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=1 14.(2013?湖北)已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+αβ+β2的值为()A.﹣1 B.9C.23 D.27

中考数学专题 根与系数的关系_答案

专题 根与系数的关系 例1. 15 2 s ≥- 且3,5s s ≠-≠ 例2. C 提示: 设三根为121,,x x ,则121x x -< 例3. 设22 3,A βα = +22 3,B αβ= + 31004A B += ① A B -= ② 解由① ②联立的 方程组得 1 (4038 A =- 例 4. 0,s ≠Q 故第一个等式可变形为211()99()190,s s ++= 又1 1,,st t s ≠∴Q 是一元二次方 程 299190x x ++=的两个不同实根, 则11 99,19,t t s s +=-=g 即199,19.st s t s +=-= 故 41994519st s s s t s ++-+==- 例5. (1) 当a b =时, 原式=2; 当a b ≠时, 原式=-20, 故原式的值为2或-20 (2) 由方程组得232,326(6),x y a z x y z az +=-=-+g 易知3,2x y 是一元二次方程 22()6(6)0t a z t z az --+-+=的两个实数根,0∴?≥, 即2223221440z az a -+-≤, 由z 为实数知,22'(22)423(144)0,a a ?=--??-≥ 解得a ≥故正实数a 的最小值为 (3) xy 与x y +是方程217660m m -+=的两个实根,解得11, 6x y xy +=??=? 或 6,()xy 11. x y +=?? =?舍原式=()()2 22222212499x y x y xy x y +-++=. 例6 解法一:∵ac <0,2=40b ac ?->,∴原方程有两个异号实根,不妨设两个根为x 1,x 2, 且x 1<0

一元二次方程根与系数关系(附答案)解析

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根D.无法确定 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3 评卷人得分 二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为. 评卷人得分

三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值范围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数). (1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值范围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由; (2)求使+﹣2的值为整数的实数k的整数值; (3)若k=﹣2,λ=,试求λ的值. 13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2. (1)求k的取值范围; (2)若x1+x2=x1x2+2,求k的值. 14.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0. (1)当m取何值时,方程有两个不相等的实数根? (2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.

根与系数之间关系应用一

2013根与系数关系应用 一.填空题(共30小题) 1.(2012?泸州)设x1,x2是一元二次方程x2﹣3x﹣1=0的两个实数根,则x12+x22+4x1x2的值为_________.2.(2012?鄂州)设x1、x2是一元二次方程x2+5x﹣3=0的两个实根,且,则a= _________. 3.(2011?苏州)已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于_________. 4.(2011?德州)若x1,x2是方程x2+x﹣1=0的两个根,则x12+x22=_________. 5.(2010?雅安)已知一元二次方程x2﹣mx+m﹣2=0的两个实数根为x1、x2,且x1x2(x1+x2)=3,则m的值是 _________. 6.(2010?芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x13+8x2+20=_________. 7.(2010?成都)设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为_________. 8.(2009?天津)若分式的值为0,则x的值等于_________. 9.(2008?鄂州)已知α,β为方程x2+4x+2=0的二实根,则α3+14β+50=_________. 10.(2007?芜湖)已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_________.11.(2007?宿迁)设x1,x2是方程x(x﹣1)+3(x﹣1)=0的两根,则|x1﹣x2|=_________.12.(2006?株洲)已知a、b是关于x的方程x2﹣(2k+1)x+k(k+1)=0的两个实数根,则a2+b2的最小值是_________.13.(2006?日照)已知,关于x的方程x2+=1,那么x++1的值为_________.14.(2006?南充)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是_________. 15.(2001?甘肃)如果二次三项式3x2﹣4x+2k在实数范围内总能分解成两个一次因式的乘积,则k的取值范围是_________. 16.(2001?东城区)若2x2﹣5x+﹣5=0,则2x2﹣5x﹣1的值为_________. 17.(2000?辽宁)已知α,β是方程x2+2x﹣5=0的两个实数根,则α2+αβ+2α的值为_________. 18.(1999?温州)若m、n是关于x的方程x2+(p﹣2)x+1=0的两实根,则代数式(m2+mp+1)(n2+np+1)的值等于_________.

九年级数学尖子生培优竞赛专题辅导第三讲韦达定理及其应用(含答案)

第三讲韦达定理及其应用 趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣:常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提岀了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得岀一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)?消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达左理,你能利用韦达泄理解决下而的问题吗?已知:①0+2“一1=0,②夕一2沪一1=0日1 一c/HO.求(严a 的值。 解析由①知1 + 2丄一丄=0? a cr 即(丄尸+2丄一1 = 0,③a a 由②知(护)2一2沪一1=0,④ 由韦达泄理,得丄+ Z/=2丄,=一1 , a a ...严=[(* +町+ 乡「(2-1 严 62为一元二次方程2 -21-1 =0的两根。 点评本题的关键是构造一元二次方程X2-2A-1=0,利用韦达立理求解,难点是将①变形成③,易错点是忽视条件1 一ab2 #0,而把“,一夕看作方程/+加一1 =0的两根来求解. 知识延伸】 例1已知关于x的二次方程2x2+av-2z/+l= 0的两个实根的平方和为7丄,求“的值. 4 解析设方程的两实根为小,也,根据韦达泄理,有 一2“ +1 于是,Xj24-A22=(X14-X2)2-2.¥I%2

根与系数的关系练习题

判别式与韦达定理 知识点 一元二次方程根的判别式、判别式与根的个数关系、判别式与根、韦达定理及其逆定理 大纲要求 1.掌握一元二次方程根的判别式,会判断常数系数一元二次方程根的情况。对含有字母系数的由一元二次方程,会根据字母的取值范围判断根的情况,也会根据根的情况确定字母的取值范围; 2.掌握韦达定理及其简单的应用; 3.会应用一元二次方程的根的判别式和韦达定理分析解决一些简单的综合性问题。 内容分析 1.一元二次方程的根的判别式 一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 2.一元二次方程的根与系数的关系 (1)如果一元二次方程ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么a b x x -=+21,a c x x =21 (2)如果方程x 2 +px+q=0的两个根是x 1,x 2,那么x 1+x 2=-P ,x 1x 2=q (3)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x+x 1x 2=0. 考查重点与常见题型 1.利用根的判别式判别一元二次方程根的情况,有关试题出现在选择题或填空题中,如: 关于x 的方程ax 2-2x +1=0中,如果a<0,那么梗的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.利用一元二次方程的根与系数的关系求有关两根的代数式的值,有关问题在中考试题中出现的频率非常高,多为选择题或填空题,如: 设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.在中考试题中常出现有关根的判别式、根与系数关系的综合解答题。在近三年试题中又出现了有关的开放探索型试题,考查了考生分析问题、解决问题的能力。 考查题型 1.关于x 的方程ax 2 -2x +1=0中,如果a<0,那么根的情况是( ) (A )有两个相等的实数根 (B )有两个不相等的实数根 (C )没有实数根 (D )不能确定 2.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值是( ) (A )15 (B )12 (C )6 (D )3 3.下列方程中,有两个相等的实数根的是( )

初中数学拔高九年级 专题04 根与系数关系(含答案)

专题04 根与系数关系 阅读与思考 根与系数的关系称为韦达定理,其逆定理也成立,是由16世纪的法国数学家韦达所发现的.韦达定 理形式简单而内涵丰富,在数学解题中有着广泛的应用,主要体现在: 1.求方程中字母系数的值或取值范围; 2.求代数式的值; 3.结合根的判别式,判断根的符号特征; 4.构造一元二次方程; 5.证明代数等式、不等式. 当所要求的或所要证明的代数式中的字母是某个一元二次方程的根时,可先利用根与系数的关系找 到这些字母间的关系,然后再结合已知条件进行求解或求证,这是利用根与系数的关系解题的基本思路, 需要注意的是,应用根与系数的关系的前提条件是一元二次方程有两个实数根,所以,应用根与系数的 关系解题时,必须满足判别式△≥0. 例题与求解 【例1】设关于x 的二次方程22(4)(21)10m x m x -+-+=(其中m 为实数)的两个实数根的倒数和为 s ,则s 的取值范围是_________. 【例2】 如果方程2(1)(2)0x x x m --+=的三个根可以作为一个三角形的三边长,那么,实数m 的取 值范围是_________. A .01m ≤≤ B .34m ≥ C .314m <≤ D .314 m ≤≤ 【例3】已知α,β是方程2780x x -+=的两根,且αβ>.不解方程,求 223βα+的值.

【例4】 设实数,s t 分别满足22199910,99190s s t t ++=++=并且1st ≠,求 41st s t ++的值. 【例5】(1)若实数,a b 满足258a a +=,258b b +=,求代数式 1111b a a b --+--的值; (2)关于,,x y z 的方程组32236 x y z a xy yz zx ++=??++=?有实数解(,,)x y z ,求正实数a 的最小值; (3)已知,x y 均为实数,且满足17xy x y ++=,2266x y xy +=,求432234x x y x y xy y ++++的值. 【例6】 ,,a b c 为实数,0ac <,且2350a b c ++=,证明一元二次方程2 0ax bx c ++=有大于35 而小于1的根. 能力训练 A 级 1.已知m ,n 为有理数,且方程20x mx n ++=有一个根是52-,那么m n += . 2.已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,则m 的值为 . 3.当m = 时,关于x 的方程22 8(26)210x m m x m -+-+-=的两根互为相反数; 当 时,关于x 的方程22240x mx m -+-=的两根都是正数;当 时,关于m

相关主题