搜档网
当前位置:搜档网 › 白藜芦醇的生理功能及其应用前景

白藜芦醇的生理功能及其应用前景

白藜芦醇的生理功能及其应用前景
白藜芦醇的生理功能及其应用前景

经络的作用及其临床应用

经络的作用及其临床应用 一、经络的作用 《灵枢·经脉》指出:“经脉者,所以决死生,处百病,调虚实,不可不通”,这里概括说明了经络系统在生理、病理和防治疾病方面的重要性。其所以能决定人的生和死,是因其具有联系人体内外,起着运行血气的基本作用;处理百病,是因其有抗御病邪、反映症候的作用;调整虚实,是因其具有传导感应,起补虚泻实的作用。下面分四点作进一步说明。 1.?联系内外,网络全身? 人体的五脏六腑、五官九窍、四肢百节、皮肉筋骨等器官和组织,虽各有不同的生理功能,但又互相联系,使全身内外、上下、前后、左右构成一个有机的整体。这种相互联系、有机配合主要依靠经络系统的联络沟通作用来实现。 经络系统以头身的四海为总纲,以十二经脉为主体,分散为三百六十五络遍布于全身,纵横交错、出表入里、通达上下,将人体各部位紧密地联系起来。其具体联系通路有以下特点: 十二经脉和十二经别,着重人体的体表与脏腑,以及脏腑之间的联系; 十二经脉和十五络脉,着重体表与体表,以及体表与脏腑之间的联系; 十二经脉通过奇经八脉,加强经与经之间的联系; 十二经脉的标本、气街和四海,加强人体前后腹背和头身上下的分段联系。 2.运行气血,协调阴阳 经络系统在正常情况下起着运行气血、协调全身阴阳的作用。《灵枢·本藏》说:“经脉者,所以行血气而营阴阳,濡筋骨,利关节者也”。 经脉运行血气首先依靠宗气,其次为出自“脐下、肾间”的原气。此外,营气运行于经脉之中,濡养全身,并变化为血液;卫气则散布到经脉之外,保卫全身,抵抗病邪的侵犯,并有调节体温、管理汗液分泌、充实皮肤和温煦肌肉等功能。 经脉运行气血,“内溉脏腑,外濡腠理”,不仅使体内的脏腑和体表的五官七窍、皮肉筋骨息息相通,而且,人体的内外、上下、左右、前后、脏腑、表里之间,由于经脉的联系得以保持相对的平衡,协调一致。 3.抗御病邪,反映症候 经络系统在疾病情况下,有抗御病邪、反应症候的作用。 体表的穴位(包括反应点)是孙络分布的所在,也是卫气停留和邪气侵犯的部位。 当病邪侵犯人体时,孙络和卫气可以发挥重要的抗御作用。 正邪交争,在体表部位可出现异常现象。 如果疾病发展,则可由表及里,从孙络、络脉、经脉……逐步深入,并出现相应的症候。 经络反映症候,可分局部的、一经的、数经的和整体的。 一般来说,经络气血阻滞而不通畅,就会造成有关部位的疼痛或肿胀;气血郁积而化热,则出现红、肿、热、痛,这些都属经络的实证。 如果气血运行不足,就会出现病变部位麻木不仁、肌肤萎软及功能减退等,这些都属经络的虚证。 如果经络的阳气(包括卫气、原气)不足,就会出现局部发凉或全身怕冷等症状,此即“阳虚则寒”;经络的阴气(包括营气、血液)不足而阳气亢盛,则会出现五心烦热(阴虚内热)或全身发热等症状,这就是“阴虚而阳盛,阳盛则热”。 4.传导感应,调整虚实

浅谈我国发展氢能的必要性

第35卷第6期2013年12月山东冶金 Shandong Metallurgy Vol.35No.6December 2013 摘要:介绍了氢能的性质、特点及应用;分析了几种成熟的制氢技术,生物制氢是未来发展的趋势;简要介绍了国内外氢 能源的发展情况,氢能是清洁能源,是我国未来新能源发展的必然选择。关键词:氢能;制氢技术;清洁能源;生物制氢图分类:TK91 文献标识码:A 文章编号:1004-4620(2013)06-0078-03 浅谈我国发展氢能的必要性 贺小平,高 辉,邓秀琴 (辽宁石油化工大学顺华能源学院,辽宁抚顺113001) 1氢能的性质、特点及应用 氢能是指以氢及同位素为主体的反应中或氢的状态变化过程中所释放出的能量,包括氢核能和氢化学能两部分。 氢能源是一种二次能源。在世界能源结构中,煤炭、石油和天然气等化石能源在自然界中的储量是有限的,随着耗量的日益增加,将日益减少,终有一天会枯竭。这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。氢正是人们期待的新的未来最理想的二次能源。 氢能具有以下特点: 1)质量小,标况下氢的密度为0.0899g/L,在-252.7℃时可成为液体,若将压力增大到几十兆帕,液氢可变为金属氢。2)导热性能好,比大多数气体的导热系数高出10倍,在能源工业中是极好的传热载体。3)氢在自然界中是普遍存在的元素,据估计它构成了宇宙质量的75%。4)除了核燃料外,氢的发热值为1.4×105kJ/kg,是汽油发热值的3倍,是所有化石燃料、化工燃料和生物燃料中最高的。5)氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。6)氢燃烧后的产物是水,无环境污染,而且燃烧生成的水还可以继续制氢,可反复循环使用。7)氢能利用形式多,储存方式多样,可以适应不同环境的不同需求[1]。 氢能作为一种清洁的新能源和可再生能源,其利用途径日益增加: 1)航天动力。早在20世纪,美国就研制成了以液氢为燃料的液氢发动机,并在航天飞机上成功使用;我国的长征2号、3号火箭也采用液氢作为燃料。目前科学家正研究一种“固态氢”宇宙飞船。固 态氢既作为飞船的结构材料,又作为飞船的动力燃料,在飞行期间,飞船上所有的非重要零部件都可作为能源消耗掉,飞船就能飞行更长的时间[2]。 2)交通运输。在超声速飞机和远程洲际客机上以氢作动力燃料的研究已进行多年,目前欧洲生产的飞机部分采用液氢为燃料。德国戴姆勒一奔驰航空航天公司以及俄罗斯航天公司从1996年开始试验,其进展证实,在配备有双发动机的喷气机中使用液态氢,其安全性有足够保证。美、德、法等国采用氢化金属贮氢;而日本则利用液氢代替柴油,用于铁路机车或一般汽车的研制也十分活跃;美国和加拿大计划从加拿大西部到东部的大铁路上采用液氢和液氧为燃料的机车。 3)燃烧氢气发电。氢能发电是利用氢气和氧气燃烧,组成氢氧发电机组。这种机组不需要复杂的蒸汽锅炉系统,结构简单,维修方便,具有启动快和比较灵活等特点,可以为大型电站调节峰荷。同时氢和氧还可直接改变常规火力发电机组的运行状况,提高电站的发电能力。 氢能发电还体现在燃料电池上,燃料电池是将燃料的化学能直接转换为电能,不需要进行燃烧,能源转换效率可达60%~80%,而且污染少,噪声小,装置可大可小,非常灵活。日本已建立万千瓦级燃料电池发电站;美国有30多家厂商在开发燃料电池;德、英、法、荷、丹、意和奥地利等国也有20多家公司投入了燃料电池的研究,这种新型的发电方式已引起世界的关注[3-4]。 4)氢能民用。氢能发电、氢介质储能与输送以及氢能空调、氢能冰箱等,有的已经实现,有的正在开发,有的尚在探索中。 5)化工原料。工业上氢用于生产化肥、染料、塑料、甲醇及油类和脂肪的氢化等。 时至今日,氢能的利用已有长足进步。目前,世界上有50多个实验室正在研究如何能大量而廉价地生产氢。 收稿日期:2013-12-04作者简介:贺小平,女,1967年生,1990年毕业于鞍山钢铁学院煤化工专业。现为辽宁石油化工大学顺华能源学院高级工程师,从事化学工程与工艺煤化工方向的教学与研究工作。 78

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

2019年TOF应用前景分析报告

2019年TOF应用前景分析报告

内容目录 一、3D sensing成趋势,ToF应用前景广阔 (4) 1.1 ToF为移动端搭载3D sensing的主要选择 (4) 1.2 ToF让3D建模“飞向寻常百姓家” (7) 二、下一波创新性革命,TOF市场空间巨大 (11) 三、BOM比较:TOF或更具成本优势 (13) 四、深度解析3D Sensing摄像头产业链 (15) 4.1 VCSEL:垂直发射光源,国内厂商逐步突破 (17) 4.2 Diffuser:将光调制成均匀的面光源 (19) 4.3 窄带滤光片:只允许通过特定波长 (19) 4.4 3D图像处理芯片:难度较高 (20) 4.5 成像镜头端:产业链较为成熟 (20) 风险提示 (24)

一、3D sensing成趋势,ToF应用前景广阔 1.1 ToF为移动端搭载3D sensing的主要选择 3D sensing是智能手机创新的趋势之一,当前正加速向中低端手机渗透。目前实现3D sensing共有三种技术,分别为双目立体成像、结构光和T oF,目前已经比较成熟的方案是结构光和TOF。其中结构光方案最为成熟,已经大规模应用于工业3D视觉,TOF则凭借自身优势成为在移动端较被看好的方案。 图表1:3D传感系统 3D结构光最早应用于苹果旗舰iPhone X,结构光原理为通过近红外激光器向物体投射具有一定结构特征的光线,再由专门的红外摄像头进行采集获取物体的三维结构,再通过运算对信息进行深入处理成像。该技术目前共有编码结构光和散斑结构光两种实现类别。结构光技术仅需一次成像就可得到深度信息,具备低能耗、高成像分辨率的优势,能够在安全性上实现较高保证,因此被广泛应用于人脸识别和人脸支付等场景。但结构光技术识别距离较短,大约在0.2米到1.2米之间,这将其应用局限在了手机前臵摄像,主要用于3D人脸识别屏幕解锁、人脸支付及3D建模等。

中医基础理论第四章 经络习题集

第五章经络 一、选择题 (一)A1型题 1.经络学说形成的标志性着作是() A 《十四经发挥》 B 《难经》 C 《扁鹊心书》 D 《吴医汇讲》 E 《内经》2.正经是指() A 督脉 B 冲脉 C 十二经别 D 十二经脉 E 任脉 3.循经取穴的理论依据是() A 阴阳学说 B 卫气营血理论 C 脏腑学说 D 经络学说 E 五行学说 4.十二经脉命名的主要依据是() A 阴阳五行脏腑 B 内外脏腑五行 C 手足五行阴阳 D 手足阴阳脏腑 E 手足五行脏腑 5.下列哪一经的名称是错误的() A 手太阴肺经 B 足少阳胆经 C 足太阴肾经 D 足太阴脾经 E 手少阴心经 6.下列经脉循行流注次序错误的是() A 肺经,大肠经,胃经 B 肾经,心包经,三焦经 C 心经,小肠经,膀胱经 D 心经,膀胱经,肾经 E 三焦经,胆经,肝经 7.经脉的分支是() A 奇经八脉 B 经筋 C 皮部 D 络脉 E 气街 8.分布于四肢外侧、头面和躯干的经脉是() A 阴经 B 带脉 C 奇经 D 阴维脉 E 阳经 9.手三阴经在上肢的分布规律是() A 太阴在前,厥阴在中,少阴在后 B 太阴在前,少阴在中,厥阴在后 C 厥阴在前,太阴在中,少阴在后 D 少阴在前,厥阴在中,太阴在后 E 厥阴在前,少阴在中,太阴在后 10.十二经脉中阴经与阳经的交接部位在() A 头面 B 手足 C 胸腹 D 上肢 E 下肢 11.手足阳明经的交接部位在() A 食指端 B 小指端 C 鼻翼旁 D 目内眦 E 目外眦 12.手足三阳经在四肢的分布规律是() A 阳明在前,少阳在中,太阳在后 B 阳明在前,太阳在中,少阳在后 C 少阳在前,阳明在中,太阳在后 D 少阳在前,太阳在中,阳明在后 E 太阳在前,阳明在中,少阳在后 13.足太阳膀胱经所络的内脏是() A 心 B 三焦 C 肾 D 肝 E 小肠

中医基础理论 经络

经络 细目一经络学说概述 1.经络的基本概念 经络,是经脉和络脉的总称。经络是运行全身气血,联络脏腑形体官窍,沟通上下内外,感应传导信息的通路系统。是人体结构的重要组成部分。 2.经络系统的组成 细目二十二经脉 1.十二经脉的走向规律 2.十二经脉的交接规律 ①相表里的阴阳两经在四肢末端相交接 ②同名手足阳经交接于头面部(“头为诸阳之会”)

③足、手阴经交接于胸部 3.十二经脉的分布规律 (1)头面部的分布 头为诸阳之会:阳明经分布于面部,其中足阳明经行于额部;少阳经分布于头侧部;手太阳经行于面颊部,足太阳经行于头顶、后头部。 总的来说是阳明在前,少阳在侧,太阳在后。 (2)四肢部的分布 阴经分布在四肢的内侧面:“内侧前中后,太阴厥少阴”。但足三阴经在内踝尖上八寸以下的分布,前中后部位依次是厥阴、太阴、少阴。 阳经分布在四肢的外侧面:“外侧前中后,阳明少太阳”。 (3)躯干部的分布 阳明经腹面,太阳经背面,少阳经侧面,足三阴经腹面。 循行于腹面的经脉,自内向外依次是:足少阴肾经、足阳明胃经、足太阴脾经、足厥阴肝经。 4.十二经脉的表里关系 手太阴肺经手阳明大肠经 手厥阴心包经手少阳三焦经 手少阴心经手太阳小肠经 足太阴脾经足阳明胃经 足厥阴肝经足少阳胆经 足少阴肾经足太阳膀胱经 5.十二经脉的流注次序

细目三奇经八脉 1.奇经八脉的含义及特点 奇经八脉,是督脉、任脉、冲脉、带脉、阴跷脉、阳跷脉、阴维脉、阳维脉的总称。 奇者,异也。所谓奇经,是指这些经脉与十二经脉不同。它们与十二正经的区别是: (1)它们的分布不如十二经脉那样有规律; (2)它们与脏腑没有直接的络属关系; (3)彼此之间也无表里关系。 “八脉”是指奇经共有八条,故称“奇经八脉”。 2.奇经八脉的生理功能 (1)密切十二经脉的联系 督脉——“总督诸阳”(与六阳经交会于大椎,称为“阳脉之海”) 任脉——“阴脉之海”(与足三阴经交会于关元脐下三寸,足三阴经又接手三阴经,故任脉称为“阴脉之海”) 阴维——维络诸阴经,联络所有的阴经而与任脉交会(于廉泉喉结上舌骨下、天突); 阳维——维络诸阳经,联络所有阳经而与后督脉相合; 冲脉——通行上下前后,渗灌三阴三阳“十二经脉之海”; 带脉——约束纵行诸经,沟通腰腹部的经脉; 阴跷、阳跷——“分主一身左右阴阳”。 (2)调节十二经脉中的气血 除任、督直接参与十四经气血循环外,其他奇经还具有涵蓄和调节十二经气血的功能。 (3)与某些脏腑关系密切 奇经八脉虽然不似十二经脉那样与脏腑有直接的属络关系,但它们在循行分布过程中与脑、髓、女子胞等奇恒之腑以及肾脏有较为密切的联系。从而加强了某些脏腑之间的相互沟通。 3.督脉、任脉、冲脉、带脉、跷脉和维脉的循行特点和基本机能 督脉 (1)循行部位 督脉起于胞中,下出会阴,沿脊柱里面上行,至项后风府穴处进入颅内,络脑,并由项沿头部正中线,以头顶、额部、鼻部、上唇,到上唇系带处(龈交穴)。 分支1:从脊柱里面分出,络肾。

2020年氢能源产业市场现状及发展前景分析 行业风口将至

随着氢燃料电池汽车的推广,氢气市场需求递增,加氢站建设驶入快车道。截至2020 年2 月,我国加氢站共有66座。国家要在2年内对氢能立法,这是迄今为止氢燃料电池行业的最大利好,氢能源行业风口将至。此外,根据国家规划,规划2020/2025/2030年分别建成100/300/1500座,十年间年复合增速达31.1%。到2050年加氢站数量将达10000座,行业产值达12万亿元。 广东上海加氢站建设领先 截至2020 年 2 月,我国加氢站共有66座,仍有较大上升空间。广东省以17座的数量排在首位,其次是上海市,拥有10座加氢站。 固定式加氢站逐渐增多 能源综合站、站内制氢加氢站是2019年的新基调,加氢站类型逐渐由内部示范运营站向能服务于未来商业化运营的商业加氢站转变,加氢站类型将多元化。目前,国内固定式加氢站数量正在逐渐增加,其比例已从2019年上半年的占比59%已上升至2019年年底的63%。另外,站内制氢油氢合建也将成未来潜力“明星”

加氢站类型,更加符合用户体验的固定站数量也将逐渐增多,超高压储氢和液氢加氢站将助力未来商业化运营。 氢气市场需求递增加氢站建设驶入快车道 整体而言,中国氢能市场发展初期(2020-2025年左右),氢气年均需求约2200万吨;氢能市场发展中期(2030年左右),氢气年均需求约3500万吨;氢能市场发展远期(2050年左右),氢气年均需求约6000万吨。

政策重大利好 在《中国制造2025》、《节能与新能源汽车技术路线图》、《中国氢能产业基础设施发展蓝皮书(2016)》中提出了2020-2030年加氢站建设的规划。进入2019年,广东、山西等10个省份将发展氢能写入政府工作报告,山东、河北浙江等省份陆续发布本地氢能产业发展规划。2020年3月发改委、司法部印发《关于加快建立绿色生产和消费法规政策体系的意见》,要在2年内对氢能立法,氢能源行业将迎来前所未有的发展机遇。 氢能将成为中国能源体系的重要组成部分。预计到2050年氢能在中国能源体系中的占比约为10%,氢气需求量接近6000万吨,年经济产值超过10万亿元。全国加氢站达到10.000座以上,交通运输、工业等领域将实现氢能普及应用,燃料电池车产量达到520万辆/年,固定式发电装置2万台套/年,燃料电池系统产能550万台套/年。

超导材料的未来应用前景

超导材料——当代科学的明珠 超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。

脏腑的生理功能

脏腑的生理功能 脏腑是生化气血,通条经络,润养皮肉筋骨,主持人体生命活动的主要器官。与气血,经络,皮肉,筋骨,精和津液共同组成一个有机的整体,即人体。人体以五脏为中心,以经络为纽带,构成并完成复杂的生命活动。脏腑按其生理特点,分为脏、腑与奇恒之腑。脏,为五脏,即心、肝、脾、肺、肾;腑,为六腑,即胆、胃、大小肠、三焦和膀胱;奇恒之腑则为脑、髓、骨、脉、胆以及女子胞(子宫)。于此我们暂不提及奇恒之腑。 脏腑大况 心与小肠,心司神智、血脉,为生命活动的主宰。肝居于肋下,起藏血,疏通调气作用。脾与胃同于中焦,脾为阴,主运动及统血;胃为阳,主受纳,共同完成消化,吸收与供给其他器官能量。肺朝百脉,与心类似于君臣,心为君,肺为臣,以肺气辅佐血液运行。肾主藏静,主骨生髓,关系人的生长发育;肾同时主水、纳气,藏有的元阴与元阳为人生长发育的根本。 五脏具体描述 (一)心 心位于胸腔之内,隔膜之上,两肺之间靠左,脊柱之前。样子像朝下的荷花花苞,外面包裹有心包。心为神之舍,血之主,脉之宗,即心主神志,心主血脉。五行中属火,在五脏阴阳中为阳中之阳,主宰人的生命。与小肠相表里。 心的主要生理功能 1.心主血脉,指心气调节推动血液于脉中循环,环绕周身流动。心脉直接相连、互通,为 一密闭体系。在心、脉、血这一循环体系中心为主导。若心脏停止,则生命终止。心火旺,则面红舌赤,舌尖深红而起刺;心气虚,则血脉虚,脉象无力;心脉塞,则面舌均较暗,可见紫青。 2.心主神志,指心主神明,即心藏神。广义之神指心主宰人的一切生理活动,狭义之神指 心主宰人的精神、意识、思维。人的所有器官均在心的控制下彼此协调,以完成整体的生命活动。但需明确,心主神志,其实为大脑的生理功能,为大脑对外界刺激的反映。 心主神志正常,则精神十足,反应迅捷;反之则精神萎靡,思维迟缓。心主神志与心主血脉互相影响。 3.心与其他事物的关联 (1)心在志为喜。指心的生理功能与情绪中的喜相关。喜一般认为是良性的,因此喜有益与心。但若喜乐过度则会损伤心神。 (2)心在体合脉,其华在面。前半句指全身的血脉都属于心,后半句指心的盛衰可由面部观察而得知。 (3)心在窍为舌。指观察舌的表现,以了解心主血脉和心主神志的状态。 (4)心在液为汗。指心和汗液有关联。通过主血脉和藏神的基础,司汗液生成与排泄,以调节人内外环境平衡。 个人理解:喜可以理解为激动,血液循环会加速,对心脏的负担就会加大,故欢喜过度易伤心。面部为血脉易体现之处,所以可以观察心的状态。舌为面部血管集中之处,易观察到血的状态进而看心。汗为血液的衍生物,亦可以观察心。 (二)肺 肺位于胸腔之内,横隔之上,分左二右三两肺五叶,是人体中位置最高的脏腑,因又称华盖。其性娇嫩,易染病,又称“娇脏”。肺为魄之处,气之主,五行属金。与大肠相表里。

超导技术及其发展历程

超导技术 超导技术的主体是超导材料。简而言之,超导材料就是没有电阻、或电阻极小的导电材料。超导材料最独特的性能是电能在输送过程中几乎不会损失。 1911年荷兰物理学家Onnes发现汞(水银)在4.2k附近电阻突然下降为零,他把这种零电阻现象称为超导电性。 海克·卡末林·昂内斯 海克·卡末林·昂内斯(Heike Onnes,1853年9月21日-1926年2月21日),荷兰物理学家,超导现象的发现者,低温物理学的奠基人。1853年出生于荷兰的格罗宁根,1894年创建了莱顿大学低温物理实验室,建立了大型液化气工厂,1904年液化了氧气,两年后又液化了氢气,并在1908年7月10日首次液化了氦气,以-269 °C(4K)刷新了人造低温的新纪录。1911年由于对物质在低温状态下性质的研究以及液化氦气,昂内斯被授予诺贝尔物理学奖。1923年,昂内斯退休,1926年在莱顿逝世。为纪念他,莱顿大学物理实验室1932年被命名为“卡末林·昂内斯实验室”。 汞的电阻突然消失时的温度称为转变温度或临界温度,常用Tc表示。在一定温度下具有超导电性的物体称为超导体。金属汞是超导体。进一步研究发现元素周期表中共有26种金属具有超导电性,它们的转变温度Tc列于表5-6。从表中可以看到,单个金属的超导转变温度都很低,没有应用价值。因此,人们逐渐转向研究金属合金的超导电性。表5-7列出一些超导合金的转变温度,其中Nb3Ge 的转变温度为23.2K,这在70年代算是最高转变温度超导体了。当超导体显示导材料都是在极低温下才能进入超导态,假如没有低温技术发展作为后盾,就发现不了超导电性,无法设想超导材料。这里又一次看到材料发展与科学技术互相促进的关系。低温超导材料要用液氦做致冷剂才能呈现超导态,因此在应用上受到很大的限制。 人们迫切希望找到高温超导体,在徘徊了几十年后,终于在1986年有了突破。(1)瑞士Bednorz和Müller发现他们研制的La-Ba-CuO混合金属氧化物具有超导电性,转变温度为35K。这是超导材料研究上的一次重大突破,打开了混合金

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

超导材料及其应用现状与发展前景培训讲学

超导材料及其应用现状与发展前景

超导材料及其应用现状与发展前景 作者:肖立业刘向宏王秋良马衍伟古宏伟 来源:《中国工业和信息化》2018年第08期 超导体不仅在临界温度下具有零电阻特性,而且在一定的条件下具有常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值。我国在超导材料及其应用领域总体上处于国际先进行列,基本掌握了各种实用化超导材料的制备技术,在多个应用方面也取得了良好的发展。我国超导材料及其应用领域将不断探索更高临界温度的超导体,提升超导材料及其应用技术的发展水平。 1911年,荷兰莱登实验室的卡麦林·昂尼斯在测量低温下金属的电导率时发现,当温度下降到4.2K时,汞的电阻完全消失(如图1所示),他把具有这种现象的导体称为超导体。经过近50年的研究,科学家們陆续发现,超导体不仅在一定温度(也称为临界温度,简称Tc)之下具有零电阻特性,而且在一定的条件下具有高密度载流能力、完全抗磁性(迈斯纳效应)、约瑟夫森效应等常规导体完全不具备的电磁特性,因而在电气与电子工程领域具有广泛的应用价值(见表1)。根据应用的具体需求,工程师们可以将超导体制备成各种超导材料,如超导线材、超导带材、超导薄膜、复合超导体等。 经历了100多年的研究,人们已经发现了多达数万种超导体。按照超导体的临界温度,可以将超导体分为低温超导体和高温超导体,临界温度低于25K~30K超导体为低温超导体,临界温度高于25K~30K超导体为高温超导体。目前,基于低温超导材料的应用装置一般工作在液氦温度(4.2K及以下),基于高温超导材料的应用装置一般工作在液氢温度(约20K)至液氮温度(约77K)之间。探索出更高临界温度乃至室温的超导体是人类不断追求的梦想。 超导材料的发展现状与前景 尽管人们已经发现了数万种超导体,但真正具有实用价值的超导体并不多。目前得到应用的低温超导体主要包括NbTi、Nb3Sn、Nb3Al等,具有实用价值的高温超导体主要包括铋系(BSCCO,Tc约90K-110K,也称为第一代高温超导材料,主要包括BSCCO-2212和BSCCO-2223两种,也简称Bi-2212或Bi-2223)、钇系(Tc约90K,YBCO或ReBCO,也称为第二代高温超导材料)。进入21世纪以来,MgB2(Tc为39K)和铁基超导体(Tc最高为55K)相继被发现,成为两种新的具有实际应用潜力的超导体。 低温超导材料发展现状与前景 超导材料主要包括NbTi、Nb3Sn、Nb3Al等。自上世纪60年代以来,其制备技术与工艺已经相当成熟,并推动了如加速器磁体、核聚变工程用超导磁体、核磁共振(MRI和NMR)磁体、通用超导磁体等的发展,并由此形成了具有一定规模的超导产业。目前,美国、欧盟和日本等国家和地区已经有一大批的企业可以生产各种面向不同应用需求的低温超导材料。2006年,我国加入了国际热核聚变实验堆(ITER)计划,从而使我国低温超导材料的发展迎来了前所未有的机遇。作为国内极少的低温超导线材产业化公司,西部超导材料科技有限公司承担了174吨NbTi超导线和35吨Nb3Sn超导线的生产任务,通过自主开发,掌握了成套技术和工艺,并于2017年全部交付预订的产品,得到了国际同行的高度评价,总体上达到了国际先进水平。ITER项目极大推动了我国低温超导材料的发展,也为我国自主开发MRI、加速器和核聚变磁体提供了超导材料供应的保障。

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

数字媒体技术专业应用及前景分析

前言数字媒体技术主要包含场景设计、角色形象设计、游戏程序设计、多媒体后期处理、人机 交互技术。主要针对游戏开发和网站美工还有创意设计这类工作设计的专业。 该专业的主干课程为:数字媒体导论、计算机图形学、数字图像处理、网络游戏设计技术、程序设计基础、数据结构、计算机网络、计算机组成与结构、视频特技与非线性编辑、计算机辅助几何设计、动画设计与制作等。 该专业培养德智体美全面发展的、面向当今信息化时代的、从事数字媒体开发与数字传播的专业人才。毕业生将兼具信息传播理论、数字媒体技术和设计管理能力,可在党政机关、新闻媒体、出版、商贸、教育、信息咨询及IT相关等领域,从事数字媒体开发、音视频数字化、网页设计与网站维护、多媒体设计制作、信息服务及数字媒体管理等工作,因此,数字媒体技术专业前景将会随着信息化时代的进程加速更加辽阔。 关于数字媒体技术核心课程应用分析 程序语言的社会应用 C语言是一种计算机程序设计语言,它既具有高级语言的特点,又具有汇编语言的特点。它由美国贝尔研究所的D.M.Ritchie于1972年推出,1978年后,C语言已先后被移植到大、中、小及微型机上,它可以作为工作系统设计语言,编写系统应用程序,也可以作为应用程序设计语言,编写不依赖计算机硬件的应用程序。它的应用范围广泛,具备很强的数据处理能力,不仅仅是在软件开发上,而且各类科研都需要用到C语言,适于编写系统软件,三维,二维图形和动画,具体应用比如单片机以及嵌入式系统开发。 Java是一种可以撰写跨平台应用软件的面向对象的程序设计语言,是由Sun Microsystems公司于1995年5月推出的Java程序设计语言和Java平台(即JavaSE, JavaEE, JavaME)的总称。Java 技术具有卓越的通用性、高效性、平台移植性和安全性,广泛应用于个人PC、数据中心、游戏控制台、科学超级计算机、移动电话和互联网,同时拥有全球最大的开发者专业社群。在全球云计算和移动互联网的产业环境下,Java更具备了显著优势和广阔前景。 分析 在如今信息技术书飞速发展,移动多媒体和电脑多媒体充斥着人们生活的各个角落,而c语言在电脑上的应用以及java在多平台上的应用越来越广泛,加之课程中开设的数据结构和其它辅助计算机课程让数字媒体技术的学生们拥有了扎实的编程技术,在社会中电子应用、网络安全、软件开发等领域中站稳跟脚,并为企业做出贡献。 图形图像处理的社会应用 Photoshop的应用领域很广泛的,在图像处理、绘制、视频、出版各方面都有涉及。Photoshop 的专长在于图像处理,而不是图形创作;有必要区分一下这两个概念;图像处理是对已有的位图图像进行编辑加工处理以及运用一些特殊效果,其重点在于对图像的处理加工;图形创作软件是按照自己的构思创意,使用矢量图形来设计图形。 平面设计

经络及作用

经络的作用及经络学说的临床应用 一、经络的生理功能 (一)联络脏腑、沟通表里 《灵枢·海论》指出:“夫十二经脉者,内属于腑脏,外络于肢节”。人体的五脏六腑、四肢百骸、五官九窍、皮肉筋骨等组织器官,之所以保持相对的协调与统一,完成正常的生理活动,是依靠经络系统的联络沟通而实现的。经络中的经脉、经别与奇经八脉、十五络脉,纵横交错,入里出表,通上达下,联系了人体各脏腑组织、经筋、皮部,联系了肢体筋肉皮 肤,加之细小的浮络和孙络形成了一个统一的整体。 (二)运行气血、濡养全身 《灵枢·本藏》指出:“经脉者,所以行血气而荣阴阳,濡筋骨,利关节者也”,气血是人体生命活动的物质基础,全身各组织器官只有得到气血的濡润才能完成正常的生理功能。经络是人体气血运行的通路,能将其营养物质输布到全身各组织脏 器,从而完成和调于五脏,洒陈于六腑的生理功能。 (三)抗御外邪、保卫机体 由于经络能“行血气而营阴阳”,营气行于脉中,卫气行于脉外,使营卫之气密布周身,外邪侵犯人体由表及里,先从皮毛开始,卫气充实于络脉,络脉散布于全身,密布于皮部,当外邪侵犯机体时,卫气首当其冲发挥抗御外邪,保卫机体的屏 障作用。 (四)接受刺激,调整虚实 在皮部的腧穴或经脉线上施以针灸、推拿、激光、电脉冲等皆可通过经络内外联系,调整内在脏腑经络的虚实,达到通经 活络、扶正祛邪的作用。 二、经络的病理变化 (一)经络的病候及其机制 当经络的生理功能失调时,即会产生一些病理变化。实证由病邪壅阻或气血不畅而致,多见沿经脉所过处发生的肿痛,即“血伤为肿”,“不通则痛”,如手阳明经病的齿痛,上肢外侧前肿痛;虚证多为经气虚陷,气血不足而成,往往局部会出现不仁、不用等痿废现象,即气血不能荣于经脉,如痿废,大指次指不用等。 十二经脉中的经气变动失常往往还能循以厥逆而上出现“厥”证,如《灵枢·经脉》记载的“臂厥”、“踝厥”、“珮厥”、“阳厥”、 “骨厥” 等。 十二经脉中的经气衰竭时,经脉所联系的器官功能也必然呈现衰竭。如《灵枢·经脉》所载“手太阴气绝,则皮毛焦。太阴者,行气温于皮毛者也,故气不荣,则皮毛焦;……”说明了当经络功能失常时,则循行所过之处与其所联器官即会出现 病理变化。 三、经络学说的临床应用 (一)说明病理变化 由于经络是人体通内达外的一个通道,在生理功能失调时,其又是病邪传注的途径,病邪可由皮部→络脉→经脉→脏腑传变。它具有反映病候的特点,故临床某些疾病的病理过程中,常常在经络循行通路上会出现明显的压痛、结节、条索状等反应物,以及相应的部位皮肤色泽、形态、温度、电阻等的变化。通过望色、循经触摸反应物和按压等,可推断疾病的病 理变化。 (二)指导临床辨证归经 由于经络有一定的循行部位及所属络的脏腑,故根据体表相关部位发生的病理变化,可推断疾病所在的经脉。如头痛一证,痛在前额者多与阳明经有关,痛在两侧者多与少阳经有关,痛在后项者多与太阳经有关,痛在巅顶者多与督脉、足厥阴经有关。临床上亦可根据所出现的证候,结合其所联系的脏俯,进行辨证归经。如咳嗽、鼻流清涕、胸闷、或胸外上方上肢内侧前缘疼痛等,与手太阴肺经有关;脘腹胀满、胁肋疼痛、食欲不振、嗳气吞酸等,与足阳明胃经和足厥阴肝经有 关。 (三)指导针灸治疗 针灸治疗是通过针刺和艾灸等刺激体表腧穴,以疏通经气,调节人体脏腑气血功能,从而达到治疗疾病的目的。通常以循经取穴为主,局部取穴和远部取穴相结合。如《四总穴歌》所说:“肚腹三里留,腰背委中求,头项寻列缺,面口合谷收。”就是循经取穴的典范。由于经络、脏腑与皮部有密切联系,故经络、脏腑的疾患可以用皮肤针叩刺皮部或皮内埋针进行治

氢能源的应用及其发展

氢能源的应用及其发展 一、什么是氢能源 1.氢能源介绍 当今世界开发新能源迫在眉睫,原因是所用的能源如石油、天然气、煤,石油气均属不可再生资源,地球上存量有限,而人类生存又时刻离不开能源,所以必须寻找新的能源。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源、能源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的储量丰富的新的含能体能源。 氢正是这样一种在常规能源危机的出现和开发新的二次能源的同时,人们期待的新的二次能源。氢位于元素周期表之首,原子序数为1,常温常压下为气态,超低温高压下为液态。它是通过一定的方法利用其它能源制取的,而不像煤、石油、天然气可以直接开采,今下几乎完全依靠化石燃料制取得到,如果能回收利用工程废氢,每年大约可以回收到大约1亿立方米。 2.氢能源的特点 作为一种理想的新的合能体能源,它具有以下特点: -能量高。除核燃料外,氢的发热值是目前所有燃料中最高的,是汽油的3倍。氢的高能,使氢成为推进航天器的重要燃料之一; -氢本身无毒,燃烧产物是水,无污染,且能循环使用; -氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快; -利用形式多,可以气态、液态或固态金属氢化物出现,能适应贮运及各种应用环境的不同要求。 -耗损少:可以取消远距离高压输电,代以远近距离管道输氢,安全性相对提高,能源无效损耗减小; -利用率高:氢取消了内燃机噪声源和能源污染隐患,利用率高; -运输方便:氢可以减轻燃料自重,可以增加运载工具有效载荷,这样可以降低运输成本从全程效益考虑社会总效益优于其他能源。 因此,可以说氢能是最理想的、完美的能源。氢能作为一种高效、清洁、可持续的“无碳”能源已得到世界各国的普遍关注。发展氢经济是人类摆脱对化石能源的依赖、保

超导材料未来应用的前景

超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。 超导聚能武器聚能武器是把能量汇聚成极细的能束,沿着精确的方向,以接近或等于光速的速度发射出去,对目标进行杀伤。但目前在研制这些武器上几乎都遇到了能源问题。即如何在瞬间向聚能武器提供大量的能源,如激光武器,特别是大功率的战略激光武器耗能巨大,它要求在瞬间提供数十亿至数百亿焦耳的能量,而目前的储能装置储存的能量却非常有限,且体大笨重。而超导技术的发展,

相关主题