搜档网
当前位置:搜档网 › 支持向量机Matlab示例程序

支持向量机Matlab示例程序

支持向量机Matlab示例程序
支持向量机Matlab示例程序

2008-10-31 19:32 支持向量机Matlab示例程序

四种支持向量机用于函数拟合与模式识别的Matlab示例程序

[1]模式识别基本概念

模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指“有老师分类”,即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。

分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。

[2]神经网络模式识别

神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如[;0;]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。

[3]支持向量机的多类分类

支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。

二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件中实现了三类分类。训练与测试样本分别为n1、n2,它们是3 x 15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,分别对应三类,如下所示:

n1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];

x1 = [1*ones(1,5),2*ones(1,5),3*ones(1,5)];????

n2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];

x2 = [1*ones(1,5),2*ones(1,5),3*ones(1,5)];????

1-a-r算法定义:对于N类问题,构造N个两类分类器,第i个分类器用第i类训练样本作为正的训练样本,将其它类的训练样本作为负的训练样本,此时分类器的判决函数不取符号函数sign,最后的输出是N个两类分类器输出中最大的那一类。

在文件的第42行:codefct = 'code_MOC',就是设置由二类到多类编码参数。当第42

行改写成codefct ='code_OneVsAll',再去掉第53行最后的引号,按F5运行该文件,命令窗口输出有:

codebook =

???? 1????-1????-1

????-1???? 1????-1

????-1????-1???? 1

old_codebook =

???? 1???? 2???? 3

????比较上面的old_codebook与codebook输出,注意到对于第i类,将每i类训练样本做为正的训练样本,其它的训练样本作为负的训练样本,这就是1-a-r算法定义。这样通过设置codefct ='code_OneVsAll'就实现了支持向量机的1-a-r多类算法。其它多类算法也与之雷同,这里不再赘述。值得注意的是:对于同一组样本,不同的编码方案得到的训练效果不尽相同,实际中应结合实际数据,选择训练效果最好的编码方案。

[4]核函数及参数选择

常用的核函数有:多项式、径向基、Sigmoid型。对于同一组数据选择不同的核函数,基本上都可以得到相近的训练效果。所以核函数的选择应该具有任意性。对训练效果影响最大是相关参数的选择,如:控制对错分样本惩罚的程度的可调参数,以及核函数中的待定参数,这些参数在不同工具箱中的变量名称是不一样的。这里仍以为例,在第38、39行分别设定了gam、sig2的值,这两个参数是第63行trainlssvm函数的输入参数。在工具箱文件夹的文件的第96、97行有这两个参数的定义:

% gam?? : Regularization parameter

% sig2?? : Kernel parameter (bandwidth in the case of the 'RBF_kernel')

这里gam是控制对错分样本惩罚的程度的可调参数,sig2是径向基核函数的参数。所以在充分理解基本概念的基础上,将这些概念与工具箱中的函数说明相结合,就可以自如地运用这个工具箱了,因此所以最好的教科书是函数自带的函数说明。

最佳参数选择目前没有十分好的方法,在的第46至49行的代码是演示了交叉验证优化参数方法,可这种方法相当费时。实践中可以采用网格搜索的方法:如gam=0::1,sig2=0::1,那么gam与sig2的组合就有6x6=36种,对这36种组合训练支持向量机,然后选择正确识别率最大的一组参数作为最优的gam与sig2,如果结果均不理想,就需要重新考虑gam 与sig2的范围与采样间隔了。

[5]由分类由回归的过渡

LS_SVMlab、SVM_SteveGunn这两个工具箱实现了支持向量机的函数拟合功能。从工具箱的使用角度来看,分类与回归的最大区别是训练目标不同。回归的训练目标是实际需要拟合的函数值;而分类的训练目标是1,2,…N(分成N类),再通过适当的编码方案将N类分类转换成多个二类分类。比较文件与的前几行就可以注意到这一点。另外,分类算法以正确分类率来作为性能指标,在回归算法中通常采用拟合的均方误差(mean square error, MSE)来作为性能指标。

一个简单的Matlab_GUI编程实例

Matlab GUI编程教程(适用于初学者) 1.首先我们新建一个GUI文件:如下图所示; 选择Blank GUI(Default) 2.进入GUI开发环境以后添加两个编辑文本框,6个静态文本框,和一个按钮,布置如下

图所示; 布置好各控件以后,我们就可以来为这些控件编写程序来实现两数相加的功能了。3.我们先为数据1文本框添加代码; 点击上图所示红色方框,选择edit1_Callback,光标便立刻移到下面这段代码的位置。 1. 2. 3.function edit1_Callback(hObject, eventdata, handles) 4.% hObject handle to edit1 (see GCBO) 5.% eventdata reserved - to be defined in a future version of MATLAB

6.% handles structure with handles and user data (see GUIDATA) 7.% Hints: get(hObject,'String') returns contents of edit1 as text 8.% str2double(get(hObject,'String')) returns contents of edit1 as a double 复制代码 然后在上面这段代码的下面插入如下代码: 1. 2.%以字符串的形式来存储数据文本框1的内容. 如果字符串不是数字,则现实空白内容input = str2num(get(hObject,'String')); %检查输入是否为空. 如果为空,则默认显示为0if (isempty(input)) set(hObject,'String','0')endguidata(hObject, handles); 复制代码 这段代码使得输入被严格限制,我们不能试图输入一个非数字。 4.为edit2_Callback添加同样一段代码 5 现在我们为计算按钮添加代码来实现把数据1和数据2相加的目的。 用3中同样的方法在m文件中找到pushbutton1_Callback代码段 如下; 1.function pushbutton1_Callback(hObject, eventdata, handles) 2.% hObject handle to pushbutton1 (see GCBO) 3.% eventdata reserved - to be defined in a future version of MATLAB 4.% handles structure with handles and user data (see GUIDATA) 复制代码

支持向量机的matlab代码

支持向量机的matlab代码 Matlab中关于evalin帮助: EVALIN(WS,'expression') evaluates 'expression' in the context of the workspace WS. WS can be 'caller' or 'base'. It is similar to EVAL except that you can control which workspace the expression is evaluated in. [X,Y,Z,...] = EVALIN(WS,'expression') returns output arguments from the expression. EVALIN(WS,'try','catch') tries to evaluate the 'try' expression and if that fails it evaluates the 'catch' expression (in the current workspace). 可知evalin('base', 'algo')是对工作空间base中的algo求值(返回其值)。 如果是7.0以上版本 >>edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @,

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

陆振波SVM的MATLAB代码解释

%构造训练样本 n = 50; randn('state',6); x1 = randn(2,n); %2行N列矩阵 y1 = ones(1,n); %1*N个1 x2 = 5+randn(2,n); %2*N矩阵 y2 = -ones(1,n); %1*N个-1 figure; plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.'); %x1(1,:)为x1的第一行,x1(2,:)为x1的第二行 axis([-3 8 -3 8]); title('C-SVC') hold on; X = [x1,x2]; %训练样本d*n矩阵,n为样本个数,d为特征向量个数 Y = [y1,y2]; %训练目标1*n矩阵,n为样本个数,值为+1或-1 %训练支持向量机 function svm = svmTrain(svmType,X,Y,ker,p1,p2) options = optimset; % Options是用来控制算法的选项参数的向量 https://www.sodocs.net/doc/7a17456522.html,rgeScale = 'off'; options.Display = 'off'; switch svmType case'svc_c', C = p1; n = length(Y); H = (Y'*Y).*kernel(ker,X,X); f = -ones(n,1); %f为1*n个-1,f相当于Quadprog函数中的c A = []; b = []; Aeq = Y; %相当于Quadprog函数中的A1,b1 beq = 0; lb = zeros(n,1); %相当于Quadprog函数中的LB,UB ub = C*ones(n,1); a0 = zeros(n,1); % a0是解的初始近似值 [a,fval,eXitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options); %a是输出变量,它是问题的解 % Fval是目标函数在解a 处的值 % Exitflag>0,则程序收敛于解x Exitflag=0,则函数的计算达到了最大次数 Exitflag<0,则问题无可行解,或程序运行失败 % Output 输出程序运行的某些信息

支持向量机非线性回归通用MATLAB源码

支持向量机非线性回归通用MA TLAB源码 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。 function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2) %% % SVMNR.m % Support Vector Machine for Nonlinear Regression % All rights reserved %% % 支持向量机非线性回归通用程序 % GreenSim团队原创作品,转载请注明 % GreenSim团队长期从事算法设计、代写程序等业务 % 欢迎访问GreenSim——算法仿真团队→https://www.sodocs.net/doc/7a17456522.html,/greensim % 程序功能: % 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测 % 试需使用与本函数配套的Regression函数。 % 主要参考文献: % 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报 % 输入参数列表 % X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数 % Y 输出样本原始数据,1×l的矩阵,l为样本个数 % Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少 % C 惩罚系数,C过大或过小,泛化能力变差 % TKF Type of Kernel Function 核函数类型 % TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归 % TKF=2 多项式核函数 % TKF=3 径向基核函数 % TKF=4 指数核函数 % TKF=5 Sigmoid核函数 % TKF=任意其它值,自定义核函数 % Para1 核函数中的第一个参数 % Para2 核函数中的第二个参数 % 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义 % 输出参数列表 % Alpha1 α系数 % Alpha2 α*系数 % Alpha 支持向量的加权系数(α-α*)向量

四种支持向量机用于函数拟合与模式识别的Matlab示

四种支持向量机用于函数拟合与模式识别的Matlab示四种支持向量机用于函数拟合与模式识 别的Matlab示 四种支持向量机用于函数拟合与模式识别的Matlab示例程序(转)2010-08-08 10:02使用要点: 应研学论坛人工智能与模式识别版主magic_217之约,写一个关于针对初学者的四种支持向量机工具箱的详细使用说明。同时也不断有网友向我反映看不懂我的源代码,以及询问如何将该工具箱应用到实际数据分析等问题,其中有相当一部分网友并不了解模式识别的基本概念,就急于使用这个工具箱。本文从模式识别的基本概念谈起,过渡到神经网络模式识别,逐步引入到这四种支持向量机工具箱的使用。 本文适合没有模式识别基础,而又急于上手的初学者。作者水平有限,欢迎同行批评指正~ 模式识别基本概念 [1] 模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指"有老师分类",即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。 分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维

数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。 [2]神经网络模式识别 神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如[0.1;0;-0.2]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。 [3]支持向量机的多类分类 支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。 二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件 Classification_LS_SVMlab.m中实现了三类分类。训练与测试样本分别为n1、 n2,它们是3 x15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,分别对应三类,如下所示: n1=[rand(3,5),rand(3,5)+1,rand(3,5)+2];

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

MATLAB-智能算法30个案例分析-终极版(带目录)

MATLAB 智能算法30个案例分析(终极版) 1 基于遗传算法的TSP算法(王辉) 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 3 基于遗传算法的BP神经网络优化算法(王辉) 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) 5 基于遗传算法的LQR控制优化算法(胡斐) 6 遗传算法工具箱详解及应用(胡斐) 7 多种群遗传算法的函数优化算法(王辉) 8 基于量子遗传算法的函数寻优算法(王辉) 9 多目标Pareto最优解搜索算法(胡斐) 10 基于多目标Pareto的二维背包搜索算法(史峰) 11 基于免疫算法的柔性车间调度算法(史峰) 12 基于免疫算法的运输中心规划算法(史峰) 13 基于粒子群算法的函数寻优算法(史峰) 14 基于粒子群算法的PID控制优化算法(史峰) 15 基于混合粒子群算法的TSP寻优算法(史峰) 16 基于动态粒子群算法的动态环境寻优算法(史峰) 17 粒子群算法工具箱(史峰) 18 基于鱼群算法的函数寻优算法(王辉) 19 基于模拟退火算法的TSP算法(王辉) 20 基于遗传模拟退火算法的聚类算法(王辉) 21 基于模拟退火算法的HEV能量管理策略参数优化(胡斐)

22 蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊) 23 基于蚁群算法的二维路径规划算法(史峰) 24 基于蚁群算法的三维路径规划算法(史峰) 25 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊) 26 有导师学习神经网络的分类——鸢尾花种类识别(郁磊) 27 无导师学习神经网络的分类——矿井突水水源判别(郁磊) 28 支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊) 29 支持向量机的回归拟合——混凝土抗压强度预测(郁磊) 30 极限学习机的回归拟合及分类——对比实验研究(郁磊) 智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我们的论坛问题,恨是因为智能算法感觉比较“玄乎”,很难理解,更难用它来解决问题。 因此,我们组织了王辉,史峰,郁磊,胡斐四名高手共同写作MATLAB智能算法,该书包含了遗传算法,免疫算法,粒子群算法,鱼群算法,多目标pareto算法,模拟退火算法,蚁群算法,神经网络,SVM等,本书最大的特点在于以案例为导向,每个案例针对一

Matlab-SVM整理

SVM整理 1各种svm程序包 1.1 matlab高级版本中自带的svm函数 我现在使用的matlab版本为matlab 7.6.0(R2008a)这个版本中已经自带svm算法,分别为生物信息工具箱(bioinformatics toolbox)中svmclassify函数和svmtrain函数,为上下级关系。 SVMStruct=svmtrain(Training,Group)%svmtrain的输入为样本点training和样本的分类情况group,输出为一个分类器svmstruct. 核函数,核参数,和计算方法等都是可选的,如SVMStruct = svmtrain(…, ‘Kernel_Function’, Kernel_FunctionValue, …) 但是切记切记一定要成对出现。 然后,将分类器和testing sample带入svmclassify中,可以得到分类结果和准确度。 举个例子 svmStruct=svmtrain(data(train,:),groups(train),’Kernel_Function’,'rbf’,'Kernel_FunctionValue’,’5′,’showplot’,true); %用了核宽为5的径向基核,且要求作图 %这里我觉得原作者的写法有误,应该是svmStruct = svmtrain(data(train,:),groups(train),... 'Kernel_Function','rbf','RBF_Sigma',5,'showplot',true); classes = svmclassify(svmStruct,data(test,:),’showplot’,true); %要求输出检测样本点的分类结果,且画图表示。 tip 1: 有归一化scale功能,可以通过调参数实现 tip 2: 计算方法可选qp,smo,ls tip 3: 有个关于soft margin的盒子条件,我不太明白是干嘛的,谁懂得话,就给我讲讲哈 tip 4: 画出来的图很难看 to sum up: 挺好的 1.2较早使用的工具箱SVM and Kernel Methods Matlab Toolbox 2005年法国人写的,最近的更新为20/02/2008 下载的地址为http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html 这是我最早开始用的一个工具箱,我很喜欢,到现在还是,对于svm的初学者是个很好的toolbox. 有详细的说明和很多的demo和例子, 包含现今几乎所有的有关svm的成熟算法和数据预处理方法(pca及小波等)。 最最重要的是有回归!!! 且函数简单,容易改动延伸。

支持向量机matlab实现源代码知识讲解

支持向量机m a t l a b 实现源代码

edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @, % for example @KFUN, or an anonymous function % % A kernel function must be of the form % % function K = KFUN(U, V) % % The returned value, K, is a matrix of size M-by-N, where U and V have M % and N rows respectively. If KFUN is parameterized, you can use % anonymous functions to capture the problem-dependent parameters. For % example, suppose that your kernel function is % % function k = kfun(u,v,p1,p2) % k = tanh(p1*(u*v')+p2); % % You can set values for p1 and p2 and then use an anonymous function: % @(u,v) kfun(u,v,p1,p2).

matlab四种支持向量机工具箱

matlab四种支持向量机工具箱 [b]使用要点:[/b] 应研学论坛<<人工智能与模式识别>>版主magic_217之约,写一个关于针对初学者的<<四种支持向量机工具箱>>的详细使用说明。同时也不断有网友向我反映看不懂我的源代码,以及询问如何将该工具箱应用到实际数据分析等问题,其中有相当一部分网友并不了解模式识别的基本概念,就急于使用这个工具箱。本文从模式识别的基本概念谈起,过渡到神经网络模式识别,逐步引入到这四种支持向量机工具箱的使用。 本文适合没有模式识别基础,而又急于上手的初学者。作者水平有限,欢迎同行批评指正! [1]模式识别基本概念 模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指“有老师分类”,即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。 分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。 [2]神经网络模式识别 神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如 [0.1;0;-0.2]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。 [3]支持向量机的多类分类 支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件Classification_LS_SVMlab.m中实现了三类分类。训练与测试样本分别为n1、n2,它们是3 x 15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,

matlab程序设计实例

MATLAB 程序设计方法及若干程序实例 樊双喜 (河南大学数学与 信息科学学院开封475004) 摘要本文通过对 MATLAB 程序设计中的若干典型问题做简要的分析和总结,并在此基础上着重讨论了有关算法设计、程序的调试与测试、算法与程序的优化以及循环控制等方面的问题.还通过对一些程序实例做具体解析,来方便读者进行编程训练并掌握一些有关MATLAB 程序设计方面的基本概念、基本方法以及某些问题的处理技巧等.此外,在文章的最后还给出了几个常用数学方法的算法程序, 供读者参考使用.希望能对初学者进行 MATLAB 编程训练提供一些可供参考的材料,并起到一定的指导和激励作用,进而为MATLAB 编程入门打下好的基础. 关键字算法设计;程序调试与测试;程序优化;循环控制 1 算法与程序 1.1 算法与程序的关系算法被称为程序的灵魂,因此在介绍程序之前应先了 解什么是算法.所谓算 法就是对特定问题求解步骤的一种描述.对于一个较复杂的计算或是数据处理的问题,通常是先设计出在理论上可行的算法,即程序的操作步骤,然后再按照算法逐步翻译成相应的程序语言,即计算机可识别的语言. 所谓程序设计,就是使用在计算机上可执行的程序代码来有效的描述用于解决特定问题算法的过程.简单来说,程序就是指令的集合.结构化程序设计由于采用了模块分化与功能分解,自顶向下,即分而治之的方法,因而可将一个较复杂的问题分解为若干子问题,逐步求精.算法是操作的过程,而程序结构和程序流程则是算法的具体体现. 1.2MATLAB 语言的特点 MATLAB 语言简洁紧凑,使用方便灵活,库函数极其丰富,其语法规则与科技人员的思维和书写习惯相近,便于操作.MATLAB 程序书写形式自由,利用其丰富

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多,Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II)无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、数值例子 多目标优化问题 42422 11211122124224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤?二、Matlab 文件 1.适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2.调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[];%线性不等式约束 Aeq=[];beq=[];%线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); %最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, %停止代数stallGenLimit 为200,适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

Matlab8个例子

1、囧 function happynewyear axis off; set(gcf,'menubar','none','toolbar','none'); for k=1:20 h=text(rand,rand,... ['\fontsize{',num2str(unifrnd(20,50)),'}\fontname {隶书} 新年快乐'],... 'color',rand(1,3),'Rotation',360 * rand); pause(0.5) End 2、小猫进洞 function t=cat_in_holl(n) t=zeros(1,n); for k=1:n c=unifdnd(3,1); while c~=1 if c==2 t(k)=t(k)+4; else t(k)=t(k)+6; end c=unifdnd(3,1); end t(k)=t(k)+2; End

3、 Slow function example2_3_6s tic;A=unidrnd(100,10,7); B=zeros(10,3); for m=1:10 a=A(m,:); b=[4,6,8]; for ii=1:3 dd=a(a==b(ii)); if isempty(dd)==0 b(ii)=0; end end B(m,:)=b; toc end A,B Fast function example2_3_6fast2 clear A = unidrnd(100,1000000,7); B = repmat([4,6,8],1000000,1); tic;C = [any(AA == 4,2) any(AA == 6,2) any(AA == 8,2)]; B(C) = 0; Toc 4、随机行走法 function [mx,minf]=randwalk(f,x,lamda,epsilon,N) %随机行走法求函数的极小值。输入f为所求函数的句柄, %x为初始值。lamda为步长。epsilon为控制lamda的减小的阈值,即lamda 减小到epsilon时 %迭代停止。

支持向量机matlab实例及理论_20131201

支持向量机matlab分类实例及理论 线性支持向量机可对线性可分的样本群进行分类,此时不需要借助于核函数就可较为理想地解决问题。非线性支持向量机将低维的非线性分类问题转化为高维的线性分类问题,然后采用线性支持向量机的求解方法求解。此时需要借助于核函数,避免线性分类问题转化为非线性分类问题时出现的维数爆炸难题,从而避免由于维数太多而无法进行求解。 第O层:Matlab的SVM函数求解分类问题实例 0.1 Linear classification %Two Dimension Linear-SVM Problem, Two Class and Separable Situation %Method from Christopher J. C. Burges: %"A Tutorial on Support Vector Machines for Pattern Recognition", page 9 %Optimizing ||W|| directly: % Objective: min "f(A)=||W||" , p8/line26 % Subject to: yi*(xi*W+b)-1>=0, function (12); clear all; close all clc; sp=[3,7; 6,6; 4,6;5,6.5] % positive sample points nsp=size(sp); sn=[1,2; 3,5;7,3;3,4;6,2.7] % negative sample points nsn=size(sn) sd=[sp;sn] lsd=[true true true true false false false false false] Y = nominal(lsd) figure(1); subplot(1,2,1) plot(sp(1:nsp,1),sp(1:nsp,2),'m+'); hold on plot(sn(1:nsn,1),sn(1:nsn,2),'c*'); subplot(1,2,2) svmStruct = svmtrain(sd,Y,'showplot',true);

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 1.1 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到 j v 的权 ij w =∞ 。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1i v +,使1()min{()}i l v l v +=,v S ∈; ⑤ 1{}i S S v += ,1{}i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v - 是从1v 到n v 的最短路径,则121n v v v - 也必然是从1v 到1n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表示顶点i v 到 j v 的权 ij w ,若i v 到 j v 无边,则 realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数(1.7977e+308)。 function re=Dijkstra(ma)

相关主题