搜档网
当前位置:搜档网 › 《清代学术概论》读书报告

《清代学术概论》读书报告

《清代学术概论》读书报告
《清代学术概论》读书报告

《清代学术概论》读书报告

《清代学术概论》为梁启超先生在为蒋方震的《欧洲文艺复兴史》作序时,因“下笔不能自修”而“不得已宣告独立”的一部作品。这种非为写作专业学术读本为创作动机的意外收获,也为广大读者:或学术爱好者或历史爱好者或崇拜梁启超先生者亦或文学爱好者带来了宝贵的思想财富。

在阅读这本书的过程中,我有一下几点感受:

一、正如梁启超先生所说思想之流转分为启蒙期、全盛期、蜕分期、衰落期,“无论何国何时代之思潮,其发展变迁,多循斯轨。”清朝固然不例外。如果说者本书从时间的脉络上向读者介绍了清代的文学、思想,甚至天文地理方面的发展史和成果,不如说梁启超先生依据的是思想流转之发轫至衰落的四个必经阶段的顺序来写给后人以启发。

二、和之前所学的教科书、科研著作不同,《清代学术概论》在介绍不同阶段的代表人物时,除了对其主要成就的介绍,大都会提及这些人的研究方法,并可找到共同之处,即求真求实。例如一代开派宗师的顾炎武,研究方法一曰“贵创”,二曰“博证”,三曰“致用”;颜元:“立言但论是非,不论异同。”;戴震“盖无论何人之言,决不肯漫然置信,必求其所以然之顾”,梁启超认为此精神“实可代表清学派时代精神之全部”;以及段玉裁等人在校勘方面求真求实的精神皆可体现。

三、对于知识应抱有敬畏之情。梁启超先生言:“其实就纯粹的学者之见地论之,只当问成为学不成为学,不必问有用与无用,非如此则学问不能独立,不能发达。夫清学派固能成为学者也,其在我国文化史有价值者以此。”这是在清代启蒙运动、变法维新等倡西学的运动热潮之下,仍然倡导“经世致用”的精神保障之一。固然“学问非一派可尽”,但当术业有专攻,精益求精,不然学问不过流于肤浅,而不能成大器。

然而我整本书中喜欢的一句话却是朱维铮在导读中提到的梁启超与康有为在戊戌变法时所倡导的不缠足运动的效应:“裹小脚的妇女抛弃裹脚布,固然是惊世骇俗的一种解放,而在提倡’天足’的女权主义者看来,不再裹足的妇女依旧

是’小脚女人’。”思想的开阔,人格的独立影响着人的视野。我想只有对知识有博采众长的接纳态度,对传统不妄自菲薄地全然抛弃,并敬畏知识、求真求实、脚踏实地、专攻术业,才能见解独到,从而作出有价值的学问。

中国人历来被认为缺乏思辨能力,更愿意相信老师和课本,而不善疑和求真。正是缺乏独立的思考,所以学习流于表面,过于肤浅。我自身也存在着这样的弊病,通过对梁启超先生《清代学术概论》的学习,并没有牢记他所列举的那些成就,但对于学问的态度和研究学问的方法上,的确有了很大的启发。今后的学习道路,我仍需戒浮躁戒盲从,要善疑要求真。

通信原理课程设计报告书

通信原理课程设计 题目:脉冲编码调制(PCM)系统设计与仿真 院(系):电气与信息工程学院 班级:电信04-6班 姓名:朱明录 学号: 0402020608 指导教师:赵金宪 教师职称:教授

摘要 : SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM )是现 代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 关键词: PCM 编译码 1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView 具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView 具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 本文主要阐述了如何利用SystemView 实现脉冲编码调制(PCM )。系统的实现通过模块分层实现,模块主要由PCM 编码模块、PCM 译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。 2、系统介绍 PCM 即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM 的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT 的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,我国采用了A 律方式,由于A 律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。 图1 PCM 原理框图 下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电

线性系统理论大作业小组报告-汽车机器人建模

审定成绩: 重庆邮电大学 硕士研究生课程设计报告 (《线性系统理论》) 设计题目:汽车机器人建模 学院名称:自动化学院 学生姓名: 专业:控制科学与工程 仪器科学与技术 班级:自动化1班、2班 指导教师:蔡林沁 填表时间:2017年12月

重庆邮电大学

摘要 汽车被广泛的应用于城市交通中,它的方便、快速、高效给人们带来了很大便利,这大大改变了人们的生活. 研制出一种结构简单、控制有效、行驶安全的城市用无人智能驾驶车辆,将驾驶员解放出来,是大大降低交通事故的有效方法之一,应用现代控制理论设计出很多控制算法,对汽车进行控制是非常必要的,本文以汽车机器人为研究对象,对其进行建模和仿真,研究了其模型的能控能观性、稳定性,并通过极点配置和状态观测器对其进行控制,达到了一定的性能要求。这些研究为以后研究汽车的自动驾驶和路径导航,打下了一定的基础。 关键字:建模、能控性、能观性、稳定性、极点配置、状态观测器

目录 第一章绪论 (1) 第一节概述 (1) 第二节任务分工 (2) 第二章系统建模 (2) 2 系统建模 (2) 2.1运动学模型 (2) 2.2自然坐标系下模型 (4) 2.3具体数学模型 (6) 第三章系统分析 (7) 3.1 能控性 (7) 3.1.1 能控性判据 (7) 3.1.2 能控性的判定 (8) 3.2 能观性 (10) 3.2.1 能观性判据 (10) 3.2.2 能观测性的判定 (12) 3.3 稳定性 (13) 3.3.1 稳定性判据 (13) 3.3.2 稳定性的判定 (14) 第四章极点配置 (15) 4.1 极点配置概念 (15) 4.2 极点配置算法 (15) 4.3 极点的配置 (16) 4.4 极点配置后的阶跃响应 (17) 第五章状态观测器 (18) 5.1概念 (19) 5.2带有观测器的状态反馈 (20) 5.3代码实现 (21) 5.4 极点配置和状态观测器比较 (23)

线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告 1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具 有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。 (1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控; 判断能控程序设计如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; Qc=ctrb(A,B) Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 Rc=rank(Qc) Rc =2 Qc = 0.0500 1.0000 -0.0400 -0.8000 0.0010 0 -0.0010 -0.0200 得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。 (2)求取状态反馈器中的K,设的期望特征根为-7,-9; 其设计程序如下: >> A=[-0.8 0.02;-0.02 0]; B=[0.05 1;0.001 0]; P=[-7 -9]; k=place(A,B,P) k = 1.0e+003 * -0.0200 9.0000 0.0072 -0.4500 程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。

全维状态观测器的设计

实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 姓名 学号 同组人 实验名称全维状态观测器的设计 评分 批阅教师签字 一、实验目的 1、 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的 极点对状态的估计误差的影响; 2、 掌握全维状态观测器的设计方法; 3、 掌握带有状态观测器的状态反馈系统设计方法。 二、实验内容 开环系统? ??=+=cx y bu Ax x &,其中 []0100001,0,10061161A b c ????????===????????--???? a) 用状态反馈配置系统的闭环极点:5,322-±-j ; b) 设计全维状态观测器,观测器的极点为:10,325-±-j ; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时); 绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6、5 四、实验原理(或程序框图)及步骤

利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件就是必须对全部状态变量都能进行测量,但在实际系统中,并不就是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y 与输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次就是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke 增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出k e ; 方法二:就是可 采用Ackermann 公式: []T o e Q A k 1000)(1Λ-Φ=,其中O Q 为可观性矩阵。 利用对偶原理,可使设计问题大为简化。首先构造对偶系统 ???=+=ξ ηξξT T T b v c A & 然后可由变换法或Ackermann 公式求出极点配置的反馈k 增益,这也可

通信原理 数字基带传输实验报告

基带传输系统实验报告 一、 实验目的 1、 提高独立学习的能力; 2、 培养发现问题、解决问题和分析问题的能力; 3、 学习matlab 的使用; 4、 掌握基带数字传输系统的仿真方法; 5、 熟悉基带传输系统的基本结构; 6、 掌握带限信道的仿真以及性能分析; 7、 通过观察眼图和星座图判断信号的传输质量。 二、 实验原理 在数字通信中,有些场合可以不经载波调制和解调过程而直接传输基带信号,这种直接传输基带信号的系统称为基带传输系统。 基带传输系统方框图如下: 基带脉冲输入 噪声 基带传输系统模型如下: 信道信号 形成器 信道 接收 滤波器 抽样 判决器 同步 提取 基带脉冲

各方框的功能如下: (1)信道信号形成器(发送滤波器):产生适合于信道传输的基带信号波形。因为其输入一般是经过码型编码器产生的传输码,相应的基本波形通常是矩形脉 冲,其频谱很宽,不利于传输。发送滤波器用于压缩输入信号频带,把传输 码变换成适宜于信道传输的基带信号波形。 (2)信道:是基带信号传输的媒介,通常为有限信道,如双绞线、同轴电缆等。信道的传输特性一般不满足无失真传输条件,因此会引起传输波形的失真。另 外信道还会引入噪声n(t),一般认为它是均值为零的高斯白噪声。 (3)接收滤波器:接受信号,尽可能滤除信道噪声和其他干扰,对信道特性进行均衡,使输出的基带波形有利于抽样判决。 (4)抽样判决器:在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。 (5)定时脉冲和同步提取:用来抽样的位定时脉冲依靠同步提取电路从接收信号中提取。 三、实验内容 1采用窗函数法和频率抽样法设计线性相位的升余弦滚讲的基带系统(不调用滤波器设计函数,自己编写程序) 设滤波器长度为N=31,时域抽样频率错误!未找到引用源。o为4 /Ts,滚降系数分别取为0.1、0.5、1, (1)如果采用非匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (2)如果采用匹配滤波器形式设计升余弦滚降的基带系统,计算并画出此发送滤波器的时域波形和频率特性,计算第一零点带宽和第一旁瓣衰减。 (1)非匹配滤波器 窗函数法: 子函数程序: function[Hf,hn,Hw,w]=umfw(N,Ts,a)

线性系统理论课程报告

线性系统的坐标变换及其相关特性 坐标变换的概念: 系统坐标变换的几何意义就是换基,即把状态空间的坐标系由一个基底换为另一个基底。 坐标变换的代数表征: 对系统的坐标变换代数上等同于对其状态空间的基矩阵的一个线性非奇异变换。 线性时不变系统的坐标变换的一个状态空间描述: 对(1)式表征的线性时不变系统的状态空间描述,引入坐标变换即线性非奇异变换 ,则变换后的系统系统状态空间描述为: 推导过程如下: 此时,原系统的状态空间描述与变换后的系统的状态空间描述之间的系数矩阵有如下关系: 对线性时不变系统的(1),引入同样的线性非奇异变: x Ax Bu y Cx Du =+=+∑(1)1x p x -=: x Ax Bu y Cx Du =+=+∑(2)11x p x x p x --=?=1111()x p x p Ax Bu p Apx p Bu ----==+=+y Cx Du Cpx Du =+=+11,,,A p Ap B p B C Cp D D --====

换 ,则变换前后的系统的传递函数不变,即成立 。 进而得 基于上述讨论可得出在线性时不变系统变换下系统具有一些特性: (1)对线性时不变系统,不管是系统矩阵还是传递函数矩阵,其特征多项式在坐标变换下保持不变。 (2)对线性时不变系统,系统矩阵A 的特征值在坐标变换下保持不变,而特征向量在坐标变换下具有相同的变换关系,即对 的线性非奇异变换有: 线性时变系统的坐标变换的一个状态空间描述: 对线性时变的状态空间描述(3),引入坐标变换即线性非奇异变换 (4), 为可逆且连续可微,则变换后的状态空间描述为: 推导过程如下: 对 (4) 式两边关于 t 求导得: 1x p x -=()()G s G s =1111111()() [()] ()() G s Cp sI p Ap p B D C p sI p Ap p B D C sI A B D G s -------=-+=-+=-+=1x p x -=1,1,2,3i i v p v i -== : ()() ()()x A t x B t u y C t x D t u =+=+∑(3)()x p t x =()p t ()() ()()x A t x B t u y C t x D t u =+=+(5)()() x p t x p t x =+(6)

二阶倒立摆实验报告

. I 线性系统实验报告 : 院系:航天学院 学号: . .

2015年12月

1.实验目的 1)熟悉Matlab/Simulink仿真; 2)掌握LQR控制器设计和调节; 3)理解控制理论在实际中的应用。 倒立摆研究的意义是,作为一个实验装置,它形象直观,简单,而且参数和形状易于改变;但它又是一个高阶次、多变量、非线性、强耦合、不确定的绝对不稳定系统的被控系统,必须采用十分有效的控制手段才能使之稳定。因此,许多新的控制理论,都通过倒立摆试验对理论加以实物验证,然后在应用到实际工程中去。因此,倒立摆成为控制理论中经久不衰的研究课题,是验证各种控制算法的一个优秀平台,故通过设计倒立摆的控制器,可以对控制学科中的控制理论有一个学习和实践机会。 2.实验容 1)建立直线二级倒立摆数学模型 对直线二级倒立摆进行数学建模,并将非线性数学模型在一定条件下化简成线性数学模型。对于倒立摆系统,由于其本身是自不稳定的系统,实验建立模型存在一定的困难,但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系应用经典力学理论建立系统的动

力学方程。对于直线二级倒立摆,由于其复杂程度,在这里利用拉格朗日方程推导运动学方程。 由于模型的动力学方程中存在三角函数,因此方程是非线性的,通过小角度线性化处理,将动力学非线性方程变成线性方程,便于后续的工作的进行。 2)系统的MATLAB仿真 依据建立的数学模型,通过MATLAB仿真得出系统的开环特性,采取相应的控制策略,设计控制器,再加入到系统的闭环中,验证控制器的作用,并进一步调试。控制系统设计过程中需要分析容主要包括得出原未加控制器时系统的极点分布,系统的能观性,能控性。 3)LQR控制器设计与调节实验 利用线性二次型最优(LQR)调节器MATLAB仿真设计的参数结果对平面二阶倒立摆进行实际控制实验,参数微调得到较好的控制效果,记录实验曲线。 4)改变控制对象的模型参数实验 调整摆杆位置,将摆杆1朝下,摆杆2朝上修改模型参数、起摆条件和控制参数,重复3的容。 3.实验步骤

通信技术读书笔记

通信技术读书笔记 【篇一:通信发展简史读书笔记(格式)】 五邑大学土木建筑学院学院 读书笔记 课程名称: 专业: 学号: 姓名:任课教师: 时间: 评定成绩: 读书笔记 1.潜艇堪称水中暗藏的杀手,其突出的特点之一就是其隐蔽性,影响潜艇隐蔽性的因素很多,而潜艇的通信,特别是潜艇的主动发信行为则是潜艇暴露的重要因素之一。随着无线电测向技术的发明,利用岸基、舰载或机载无线电测向设备能测出潜艇发信时的位置,使潜艇招致打击。故此,各国都对潜艇的通信方法和新的通信技术进行了研究,目的就是在确保潜艇在满足必要的通信同时尽量增强潜艇的通信隐蔽性。 潜艇通信的方法主要有无线电静默和快速通信。潜艇无线电静默是潜艇在规定的时间和海区内禁止无线电发信而只收信甚至不收信的隐蔽措施。一般在舰艇接敌前、通过敌占区或执行特殊任务的隐蔽航行时采用。目的是防止敌方利用无线电台和无线电测向设备获取已方舰艇的发信时间、功率、联络关系和电台移动的速度、方向,从而测到己方潜艇所在海区、数量、指挥关系、航速、航向和行动企图等情报。潜艇无线电静默有全面静默和单方静默,单方静默是只接收不发信。 ——摘自《潜艇通信杂谈》 2.turbo码(turbo code)是一种应用在外层空间卫星通信和设计者寻找完成最大信息传输通过一个限制带宽通信链路在数据破坏的噪声面前的其它无线通信应用程序的高性能纠错码。 turbo码的判决 传统的数字化方法一般是先确定一个阈值电平。信号电平低于这个阈值就判决为“0”,高于就判决为“1”,即硬判决。在turbo码的解码过程中,对于一个给定比特的电平被量化成整数,例如从-99到

+99。其数值就被作为判决这个比特为“0”或“1”的可信度的指标(如-89意味着这个比特很可能是“0”,如+28意味着这个比特也许是“1”,但把握不是很大),即软判决。 星通信技术的发展也促进了信道编码技术的迅速发展,从现在的整 体状况来看,turbo码的使用已经越来越广泛了,在国际卫星信道中 的比例也越来越大,这些都是因为turbo码具备了许多优点,例如:turbo码具有接近香农极限的性能、延迟时间短、解码算法能够充分 利用软判决、突发错误纠错性能好、甚至当信道条件差时仍具有较 好的纠错能力等,这是rs码和其他编码不具备的。事实已经证明,turbo码技术具有强大的功能和灵活性,能够为各行各业的用户及 卫星运营商们带来非常明显的效益。 码会很快取代现在所使用的其他前向纠错技术,在卫星通信领域里 得到非常广泛的应用。 ——摘自《解析卫星通信中的turbo码编解码原理》 3.projectloon计划通过热气球给偏远地区提供互联网接入服务。 人们通过使用安置于家中建筑物上的特制网络天线,让信号从天线 发射到热气球,再由气球返回数据传送进入全球因特网中。https://www.sodocs.net/doc/7512686906.html,也是使用类似的方法,唯一的不同就是,计划利用无人 机作为传输媒介 通讯技术愈加发达的当今社会,反而加剧了缺少网络覆盖的偏远地 区与发达社会间的差距。 最近google和facebook两个巨头公司的均发起了相关项目,googleproject loon和markzuckerberg成立的https://www.sodocs.net/doc/7512686906.html,组织,致力于借助空中网络基站为世界上网络不畅的偏远地区提供互联网 服务。 projectloon计划通过热气球给偏远地区提供互联网接入服务。人们通过使用安置于家中建筑物上的特制网络天线,让信号从天线发射 到热气球,再由气球返回数据传送进入全球因特网中。https://www.sodocs.net/doc/7512686906.html, 也是使用类似的方法,唯一的不同就是,计划利用无人机作为传输 媒介。 ——摘自《什么是空中基站》 4.铁路应急通信系统是当铁路运输发生自然灾害或突发事件等紧急 情况时,为确保铁路实施救援指挥的需要,在突发事件现场与救援 指挥中心之间,各相关救援中心之间及现场内部建立的语音、图像 等通信系统。

线性系统理论Matlab实践仿真报告指南

线性系统理论实验报告 学院:电信学院 姓名:邵昌娟 学号:152085270006 专业:电气工程

线性系统理论Matlab实验报告 1、由分析可知系统的状态空间描述,因系统综合实质上是通过引入适当状态反馈矩阵K,使得闭环系统的特征值均位于复平面S的期望位置。而只有当特征根均位于S的左半平面时系统稳定。故当特征根是正数时系统不稳定,设计无意义。所以设满足题目中所需要求的系统的期望特征根分别为λ1*=-2,λ2*=-4。 (a) 判断系统的能控性,即得系统的能控性判别矩阵Q c,然后判断rankQ c,若rank Q c =n=2则可得系统可控;利用Matlab判断系统可控性的程序如图1(a)所示。由程序运行结果可知:rank Q c =n=2,故系统完全可控,可对其进行状态反馈设计。 (b) 求状态反馈器中的反馈矩阵K,因设系统的期望特征根分别为λ1*=-2,λ2*=-4;所以利用Matlab求反馈矩阵K的程序如图1(b)所示。由程序运行结果可知:K即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。 图1(a) 系统的能控性图1(b) 状态反馈矩阵 2、(a) 求系统的能控型矩阵Q c,验证若rank Q c

通信原理报告(DOC)

课程设计任务书 姓名学号 班级学院电子信息学院课程通信原理课程设计 题目数字调制系统误比特率(BER)测试的仿真设计与分析 设计任务 1.利用SystemView软件按照课设指导书分别画出2DPSK 系统中相干解调与差分解调的高频与不加噪声时低频的误比特率仿真测试原理图。 2.观测低频的仿真过程中原始基带信号波形、差分码波形、2DPSK信号波形、本地载波、解调端相乘器输出、低通滤波器输出、抽样判决输出波形以及码反变换后的输出波形。观测输入和输出波形的时序关系。 3.在2DPSK系统中,“差分编码/译码”环节的引入可以有效地克服接收提取的载波存在180°相位模糊度,即使接收端同步载波与发送端调制载波间出现倒相180°的现象,差分译码输出的码序列不会全部倒相。重新设置接收载波源的参数,将其中的相位设为180°,运行观察体会2DPSK系统时如何克服同步载波与调制载波间180°相位模糊度的。 4.利用建立的SystemView DPSK系统相干接收的仿真模型进行BER测试,产生该系统的BER曲线以此评估通信系统的性能。 时间 进度 课程设计要求在1.5周内做完 主要参考资料[1] 樊昌信,张甫翊,徐炳祥,吴成柯.通信原理(第五版)[M] 北京:国防工业出版社,2002 [2] 罗卫兵,孙桦,张捷.SystemView动态系统分析及通信系统仿真设计[M] 北京:电子工业出版社,2002 [3] 李东生, 雍爱霞, 左洪浩。System View 系统设计及仿真入门与应用[M] 北京: 电子工业出版社, 2002 [4] 青松, 程岱松, 武建华等。数字通信系统的System View 仿真与分析[M] 北京: 北京航空航天大学出版社, 2001

系统的能控性,能观测性,稳定性分析

实验报告 课程线性系统理论基础实验日期年月日 专业班级姓名学号同组人 实验名称系统的能控性、能观测性、稳定性分析及实现评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌握如何使用MATLAB进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a)了解以下命令的功能;自选对象模型,进行运算,并写出结

果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,182710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性; (c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性

通信原理学习笔记

通信与网络复习笔记——通信部分 第一讲信息论 信息的度量: 不确定度 平均不确定度,熵:单位bit 定理:离散随机变量的最大熵,S表示该随机变量的取值集合 联合熵:pij 联合概率,则联合熵是 条件熵:条件概率的熵H(X|Y)=∑∑p(i,j) log p(i|j) 关系: 互信息: 互信息的理解:①X的不确定度减去观测Y后X残存的不确定度,通过观测Y帮助了解X ②Y的不确定度减去观测X后Y残存的不确定度,通过观测X帮助了解Y的信息 集合对应:并——联合熵;减——条件熵;交——互信息量 X、Y独立→互信息量为0 →H(XY)=H(x)+H(Y)→H(X|Y)=H(X) X、Y相等→互信息量=自身信息量,最大互信息→条件熵为0 信道:信息的通道。信息传输的本质就是,利用接收的结果估计发送的结果,互信息 信道容量:互信息最大值 常见信道: I)BSC 对称二进制信道,差错概率ε,信道容量C=1+εlogε+(1-ε)log(1-ε) II)高斯信道:描述信道转移的概率,加性噪声 互信息量 用到h(X|X)=0 。Gauss是最差的加性信道,h(N)最大 信道容量C=max I(X:Y)(信号自己功率受限P) 香农定理:*信号带宽W,单位时间最多2W个采样 低信噪比:C=1.44P/n0 微分熵: 给定峰值约束,规定则最大微分熵的分布是均匀分布p(X)=1/(2A); 若能量受限,最大熵是高斯分布,熵h(N)= 若随机向量映射:J是X对Y的,则

第二讲压缩编码理论 常用傅立叶变换对 ———— 带通抽样:fs≥2 fH/[fH/B] []是取整最低抽样率:2B 窄带信号 O量化 I)均匀量化:量化噪声方差 Δk=Δ=2V/L 量化噪声Δ^2/12 。还有过载噪声 最优量化分层电平在重建电平终点,重建电平在分层电平质心(用x概率密度求) 此时表示yk最小bit数 工程运用:-V~V均匀量化,不考虑过载,信噪比:/=,多一位码字6dB改善 II)非均匀量化:用于语音,经常落入的区域精度高,损失小,不常落入的区域权重低 压缩编码:取ln→均匀量化→编码;扩张解码:解码→均匀重建→扩张(做exp) 对数量化:y=1/B*lnX 则信噪比S/=3*(L/BV)^2 O PCM 脉冲编码调制 13折现A律近似,或者15折现μ律近似 PCM协议:M1~M8:M1,极性(正负);M2~M4,段落;M5~M8 每段中电平位置 第三讲数字基带传输(一) O符号映射 bit:数字传输的“基本粒子” 符号:集装箱卡车,用于承载信息,可以是物理量 常用M表示符号集合的元素数目。1个符号承载的比特: 临位最小差错映射:格雷码。相邻符号对应的比特串只差错一位。 PAM符号集合: PSK、QAM符号集合:

系统的能控性、能观测性、稳定性分析

实 验 报 告 课程 线性系统理论基础 实验日期 年 月 日 专业班级 学号 同组人 实验名称 系统的能控性、能观测性、稳定性分析及实现 评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念。掌 握如何使用MATLAB 进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的稳定性分析; 3、系统的最小实现。 二、实验内容 (1)能控性、能观测性及系统实现 (a )了解以下命令的功能;自选对象模型,进行运算,并写出结 果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, minreal ; (b )已知连续系统的传递函数模型,18 2710)(23++++=s s s a s s G ,当a 分别取-1,0,1时,判别系统的能控性与能观测性;

(c )已知系统矩阵为???? ??????--=2101013333.06667.10666.6A ,??????????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101)(23++++= s s s s s G 的最小实现。 (2)稳定性 (a )代数法稳定性判据 已知单位反馈系统的开环传递函数为:) 20)(1()2(100)(+++=s s s s s G ,试对系统闭环判别其稳定性 (b )根轨迹法判断系统稳定性 已知一个单位负反馈系统开环传递函数为 ) 22)(6)(5()3()(2+++++=s s s s s s k s G ,试在系统的闭环根轨迹图上选择一点,求出该点的增益及其系统的闭环极点位置,并判断在该点系统闭环的稳定性。 (c )Bode 图法判断系统稳定性 已知两个单位负反馈系统的开环传递函数分别为 s s s s G s s s s G 457.2)(,457.2)(232231-+=++= 用Bode 图法判断系统闭环的稳定性。 (d )判断下列系统是否状态渐近稳定、是否BIBO 稳定。 []x y u x x 0525,100050250100010-=????? ?????+??????????-=

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

状态观测器的设计——报告

东南大学自动化学院 实 验 报 告 课程名称: 自动控制基础 实验名称: 状态观测器的设计 院 (系): 自动化学院 专 业: 自动化 姓 名: 吴静 学 号: 08008419 实 验 室: 机械动力楼417室 实验组别: 同组人员: 实验时间:2011年05月13日 评定成绩: 审阅教师: 一、实验目的 1. 理解观测器在自动控制设计中的作用 2. 理解观测器的极点设置 3. 会设计实用的状态观测器 二、实验原理 如果控制系统采用极点配置的方法来设计,就必须要得到系统的各个状态,然后才能用状态反馈进行极点配置。然而,大多数被控系统的实际状态是不能直接得到的,尽管系统是可以控制的。怎么办?如果能搭试一种装置将原系统的各个状态较准确地取出来,就可以实现系统极点任意配置。于是提出了利用被控系统的输入量和输出量重构原系统的状态,并用反馈来消除原系统和重构系统状态的误差,这样原系统的状态就能被等价取出,从而进行状态反馈,达到极点配置改善系统的目的,这个重构的系统就叫状态观测器。 另外,状态观测器可以用来监测被控系统的各个参量。 观测器的设计线路不是唯一的,本实验采用较实用的设计。 给一个被控二阶系统,其开环传递函数是G (s )=12 (1)(1)K T s T s ++ ,12 K K K =观测器如图示。

设被控系统状态方程 构造开环观测器,X ∧ Y ∧ 为状态向量和输出向量估值 由于初态不同,估值X ∧ 状态不能替代被控系统状态X ,为了使两者初态跟随,采用输出误差反馈调节,加入反馈量H(Y-Y)∧ ,即构造闭环观测器,闭环观测器对重构造的参数误差也有收敛作用。 也可写成 X =(A-HC)X +Bu+HY Y CX ? ∧ ∧ ∧∧ = 只要(A-HC )的特征根具有负实部,状态向量误差就按指数规律衰减,且极点可任意配置,一般地,(A-HC )的收敛速度要比被控系统的响应速度要快。工程上,取小于被控系统最小时间的3至5倍,若响应太快,H 就要很大,容易产生噪声干扰。 实验采用X =A X +Bu+H(Y-Y)? ∧ ∧∧ 结构,即输出误差反馈,而不是输出反馈形式。 取:1212min 35 20,5,2,0.5,0.2K K T T t λ-= =====,求解12g g ?????? 三、实验设备: THBDC-1实验平台 THBDC-1虚拟示波器 Matlab/Simulink 软件 四、实验步骤 按要求设计状态观测器 (一) 在Matlab 环境下实现对象的实时控制 1. 将ZhuangTai_model.mdl 复制到E:\MATLAB6p5\work 子目录下,运行matlab ,打开ZhuangTai_model.mdl 注:‘实际对象’模块对应外部的实际被控对象,在simulink 下它代表计算机与外部接口: ● DA1对应实验面板上的DA1,代表对象输出,输出通过数据卡传送给计算机; ● AD1对应实验面板上的AD1,代表控制信号,计算机通过数据卡将控制信号送给实际对象;

通信原理实验报告

通信原理 实 验 报 告

实验一 数字基带信号实验(AMI/HDB3) 一、 实验目的 1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点 2、掌握AMI 、HDB 3的编码规则 3、掌握从HDB 3码信号中提取位同步信号的方法 4、掌握集中插入帧同步码时分复用信号的帧结构特点 5、了解HDB 3(AMI )编译码集成电路CD22103 二、 实验内容 1、用示波器观察单极性非归零码(NRZ )、传号交替反转码(AMI )、三阶高密度 双极性码(HDB 3)、整流后的AMI 码及整流后的HDB 3码 2、用示波器观察从HDB 3/AMI 码中提取位同步信号的波形 3、用示波器观察HDB 3、AMI 译码输出波形 三、 基本原理 本实验使用数字信源模块(EL-TS-M6)、AMI/HDB 3编译码模块(EL-TS-M6)。 BS S5S4S3S2S1 BS-OUT NRZ-OUT CLK 并 行 码 产 生 器 八选一 八选一八选一分 频 器 三选一 NRZ 抽 样 晶振 FS 倒相器 图1-1 数字信源方框图 010×0111××××××××× ×××××××数据2 数据1 帧同步码 无定义位 图1-2 帧结构 四、实验步骤 1、 熟悉信源模块和HDB3/AMI 编译码模块的工作原理。 2、 插上模块(EL-TS-M6),打开电源。用示波器观察数字信源模块上的各种信号波形。 用FS 作为示波器的外同步信号,进行下列观察: (1) 示波器的两个通道探头分别接NRZ-OUT 和BS-OUT ,对照发光二极管的发光状态,判断数字信源单元是否已正常工作(1码对应的发光管亮,0码对应的发光管熄);

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

相关主题