搜档网
当前位置:搜档网 › gamma函数的性质

gamma函数的性质

gamma函数的性质
gamma函数的性质

gamma函数的性质

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。函数性质编辑

1、通过分部积分的方法,可以推导出这个函数有如下的递归性质:Γ(x+1)=xΓ(x)

于是很容易证明,伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:

2、与贝塔函数的关系:

3、在概率的研究中有一个重要的分布叫做伽玛分布:

其中。

4、

这个公式称为余元公式。

由此可以推出以下重要的概率公式:

5、对于,伽马函数是严格凹函数。

6、伽马函数是亚纯函数,在复平面上,除了零和负整数点以外,它全部解析,而伽马函数在处的留数为

历史背景

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n2自然的表达,即便n 为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!呢?我们把最初的一些(n,n!)的点画在坐

标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。

正切函数的定义图像与性质

正切函数的定义、图像与性质 一、教学目标 1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法” 2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用. 3、理解并掌握正切函数的诱导公式。 二、重点与难点 (一)教学重点:正切函数的图象和性质。 1、用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图像,并探索函数性质; 2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=/2 +k,k Z在确定图象形状时所起的关键作用。 (二)教学难点:体验正切函数基本性质的应用, 三、教学过程 1、复习引入 (一)复习 练习:画出下列各角的正切线 (二)引入 引出正切函数、正切曲线的概念和正切函数的诱导公式,提出对正切函数性质思考,让学生能清晰的认识本节课的内容:在内容上,是研究一个具体函数的图像和性质. 2、学习新课: 提出如何研究正切函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法。 (一)复习:如何作出正弦函数的图像? (二)探究:用正切线作正切函数图像

问题:正切函数y=tanx是否是周期函数? 设f(x)=tanx f(x+)=tan(x+)=tanx=f(x) y=tanx是周期函数,是它的一个周期。 我们先来作一个周期内的图像 根据正切函数的周期性,将上图像向左向右延伸得到正弦函数的图像 (三)研究函数性质(启发学生借助图像进行研究,培养学生数形结合的思想) (四)疑点解析

在每一个开区间 内都是增函数 (五)例题讲解及课内巩固练习 例1、比较下列每组数的大小 (1)tan167与tan173 (2)tan ( )与tan y=tanx 在(,)上是增函数, 又y=tanx 在(0,)上是增函数 说明:比较两个正切值大小,关键是相应的角化到y=tanx 的同一单调区间内,再利用y=tanx 的单调递增性解决。 例2、 观察正切曲线,写出满足下列条件的x 的值的范围 例3、求 675 tan )60tan(570tan 315tan --+的值。 四、课堂小结 通过本节课的学习,我们认识了正切函数的图象即正切曲线以及通过图象观察总结出正切函数的性质并利用性质解决了一些简单问题,要注意整体思想在其中的应用。 五、课后作业

4 对数函数及其性质(1)

高中数学教学设计大赛 获奖作品汇编 4、对数函数及其性质(1) 一、教材分析 本小节主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型; 2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。 五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计

三角函数辅助角公式化简

精选文库 7.已知函数()4cos sin 16f x x x π?? =+- ?? ? ,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -??? ?上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数. (1)求函数 的单调增区间;

精选文库 (2)的内角,,所对的边分别是,,,若,,且的面积为,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +-,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a r =(sinx ,cosx ),b r =(cos φ,sin φ)(|φ|<).函数 f (x )=a r ?b r 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π ] 上恒成立,求实数a 的取值范围. 16.已知向量a v =(2cos 2 x ω, 3sin 2x ω),b v =(cos 2x ω,2cos 2 x ω),(ω>0),设函数f (x )=a v ?b v ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值. 18.已知函数 (1)求函数在上的单调递增区间; (2)若 且 ,求 的值。

正切函数的图象与性质(习题)

1 正切函数的图象与性质(习题) ? 例题示范 例1:已知sin33cos55tan35a b c =?=?=?, ,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 思路分析: 观察33°,55°,35°之间的关系,利用三角函数在区间[090]??, 上的单调性,选择合适的公式化简,转化为可比较的函数值. 由诱导公式可得, cos55cos(9035)sin35b =?=?-?=?, ∵sin y x =在区间[090]??,上单调递增,且sin 33a =?, ∴b a >, ∵sin 35tan 35cos35c ?=?= ? ,且0cos351?=, ∴c b a >>,故选C . 例2:函数23()sin cos 4f x x x =++,2π[0]3 x ∈,的值域是( ) A .[12], B .[]44-, C .[1]4 -, D .[2]4-, 思路分析: 2223()sin cos 4 31cos cos 4 7cos cos 4 f x x x x x x x =++=-++=-++由题意, 设cos t x =,2π[0]3x ∈,,由余弦函数的单调性得,12 1t -≤≤, 则原函数可化为27()4f x t t =-++,12 1t -≤≤, 由二次函数性质得,()[12]f x ∈,,故选A . ? 巩固练习

A .2 π B .π C .2π D .4π C .(1)(0)(1)f f f >>- D .(0)(1)(1)f f f >-> 4. 下列函数属于奇函数的是( ) A .()tan(π)f x x =+ B .π()sin()2f x x =- C .()cos(3π)f x x =- D .π()sin()2f x x =+ 5. 已知函数()tan f x x x =+,2()=cos g x x x +,则( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数 C .()f x 是奇函数,()g x 是偶函数 D .()f x 是偶函数,()g x 是奇函数 6. 函数sin()2 y x π=+在( ) A .[]22 ππ-,上是增函数 B .[0]π,上是减函数 C .[0]-π,上是减函数 D .[]-ππ,上是减函数 7. 函数()cos f x x =的一个单调递减区间是( ) A .[]44 ππ-, B .[]44π3π,

对数函数及其性质练习题及答案解析

1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 解析:选A.????? x -1>04-x ≥0 ,解得10时,y =x x log 2x =log 2x ;当x <0时,y =x -x log 2(-x )=-log 2(-x ),分别作图象可知选D. 3.(2010年高考大纲全国卷Ⅰ)已知函数f (x )=|lg x |,若a ≠b ,且f (a )=f (b ),则ab =( ) A .1 B .2 C.1 2 D.14 解析:选A.如图由f (a )=f (b ), 得|lg a |=|lg b |. 设0<a <b ,则lg a +lg b =0. ∴ab =1. 4.函数y =log a (x +2)+3(a >0且a ≠1)的图象过定点________. 解析:当x =-1时,log a (x +2)=0,y =log a (x +2)+3=3,过定点(-1,3). 答案:(-1,3) 1.下列各组函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,且a ≠1) B .y =x 与y =x C .y =lg x 与y =lg x D .y =x 2与y =lg x 2 解析:选C.A.定义域分别为R 和(0,+∞),B.定义域分别为R 和[0,+∞),C.定义域都是(0,+∞),D.定义域分别为R 和x ≠0. 2.函数y =log 2x 与y =log 12x 的图象关于( ) A .x 轴对称 B .y 轴对称 C .原点对称 D .直线y =x 对称 解析:选A.y =log 12x =-log 2x . 3.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( )

教学活动设计对数函数及其性质(1)

教学设计------对数函数及其性质(1) 石家庄二中王大芬 一、教材分析 本节既是重点又是难点,对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。因此可采用类比的方法教学。但是对数函数与指数函数相比所涉及的知识更丰富、方法更灵活,能力要求也更高。 二、学生学习情况分析 刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。 三、设计理念 针对学生的实际情况,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。 四、教学目标 1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点 2.通过图像掌握对数函数的性质,并能运用它解决简单问题;

五、教学重点与难点 重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响. 六、教学过程设计 教学流程:背景材料→ 引出课题 → 函数图象→ 函数性质 →问题解决→归纳小结 (一)熟悉背景、引入课题 如图1材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4 个 ……, (1)分裂次数n 与细胞个数y 的函数关系是: (2),如果大约可以得到细胞1万个,10万个 ……,试问这种细胞经过多少次分裂?分裂次数y 就是要得到的细胞个数x 的函数,即x y 2log =; 图 1 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:形如函数0(log >=a x y a ,且)1≠a 叫做对数函数,

三角函数辅助角公式化简 ()

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ???, x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ? ? -????上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =++ ???(1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46π π?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ???? =--- ? ????? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -????上的单调递增区间及最大值与最小值. 4.设函数( )2sin cos f x x x x =+. (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=-+-+ ? ? ??????? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122??-????上的值域. 6.已知函数( )21cos cos 2f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[]0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π?? =+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ ?? -????上的最大值和最小值. 8.设函数( )()sin ?cos 2tan x x x f x x π??- ? ?? =. (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ???上的单调性. 9.已知函数( )2cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π??=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ??= ???, 1a =, bc =b c +的值. 12.已知函数. (1)求函数的单调增区间;

神奇的Gamma函数 (上)

神奇的Gamma函数 (上) rickjin 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 Γ(x)=∫∞0t x?1e?t dt 通过分部积分的方法,可以推导出这个函数有如下的递归性质 Γ(x+1)=xΓ(x) 于是很容易证明,Γ(x)函数可以当成是阶乘在实数集上的延拓,具有如下性质 Γ(n)=(n?1)! 学习了Gamma 函数之后,多年以来我一直有两个疑问: ? 1.这个长得这么怪异的一个函数,数学家是如何找到的; ? 2.为何定义Γ函数的时候,不使得这个函数的定义满足Γ(n)=n!而是Γ(n)=(n?1)! 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16,?可以用通项公式n2自然的表达,即便n为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,?,我们可以计算2!,3!, 是否可以计算 2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。 但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题,由此导致了Γ函数的诞生,当时欧拉只有22岁。 事实上首先解决n!的插值计算问题的是丹尼尔.贝努利,他发现,

对数函数及其性质

对数函数及其性质 Prepared on 22 November 2020

对数函数及其性质(一) 教学目标 (一) 教学知识点 1.对数函数的概念; 2.对数函数的图象与性质. (二) 能力训练要求 1.理解对数函数的概念; 2.掌握对数函数的图象、性质; 3.培养学生数形结合的意识. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化; 2.用联系的观点看问题; 3.了解对数函数在生产生活中的简单应用. 教学重点 对数函数的图象、性质. 教学难点 对数函数的图象与指数函数的关系. 教学过程 一、复习引入: 1、指对数互化关系: b N N a a b =?=log 2、 )10(≠>=a a a y x 且的图象和性质.

3、 我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个 数y 是分裂次数x 的函数,这个函数可以用指数函数y =x 2表示. 现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数x 就是要得到的细胞个数y 的函数.根据对数的定义,这个函数可以写成对数的形式就是y x 2log =. 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =. 引出新课--对数函数. 二、新授内容: 1.对数函数的定义: 函数x y a log =)10(≠>a a 且叫做对数函数,定义域为),0(+∞,值域为 ),(+∞-∞. 例1. 求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=. 分析:此题主要利用对数函数x y a log =的定义域(0,+∞)求解. 解:(1)由2 x >0得0≠x ,∴函数2log x y a =的定义域是{}0|≠x x ; (2)由04>-x 得4-x 得-33<

《对数函数及其性质》教案及设计说明

对数函数及其性质教学设计 三亚市第四中学邓影 课题:对数函数及其性质 使用教材:人教A版《普通高中课程标准实验教科书数学(必修1)》 第二章第2.2.2节第一课时 一、教材分析 1.本节教材的地位和作用 基本初等函数是函数的核心内容,而对数函数又是重要的基本初等函数之一。在此之前,学生已经学习了指数函数及对数运算,为本节的学习起着铺垫作用,同时对数函数作为常用数学模型是解决有关自然科学领域中实际问题的重要工具,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。因此本节课具有承前启后的作用。 2.教学重难点 重点:本节课是新授课,,因此我把本节课重点定为对数函数的概念、图象,和性质。 难点:学生在探究对数函数性质时可能会遇到障碍,因此我把探究对数函数性质作为本节课的难点。 二、教学目标 根据上述教材结构与内容分析,考虑到学生实际情况及其认知结构心理特征制定教学目标如下: 1.知识与技能: (1)理解对数函数的概念; (2)掌握对数函数的图像和性质,并在探索过程中学会运用数形结合的方法研究问题; 2.过程与方法: (1)经历对数函数概念的形成过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,由具体到一般,提高学生归纳概括能力; (2)学生通过自己动手作图,分组讨论对数函数的性质,提高动手能力、合作学习能力以及分析解决问题的能力; (3)通过类比指数函数性质研究对数函数,培养学生运用类比的思想研究数学问题的素养;

3.情感、态度与价值观: 在知识形成的过程中,体会成功的乐趣,感受数学图形的美,激发学生学习数学的热情与爱国主义热情,培养学生勇于探索敢于创新的精神。 三、教法学法 1.教学方法 建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。它既强调学习者的认知主体作用,又不忽视教师的指导作用。 高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟. 在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式 ...”教学方法。将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。其理论依据为建构主义学习理论。它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。 2. 学法指导 新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。因此本节课学生将在教师的启发诱导下对教师提供的素材经历创设情境→获得新知→作图察质→问题探究→归纳性质→学以致用→趁热打铁→画龙点睛→自我提升的过程,这一过程将激发学生积极参与到教学活动中来。 3. 教学手段 本节课我选择计算机辅助教学。增大课堂容量,提高课堂效率;激发学生的学习兴趣,展示运动变化过程,使信息技术真正为教学服务. 4.教学流程

三角函数辅助角公式化简

三角函数辅助角公式化简 一、解答题 1.已知函数()22sin cos 3f x x x π?? =-+ ?? ? , x R ∈ (1)求()f x 的对称中心; (2)讨论()f x 在区间,34ππ?? -??? ?上的单调性. 2.已知函数( )4sin cos 3f x x x π?? =+ ?? ? (1)将()f x 化简为()()sin f x A x ωφ=+的形式,并求()f x 最小正周期; (2)求()f x 在区间,46ππ?? -????上的最大值和最小值及取得最值时x 的值. 3.已知函数( )4tan sin cos 23f x x x x ππ??? ?=-- ? ???? ? (1)求()f x 的最小正周期; (2)求()f x 在区间,44ππ?? -???? 上的单调递增区间及最大值与最小值. 4.设函数( )2 sin cos 2 f x x x x =+- . (1)求函数()f x 的最小正周期T 及最大值; (2)求函数()f x 的单调递增区间. 5.已知函数()πππcos 22sin sin 344f x x x x ??????=- +-+ ? ? ?? ?? ??? (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间ππ,122?? -??? ?上的值域. 6.已知函数( )21 cos cos 2 f x x x x =--. (Ⅰ)求函数()f x 的对称中心; (Ⅱ)求()f x 在[] 0,π上的单调区间.

7.已知函数()4cos sin 16f x x x π? ?=+- ?? ?,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ?? ? 上的单调性. 9.已知函数()2 23sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[] 0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2 sin cos cos 4f x x x x π?? =-+ ?? ? . (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的值. 12.已知函数 .

高中数学必修4三角函数常考题型正切函数的性质与图像

正切函数的性质与图像 【知识梳理】 1.正切函数的性质 函数 y =tan x 定义域 ??? x ??? ?? x ≠k π+π2,k ∈Z 函数 y =tan x 值域 (-∞,+∞) 周期 T =π 奇偶性 奇函数 单调性 在每个开区间? ???k π-π2,k π+π 2(k ∈Z )上都是增函数 2.(1)正切函数的图像: (2)正切函数的图像叫做正切曲线. (3)正切函数的图像特征: 正切曲线是被相互平行的直线x =π 2 +k π,k ∈Z 所隔开的无穷多支曲线组成的. 【常考题型】 题型一、正切函数的定义域、值域问题 【例1】 求下列函数的定义域和值域: (1)y =tan ??? ?x +π 4;(2)y =3-tan x . [解] (1)由x +π4≠k π+π 2(k ∈Z )得, x ≠k π+π 4 ,k ∈Z ,

所以函数y =tan ????x +π4的定义域为xx ≠k π+π 4,k ∈Z ,其值域为(-∞,+∞). (2)由3-tan x ≥0得,tan x ≤ 3. 结合y =tan x 的图像可知,在????-π2,π 2上, 满足tan x ≤3的角x 应满足-π2a 的不等式的步骤: 【对点训练】 求函数y = 1 1+tan x 的定义域. 解:要使函数有意义,则有1+tan x ≠0, ∴tan x ≠-1,∴x ≠k π-π4且x ≠k π+π 2,k ∈Z . 因此,函数y = 1 1+tan x 的定义域为 ??? x ??? ?? x ≠k π-π4且x ≠k π+π2,k ∈Z . 题型二、正切函数的单调性及应用

《对数函数及其性质》教材梳理

疱丁巧解牛 知识·巧学·升华 一、对数函数及其性质 1.对数函数 一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞). 因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的. 只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数.像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数.对数函数同指数函数一样都是基本初等函数,它来自于实践. 2.对数函数的图象和性质 (1)下面先画指数函数y=log 2x 及y=log 1/2x 图象 描点即可完成y=log 2x ,y=x 21log 的图象,如下图. 0 1 2 4 8 x -1 -2 y=log 1/2x -3s 由表及图可以发现: 我们可以通过函数y=log 2x 的图象得到函数y=log 0.5x 的图象.利用换底公式可以得到:y=log 0.5x=-log 2x ,点(x,y)与点(x,-y)关于x 轴对称,所以y=log 2x 的图象上任意一点(x,y)关于x 轴对称点(x,-y)在y=log 0.5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象. 方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a 1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法.”②函数y=log a x 与y=x a 1log 的图象关于x 轴对称.

神奇的Gamma函数

神奇的Gamma函数 (上) 关键词:特殊函数, 欧拉 G a m m a函数诞生记 学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数 通过分部积分的方法,可以推导出这个函数有如下的递归性质 于是很容易证明,函数可以当成是阶乘在实数集上的延拓,具有如下性质 学习了Gamma 函数之后,多年以来我一直有两个疑问: 1.这个长得这么怪异的一个函数,数学家是如何找到的;

2.为何定义函数的时候,不使得这个函数的定义满足而 是 最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。 1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式 定义从整数集合延拓到实数集合,例如数列可 以用通项公式自然的表达,即便为实数的时候,这个通项 公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线 通过所有的整数点,从而可以把定义在整数集上的公式延拓 到实数集合。一天哥德巴赫开始处理阶乘序列 ,我们可以计算, 是否可以计算 呢?我们把最初的一些的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。

但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美的解决了这个问题, 由此导致了函数的诞生,当时欧拉只有22岁。 事实上首先解决的插值计算问题的是丹尼尔.贝努利,他发现, 如果都是正整数,如果,有 于是用这个无穷乘积的方式可以把的定义延拓到实数集合。例如, 取, 足够大,基于上式就可以近似计算出 。 欧拉也偶然的发现可以用如下的一个无穷乘积表达

正切函数图像及性质

第14讲 正切函数的性质与图像 第一部分 知识梳理 1. 正切函数的图像 2. 正切函数 的性质 3. 函数tan()y A x ω?=+的周期为T πω = 第二部分 精讲点拨 考点1 正切函数的图像的应用 (1) 直线y a =(a 为常数)与正切曲线tan y x =相交的相邻两点间的距离是( ) .A π .B 2 π .C 2π D 与a 值有关 y

[].1EX 解不等式tan 1x ≥- 考点2 正切函数性质应用 (2)不通过求值,比较下列各组中两个正切函数值的大小 ①0 tan167与0 tan173; ② 11tan 4π??- ???与13tan 5 π ?? - ??? (3)求函数tan 2y x =的定义域、值域和周期,并且求出它在区间[],ππ-内的图像 考点3 利用整理的思想求函数的单调区间和定义域 【例2】 求函数tan()3 y x π =+的定义域,并讨论它的单调性 [].1EX 求函数3tan(2)4 y x π =-的单调区间

考点4 正切函数综合应用 【例3】试判断函数tan 1 ()lg tan 1 x f x x +=-的奇偶性 【例4】已知3 4 x π π -≤≤ ,2 ()tan 2tan 2f x x x =++,求()f x 的最大值与最小值,并且 求相应x 的值 第三部分 检测达标 一、选择题 1.函数)4 tan(π - =x y 的定义域是 ( ) A.{x R x x 且,|∈}Z k k ∈+ ≠,4 2π π B. {x R x x 且,|∈}Z k k ∈+≠,43ππ C. {x R x x 且,|∈}Z k k ∈≠,π D. {x R x x 且,|∈}Z k k ∈±≠,4 2ππ 2.若 ,2 4 π απ < <则( ) A .αααtan cos sin >> B .αααsin tan cos >> C .αααcos tan sin >> D .αααcos sin tan >>

对数函数及其性质经典练习题

对数函数及其性质(一) 班级_____________姓名_______________座号___________ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 2.函数y =x |x | log 2|x |的大致图象是( ) 3.若log a 2<1,则实数a 的取值范围是( ) A .(1,2) B .(0,1)∪(2,+∞) C .(0,1)∪(1,2) D .(0,12 ) 4.设a =2log 3,b =2 1log 6,c =6log 5,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.已知a >0且a ≠1,则函数y =a x 与y =log a (-x )的图象可能是( ) 6.函数y =log 2x 在[1,2]上的值域是( ) A .R B .[0,+∞) C .(-∞,1] D .[0,1] 7.函数y =log 12(x -1)的定义域是________. 8.若函数f (x )=log a x (0≤???x x x x 则g [g (1 3)]=________. 10.f (x )=log 21+x a -x 的图象关于原点对称,则实数a 的值为________. 11.函数f (x )=log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,求实数a 的取值范围.

时 三角函数倍角 辅助角公式

和,辅,倍角公式 一、和差公式: 1、sin()sin cos cos sin αβαβαβ+=+;sin()sin cos cos sin αβαβαβ-=-; cos()cos cos sin sin αβαβαβ+=-;cos()cos cos +sin sin αβαβαβ-=; tan tan tan()1tan tan αβαβαβ++=-;tan tan tan()1tan tan αβαβαβ --=+ 二、辅助角公式:sin cos )a x b x x ?+=+, 其中: tan ,sin b a ???===证明过程: 三、二倍角公式: 1、二倍角: 2、降幂 sin 22sin cos ααα=;1sin cos sin 22 ααα= 例题4:化简求值之基础训练: (2)cos32cos77sin148cos13o o o o += (3)sin()sin()cos()cos()x y x y x y y x +-++-= (4)若3 53cos ,sin ,(,),(,2)51322 ππαβαπβπ=-=-∈∈,则sin()αβ+= (5)已知3 3sin ,(,2)52 πααπ=-∈,则cos()4πα-= 例题5:化简求值之升华训练 (1)已知1cos(),cos sin 38 πααα-=+则的值为

(4)已知11tan(),tan ,tan(2)27 αββαβ-==--=求 例6:化简求值之综合应用: (5)sin()sin()cos 66y x x x ππ =++-+ 辅助角公式专项训练 1.已知函数1()sin cos 44 f x x x =-。 (1)若5cos 13x =-,,2x ππ??∈???? ,求()f x 的值; (2)将函数()f x 的图像向右平移m 个单位,使平移后的图像关于原点对称,若0m π<<,求m 的值。 2.已知函数211()sin 2sin cos cos sin()222 f x x x π???=+-+(0)?π<<,其图像过点1(,)62 π。 (1)求的?值; (2)将()y f x =的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数()y g x =的图像,求函数()y g x =在区间0,4π?????? 上的最值。 3.已知函数()2cos sin()3f x x x π =+。 (1)求函数()f x 的最小正周期及取得最大值时x 的取值集合; (2)求函数()f x 图像的对称轴方程。 4.已知函数2()2cos sin cos f x a x b x x =+,且(0)f =,1()42 f π=。 (1)求()f x 的单调递减区间; (2)函数()f x 的图像经过怎样的平移才能使所得图像对应的函数成为奇函数? 5.设22()cos()2cos ,32 x f x x x R π=+ +∈。 (1)求()f x 的值域;(2)求()f x 的对称中心。 6.已知()cos(2)2sin()sin()344 f x x x x πππ=-+-+。 (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间,122ππ??- ????上的值域。

对数函数及其性质-对数的公式互化-详尽的讲解

2.1 对数与对数运算 1.对数的概念 一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ?x =log a N ,从而得对数恒等式:a log a N =N . (2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面. (3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则 利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度. (1)基本公式 ①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和. ②log a M N =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数 的对数减去除数的对数. ③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点 ①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4). ②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N = log a M log a N ,log a M n =(log a M )n . 3.对数换底公式 在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底

三角函数辅助角公式化简

三角函数辅助角公式化 简 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

7.已知函数()4cos sin 16f x x x π? ?=+- ???,求 (1)求()f x 的最小正周期; (2)求函数()f x 的单调递增区间 (3)求()f x 在区间,64ππ?? -???? 上的最大值和最小值. 8.设函数()() sin 3cos ?cos 2tan x x x f x x π?? +- ? ??= . (1)求()f x 的最小正周期; (2)讨论()f x 在区间0,2π?? ??? 上的单调性. 9.已知函数()223sin cos 2cos 1f x x x x =-+, (I )求()f x 的最大值和对称中心坐标; (Ⅱ)讨论()f x 在[]0,π上的单调性。 10.已知函数. (1)求 的最小正周期; (2)若关于 的方程在 上有两个不同的实根,求实数 的取值范围. 11.设()2sin cos cos 4f x x x x π? ?=-+ ???. (1)求()f x 的单调递增区间; (2)锐角ABC ?中,角,,A B C 的对边分别为,,a b c ,若02A f ?? = ??? , 1a =, 3bc =,求b c +的 值.

12.已知函数 . (1)求函数的单调增区间; (2) 的内角,,所对的边分别是,,,若 , ,且 的面积为 ,求的值. 13.设函数. (1)求的最大值,并写出使 取最大值时的集合; (2)已知中,角 的边分别为 ,若 ,求的最小值. 14.已知()( ) 1 3sin cos cos 2 f x x x x ωωω= +- ,其中0ω>,若()f x 的最小正周期为4π. (1)求函数()f x 的单调递增区间; (2)锐角三角形ABC 中, ()2cos cos a c B b C -=,求()f A 的取值范围. 15.已知a =(sinx ,cosx ),b =(cos φ,sin φ)(|φ|<).函数 f (x )=a ?b 且f (3 π -x )=f (x ). (Ⅰ)求f (x )的解析式及单调递增区间; (Ⅱ)将f (x )的图象向右平移 3π单位得g (x )的图象,若g (x )+1≤ax +cosx 在x ∈[0, 4 π]上恒成立,求实数a 的取值范围. 16.已知向量a =(2cos 2 x ω, 3sin 2 x ω),b =(cos 2 x ω,2cos 2 x ω),(ω>0),设函数 f (x )=a ?b ,且f (x )的最小正周期为π. (1)求函数f (x )的表达式; (2)求f (x )的单调递增区间. 17.已知函数()()sin (0,0,)2 f x A x A π ω?ω?=+>><的部分图象如图所示. (1) 求函数()f x 的解析式; (2) 如何由函数2sin y x =的通过适当图象的变换得到函数()f x 的图象, 写出变换过程; (3) 若142f α??= ???,求sin 6πα?? - ??? 的值.

相关主题