搜档网
当前位置:搜档网 › 无人机编队飞行控制器设计与仿真

无人机编队飞行控制器设计与仿真

无人机编队飞行控制器设计与仿真
无人机编队飞行控制器设计与仿真

轻小型民用无人机系统运行管理暂行规定(修改20151206)

中国民用航空局飞行标准司 编号:AC-91-FS-2015-XX 咨询通告下发日期:2015年12月XX日 编制部门:FS

目录 1.目的 (3) 2.适用范围及分类 (3) 3.定义 (4) 4.民用无人机机长的职责和权限 (7) 5.民用无人机驾驶员 (8) 6.民用无人机使用说明书 (8) 7.禁止粗心或鲁莽的操作 (8) 8.摄入酒精和药物的限制 (9) 9.飞行前准备 (9) 10.限制区域 (9) 11.视距内运行(VLOS) (10) 12.视距外运行(BVLOS) (10) 13.民用无人机运行的仪表、设备和标识要求 (11) 14.管理方式 (11) 15.无人机云提供商须具备的条件 (13) 16.植保无人机运行要求 (14) 17.无人飞艇运行要求 (16) 18.废止和生效 (16)

1.目的 近年来,民用无人机的生产和应用在国内外蓬勃发展,特别是低空、慢速、轻小型无人机数量快速增加,占到民用无人机的绝大多数。为了规范轻小型民用无人机的运行,依据CCAR-91部,发布本咨询通告。 2.适用范围及分类 本咨询通告适用于轻小型民用无人机运行管理。其涵盖范围包括: 2.1空机重量小于等于116千克、起飞全重不大于150千克的无人机,且动能不大于95千焦,校正空速不超过100千米每小时; 2.2起飞全重不超过5700千克,距受药面高度不超过15米的植保类无人机; 2.3充气体积在4600立方米以下的无人飞艇; 2.4本咨询通告适用于除I类以外的所有轻小型无人机,某些特定条款中仅适用于特定类别无人机的内容将在条款中另行说明。 2.5 轻小型无人机运行管理分类:

无人机管控现状总结及建议

无人机管控现状总结及 建议 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

无人机管控现状全国空中交通管制二十四个分区:空军二十(4+4+3+4+5),海军四个。 五个战区、一个海军: 1、北部战区:长春、沈阳、大连、济南; 2、中部战区:北京、大同、西安、武汉; 3、南部战区:广州、南宁、昆明; 4、东部战区:上海、南京、福州、漳州; 5、西部战区:成都、乌鲁木齐、拉萨、兰州、鼎新; 6、海军:海口、宁波、山海关、青岛。 截至八月初,不完全统计,目前,四川、重庆、福建、云南、北京、天津、河北、新疆、广东、吉林、江苏、陕西等12个省市区陆续出台无人机相关的禁飞、限飞命令或通告;另外有深圳、石家庄、月牙泉、武汉、黄山、大连、柳州、扬州泰州、桂林、泉州、东莞、齐齐哈尔、无锡等十余个城市也在行者区域内禁限飞,或者在机场周边划出了大面积的净空保护区。 对于无人机申报管理有相当完善的政策与登记系统的省市区有: 香港特别行政区、澳门特别行政区; 有具体政策出台,各相关部门分工明确的省市区有: 江苏省、广东省、江西省、重庆市、四川省、陕西省和黑龙江省; 通过多方面咨询能了解大概流程,但没有明确政策,各部门没有明确分工的省市区有:北京市、天津市、上海市、浙江省、河南省、河北省、吉林省、宁夏回族自治区、辽宁省、甘肃省、山东省、安徽省、福建省、广西壮族自治区、海南省、湖北省、内蒙古自治区、新疆维吾尔自治区、贵州省和西藏自治区;

暂时没有相关管理规定或无从得知相关信息的省市区有: 湖南省、青海省、台湾省、云南省和山西省。 全国 2017年1月至6月,全国发生了10余起航班备降或返航,影响旅客万余人。深圳、南京尤甚。 ●全国首批155个民航机场的禁飞区确立。 ●国家民航局发布《民用无人驾驶航空器实名制登记管理规定》。 6月1日 起,对质量在250克以上的无人机实施注册登记。(基本上是个能飞的就比这个重吧微笑脸) 由于相关规定各省比较类似,仅列举几个出台明确规定的(仅摘录不是全部)。 6月陕西(中部战区) ●在陕西省范围内开展无人驾驶航空器飞行活动,应当飞行前一天15时前向 94188部队航空管制部门或民航空中管制部门提出申请,经批准后方可实施。 ●飞行计划申请单位(个人)应在组织飞行前2小时向申报飞行计划的航空管 制部门提出联系放飞事宜、经批准后方可组织飞行。组织飞行的单位(个人)要将航空器的起飞、降落时刻及时通报航管部门。 ●无人驾驶航空器飞行的计划申请内容包括:单位、航空器型号、架数、使用 的机场或临时起降点、任务性质、飞行区域、飞行高度、飞行日期、预计开始和结束时刻及现场人员联系方式等。 ●针对违规飞行行为将依照《中华人民共和国民用航空法》、《中华人民共和

无人机飞行控制方法概述

2017-10-08 GaryLiu 于四川绵阳 无人机的飞行控制是无人机研究领域主要问题之一。在飞行过程中会受到各种干扰,如传感器的噪音与漂移、强风与乱气流、载重量变化及倾角过大引起的模型变动等等。这些都会严重影响飞行器的飞行品质,因此无人机的控制技术便显得尤为重要。传统的控制方法主要集中于姿态和高度的控制,除此之外还有一些用来控制速度、位置、航向、3D轨迹跟踪控制。多旋翼无人机的控制方法可以总结为以下三个主要的方面。 1.线性飞行控制方法 常规的飞行器控制方法以及早期的对飞行器控制的尝试都是建立在线性飞行控制理论上的,这其中就有诸如PID、H∞、LQR以及增益调度法。 1)PID PID控制属于传统控制方法,是目前最成功、用的最广泛的控制方法之一。其控制方法简单,无需前期建模工作,参数物理意义明确,适用于飞行精度要求不高的控制。 2)H∞ H∞属于鲁棒控制的方法。经典的控制理论并不要求被控对象的精确数学模型来解决多输入多输出非线性系统问题。现代控制理论可以定量地解决多输入多输出非线性系统问题,但完全依赖于描述被控对象的动态特性的数学模型。鲁棒控制可以很好解决因干扰等因素引起的建模误差问题,但它的计算量非常大,依赖于高性能的处理器,同时,由于是频域设计方法,调参也相对困难。 3)LQR LQR是被运用来控制无人机的比较成功的方法之一,其对象是能用状态空间表达式表示的线性系统,目标函数是状态变量或控制变量的二次函数的积分。而且Matlab软件的使用为LQR的控制方法提供了良好的仿真条件,更为工程实现提供了便利。 4)增益调度法 增益调度(Gain scheduling)即在系统运行时,调度变量的变化导致控制器的参数随着改变,根据调度变量使系统以不同的控制规律在不同的区域内运行,以解决系统非线性的问题。该算法由两大部分组成,第一部分主要完成事件驱动,实现参数调整。如果系统的运行情况改变,则可通过该部分来识别并切换模态;第二部分为误差驱动,其控制功能由选定的模态来实现。该控制方法在旋翼无人机的垂直起降、定点悬停及路径跟踪等控制上有着优异的性能。 2.基于学习的飞行控制方法 基于学习的飞行控制方法的特点就是无需了解飞行器的动力学模型,只要一些飞行试验和飞行数据。其中研究最热门的有模糊控制方法、基于人体学习的方法以及神经网络法。 1)模糊控制方法(Fuzzy logic) 模糊控制是解决模型不确定性的方法之一,在模型未知的情况下来实现对无人机的控制。 2)基于人体学习的方法(Human-based learning) 美国MIT的科研人员为了寻找能更好地控制小型无人飞行器的控制方法,从参加军事演习进行特技飞行的飞机中采集数据,分析飞行员对不同情况下飞机的操作,从而更好地理解无人机的输入序列和反馈机制。这种方法已经被运用到小型无人机的自主飞行中。 3)神经网络法(Neural networks)

无人机编队队形变换

1.1 无人机编队队形变换 1.1.1 队形变换问题描述 图4.1给出了队形变化的示意图,图中红色飞机代表长机,其他飞机代表僚机,无人机编队由原三角形队形16P P 变换到目标矩阵队形''16P P 。队形变换选择的路线和目标队形的位置是影响队形变换效率的两个主要因素。当目标队形确定时,选择不同的对应路线,其效率是不一致的。本章队形变换问题主要研究如何选取最优的对应路线。定义队形变化的最优效率为由原队形变换到期望队形的时间最短。 1P 4P 5P 2 P 3P 6P '1P '2P ' 4P '3P '6P ' 5P 图4.1 队形变换示意图 假设编队中有n 架飞机,各飞机i 变化前的位置为i P ,期望队形的位置为' i P ,飞机i 从i P 到'i P 的变换效率为i ξ,经过的时间为i t ,走过的路程为i s 。则一次变换中的能量效率为: 0n tran i i W ξ==∑ (4.1) 队形变换的时间和总的路程为: 12max(,, ,)tran n T t t t = (4.2) n tran i i S s ==∑ (4.3) 则队形变换的最优解问题转换为求取当tran T 最小时的各飞机间的对应关系。由第三章编队保持阶段可以知道,本文的僚机跟踪过程需要根据纵向x 轴的距离不断调整自己的速度。只要保证距离期望点的位置距离最近,根据僚机纵向编队跟踪的串级PID 控制系统,僚机就能以最快的时间到达。则问题可以进一步转化为求取当tran S 最小时的各飞机间的对应关系。假设队形变换在无障碍物情况下进行变换,则i P 到'i P 时的直线路径最短,最后可以将队形变化最优解问题简化为指派问题。编队中有n 架飞机,则共有n n ?中对应关系。若最优的对应方法为' (,)i i J P P 。则其数学表达式为: '12(,)min(,,,)n n i i tran tran tran J P P S S S ?= (4.4) 1.1.2 匈牙利算法的应用 匈牙利算法又名为Munkres 分配算法,该算法最早由匈牙利数学家Dénes K?nig 和Jen?

无人机主要部件

1、首先介绍的是无人机的大脑——飞控 无人机飞行控制系统是指能够稳定无人机飞行姿态,并能控制无人机自主或半自主飞行的控制系统,是无人机的大脑,也是区别于航模的最主要标志,简称飞控。飞控的作用就是通过飞控板上的陀螺仪,对四轴飞行状态进行快速调整(都是瞬间的事,不要妄想用人肉完成)。如发现右边力量大,向左倾斜,那么就减弱右边电流输出,电机变慢、升力变小,自然就不再向左倾斜。如果没有飞控系统,四轴飞行器就会因为安装、外界干扰、零件之间的不一致等原因形成飞行力量不平衡,后果就是左右、上下地胡乱翻滚,根本无法飞行。 工作过程大致如下:飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。飞控系统的硬件主要包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 2、为传感器增稳的——云台 稳定平台,对于任务设备来说太重要了,是用来给相机增稳的部分,几千米的高度上误差个几分几秒就能差出去几十米。它主要通过传感器感知机身的动作,通过电机驱动让相机保持原来的位置,抵消机身晃动或者震动的影响。云台主要考察几个性能:增稳精度、兼容性(一款云台能适配几款相机和镜头)和转动范围(分为俯仰、横滚和旋转三个轴),如果遇到变焦相机,就更加考验云台的增稳精度了,因为经过长距离的变焦,一点点轻微的震动都会让画面抖动得很厉害。 现时的航拍云台主要由无刷电机驱动,在水平、横滚、俯仰三个轴向对相机进行增稳,可搭载的摄影器材从小摄像头到GoPro,再到微单/无反相机,甚至全画幅单反以及专业级电影机都可以。摄影器材越大,云台就越大,相应的机架也就越大。

关于无人机飞行控制系统的全面解析

关于无人机飞行控制系统的全面解析 飞控的大脑:微控制器在四轴飞行器的飞控主板上,需要用到的芯片并不多。目前的玩具级飞行器还只是简单地在空中飞行或停留,只要能够接收到遥控器发送过来的指令,控制四个马达带动桨翼,基本上就可以实现飞行或悬停的功能。意法半导体高级市场工程师介绍,无人机/多轴飞行器主要部件包括飞行控制以及遥控器两部分。其中飞行控制包括电调/马达控制、飞机姿态控制以及云台控制等。目前主流的电调控制方式主要分成BLDC方波控制以及FOC正弦波控制。 高通和英特尔推的飞控主芯片CES上我们看到了高通和英特尔展示了功能更为丰富的多轴飞行器,他们采用了比微控制器(MCU)更为强大的CPU或是ARM Cortex-A系列处理器作为飞控主芯片。例如,高通CES上展示的Snapdragon Cargo无人机是基于高通Snapdragon芯片开发出来的飞行控制器,它有无线通信、传感器集成和空间定位等功能。Intel CEO Brian Krzanich也亲自在CES上演示了他们的无人机。这款无人机采用了RealSense技术,能够建起3D地图和感知周围环境,它可以像一只蝙蝠一样飞行,能主动避免障碍物。英特尔的无人机是与一家德国工业无人机厂商Ascending Technologies合作开发,内置了高达6个英特的RealSense3D摄像头,以及采用了四核的英特尔凌动(Atom)处理器的PCI-express定制卡,来处理距离远近与传感器的实时信息,以及如何避免近距离的障碍物。这两家公司在CES展示如此强大功能的无人机,一是看好无人机的市场,二是美国即将推出相关法规,对无人机的飞行将有严格的管控。 多轴无人机的EMS/传感器某无人机方案商总经理认为,目前业内的玩具级飞行器,虽然大部分从三轴升级到了六轴MEMS,但通常采用的都是消费类产品如平板或手机上较常用的价格敏感型型号。在专业航拍以及专为航模发烧友开发的中高端无人机上,则会用到质量更为价格更高的传感器,以保障无人机更为稳定、安全的飞行。这些MEMS传感器主要用来实现飞行器的平稳控制和辅助导航。飞行器之所以能悬停,可以做航拍,是因为MEMS传感器可以检测飞行器在飞行过程中的俯仰角和滚转角变化,在检测到角度变化

小型无人机飞控系统介绍与工作原理

飞控系统是无人机的核心控制装置,相当于无人机的大脑,是否装有飞控系统也是无人机区别于普通航空模型的重要标志。在经历了早期的遥控飞行后,目前其导航控制方式已经发展为自主飞行和智能飞行。导航方式的改变对飞行控制计算机的精度提出了更高的要求;随着小型无人机执行任务复杂程度的增加,对飞控计算机运算速度的要求也更高;而小型化的要求对飞控计算机的功耗和体积也提出了很高的要求。高精度不仅要求计算机的控制精度高,而且要求能够运行复杂的控制算法,小型化则要求无人机的体积小,机动性好,进而要求控制计算机的体积越小越好。 在众多处理器芯片中,最适合小型飞控计算机CPU的芯片当属TI公司的TMS320LF2407,其运算速度以及众多的外围接口电路很适合用来完成对小型无人机的实时控制功能。它采用哈佛结构、多级流水线操作,对数据和指令同时进行读取,片内自带资源包括16路10位A /D转换器且带自动排序功能,保证最多16路有转换在同一转换期间进行,而不会增加CPU 的开销;40路可单独编程或复用的通用输入/输出通道;5个外部中断;集成的串行通信接口(SCI),可使其具备与系统内其他控制器进行异步(RS 485)通信的能力;16位同步串行外围接口(SPI)能方便地用来与其他的外围设备通信;还提供看门狗定时器模块(WDT)和CAN通信模块。 飞控系统组成模块 飞控系统实时采集各传感器测量的飞行状态数据、接收无线电测控终端传输的由地面测控站上行信道送来的控制命令及数据,经计算处理,输出控制指令给执行机构,实现对无人机中各种飞行模态的控制和对任务设备的管理与控制;同时将无人机的状态数据及发动机、机载电源系统、任务设备的工作状态参数实时传送给机载无线电数据终端,经无线电下行信道发送回地面测控站。按照功能划分,该飞控系统的硬件包括:主控制模块、信号调理及接口模块、数据采集模块以及舵机驱动模块等。 模块功能 各个功能模块组合在一起,构成飞行控制系统的核心,而主控制模块是飞控系统核心,它与信号调理模块、接口模块和舵机驱动模块相组合,在只需要修改软件和简单改动外围电路的基础上可以满足一系列小型无人机的飞行控制和飞行管理功能要求,从而实现一次开发,多型号使用,降低系统开发成本的目的。系统主要完成如下功能: (1)完成多路模拟信号的高精度采集,包括陀螺信号、航向信号、舵偏角信号、发动机转速、缸温信号、动静压传感器信号、电源电压信号等。由于CPU自带A/D的精度和通道数有限,所以使用了另外的数据采集电路,其片选和控制信号是通过EPLD中译码电路产生的。

无人机管理规程

1.0 2.0 3.0 3.1 3.2 3.3 4.0 5.0 5.1 5.1.1 5.2 5.2.1 5.2.2 5.2.3 5.3 5.3.1目的 为规范使用无人机,妥善管理公司的固定资产,特制定本规程。 使用范围 仅限于与公司相关的业务 职责 人事行政负责人负责《无人机管理规程》的制定、修订及各部门执行的监督检查。行政助理负责车辆的日常管理、保管。 其他各部门负责人负责本部门《无人机管理规程》的宣传、培训、执行监管。 财务部负责人负责制度相关费用的账务管理工作。 弱电工程师负责无人机的使用期间的问题处理。 项目经理负责《无人机管理规程》的审核和作业流程的监察工作。 定义 无人机指公司购进的航拍器械。 程序文件 借用流程 借用人向人事行政部提交借用申请→审核通过→《借用登记表》(附件一)登记→委派工程技术部人员现场支持。 使用条例 使用前务必检查设备及其配件是否齐全完好,电池充足,存储卡使用空间是否足够; 停飞后检查设备及其配件是否齐全完好,导出数据并将电池充满后归还人事行政部; 飞行使用中如遇设备故障,立即采取处理措施,以不造成设备损坏为最高准则,同时参照航拍机维修条例执行操作。 使用注意事项 飞行前,请仔细检查螺旋桨是否损坏、老化,电池电量是否充足、其他部件是否

5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.4 5.4.1 5.4.2 5.4.3 5.4.4 6.0 6.1 7.0 7.1应该更换或维修; 确保您的智能飞行电池、遥控器及其他设备电量充足; 请选择开阔空旷的飞行场地,远离人群及建筑物,请勿在人群或动物上方停留飞行; 根据相关法律规定,无人机飞行范围需在目视视距半径500米,相对高度120米范围内,确保飞机在您的视线之范围内,请勿在障碍物背面飞行,以减少操作不可控性,若违反相关法律规定将自行承担相关责任; 无人机飞行时必须考量现场天气、风向等因素,以减少操作不可控性; 飞行过程中,在使用自动功能时,如自动起飞、自动降落等,双手请不要离开遥控器,请始终保持对飞机控制; 在确认取得良好GPS信号后再起飞,并尽可能利用安全飞行功能,如自动返航,定点悬停等; 使用人管理 使用人应严格按照《无人机管理规程》使用无人机,如有违反责任自负。 使用人应爱惜公司财产,人为损失将自负。 使用人需学习《无人机使用学习教材》并经项目经理验证后授权。 使用人在使用过程中无人机发生失控故障时,立即停止遥控器的所有操作并第一时间向工程技术部报事。 支持文件 SAVILLS-CQ/YKJ-XZ-《无人机使用学习教材》 支持记录 SAVILLS-CQ/YKJ-XZ-《借用登记表》

多无人机协同编队仿生飞行控制关键技术研究

随着单架无人机技术的发展日趋成熟,军事和民事领域对无人机的任务需求变得苛刻,人们开始关注生物界编队鸟群(如大雁、天鹅等)长途迁徙的现象,分析生物系统的进化特征与行为规律,利用多无人机协同编队飞行(Coordinated Formation Flight,简称CFF)与生物系统(个体或群体)的某些原理和行为相似性,将仿生学引入到CFF研究中,以期获得类似鸟群长途迁徙的功效,如降低飞行阻力、节省燃油、延长巡航距离等。由于多无人机CFF控制技术具有广阔的工程应用前景,因此这一项目已在世界范围内激发了科研人员越来越高的研究热情,但又因该项目需要涉及多学科和多技术领域,因此研究难度高。目前国外虽已取得了显著的研究成果,但离工程应用还有很大的差距,而国内研究才刚刚起步,还属于理论跟踪性研究,所以系统深入的研究多无人机CFF控制技术,逐步实现其工程应用已成燃眉之际。本文正是基于多无人机CFF控制技术的国内外发展背景,根据实验室的实际情况,从多无人机编队飞行的基本原理到功能的硬件实现,采取环环相扣的研究方法,完成了多无人机CFF控制技术的前期研究工作。全文研究的多无人机CFF控制关键技术主要包括四个方面:多无人机CFF的气动耦合模型、CFF中单架UAV的运动学和动力学模型、CFF控制器以及硬件在环的CFF测试平台构建技术。论文首先总结了前人在这一领域内已有的研究成果,并在此基础上对紧密编队飞行中非常重要的气动耦合问题进行了系统的研究,然后分析对比了几种常见的涡流模型,利用简化的飞机结构和一种近似平均有效风和风梯度的计算方式,针对“长机-僚机”的V型编队方式和非线性6 DOF的刚性飞机,确立了适合多无人机CFF动态特性研究的气动耦合模型,继而分析这种气动耦合对飞机各种参量所产生的影响作用,并相应完成了对已有的标准飞机气动力和力矩系数方程组的调整工作。其次,利用第一阶段的工作成果,论文给出了“长机-僚机”编队方式下多无人机CFF模型,通过惯性坐标轴系、速度坐标轴系与机体坐标轴系之间的转换关系,深入的分析了受翼尖涡流影响的CFF中单架无人机的运动特性,同时给出了其特有的运动学和动力学模型。论文的核心研究内容之一是如何设计出一种能够确保僚机实时跟随长机飞行航迹的飞行控制器。在本文前期工作的基础上,利用多无人机CFF中的单架无人机的非线性动力学模型,针对飞机特有的运动规律,即飞机的状态变量可按时间尺度的不同分成慢变量( )和快变量( ),对应的给出了双环控制器的设计方法:外环利用带积分消除跟随航迹稳态误差的变结构滑模控制器,内环则采用基于神经网络消除逆误差的动态逆控制器。整个设计过程紧紧围绕多无人机CFF系统建立的要求,由长机航迹信息已知的理想假设,到完全不用知晓情况下实施目标跟随,并保持特定的编队队形,层层深入地系统研究了飞行跟随控制律,最后利用Matlab7.1对其进行仿真验证。仿真结果表明该飞行控制器能够确保僚机在长机产生的涡流场中保持编队飞行的队形结构。本文另一个核心研究内容是硬件在环的多无人机CFF测试平台的研制。文中详细的阐述了多无人机CFF系统的设计要求和软硬件实现过程。整个系统主要由三个子系统组成:无人机飞行控制系统(Flight Control System,简称FCS)、基于Statemate构建的无人机虚拟样机(Virtual Prototype,简称VP)以及地面测试系统。硬件测试平台的设计中加入了FCS-VP思想,主要是基于低成本考虑,而FCS-VP虽然是一种数字化的软件模型,但其设计理念与系统设计自动化(System Design Automation,SDA)完全一致,可以对应的完成物理原型应该具备的所有功能,且具有研究过程用时短,飞行航迹监控实时性强等优势,并能随机的对飞机实施各种干扰,动态的显示编队飞行控制器的性能好坏。经过多次双机编队飞行的检测实验,结果表明基于多无人机CFF测试平台系统的双机编队飞行正常,达到设计要求,同时也进一步证明了本文所研究的编队飞行控制系统相关理论算法是正确和有效的。

详细解析无人机飞控技术

详细解析无人机飞控技术 以前,搞无人机的十个人有八个是航空、气动、机械出身,更多考虑的是如何让飞机稳定飞起来、飞得更快、飞得更高。如今,随着芯片、人工智能、大数据技术的发展,无人机开始了智能化、终端化、集群化的趋势,大批自动化、机械电子、信息工程、微电子的专业人材投入到了无人机研发大潮中,几年的时间让无人机从远离人们视野的军事应用飞入了寻常百姓家、让门外汉可以短暂的学习也能稳定可靠的飞行娱乐。不可否认,飞控技术的发展是这十年无人机变化的最大推手。 飞控是什么? 飞行控制系统(Flight control system)简称飞控,可以看作飞行器的大脑。多轴飞行器的飞行、悬停,姿态变化等等都是由多种传感器将飞行器本身的姿态数据传回飞控,再由飞控通过运算和判断下达指令,由执行机构完成动作和飞行姿态调整。 控可以理解成无人机的CPU系统,是无人机的核心部件,其功能主要是发送各种指令,并且处理各部件传回的数据。类似于人体的大脑,对身体各个部位发送指令,并且接收各部件传回的信息,运算后发出新的指令。例如,大脑指挥手去拿一杯水,手触碰到杯壁后,因为水太烫而缩回,并且将此信息传回给大脑,大脑会根据实际情况重新发送新的指令。无人机的飞行原理及控制方法(以四旋翼无人机为例) 四旋翼无人机一般是由检测模块,控制模块,执行模块以及供电模块组成。检测模块实现对当前姿态进行量测;执行模块则是对当前姿态进行解算,优化控制,并对执行模块产生相对应的控制量;供电模块对整个系统进行供电。 四旋翼无人机机身是由对称的十字形刚体结构构成,材料多采用质量轻、强度高的碳素纤维;在十字形结构的四个端点分别安装一个由两片桨叶组成的旋翼为飞行器提供飞行动力,每个旋翼均安装在一个电机转子上,通过控制电机的转动状态控制每个旋翼的转速,来提供不同的升力以实现各种姿态;每个电机均又与电机驱动部件、中央控制单元相连接,

无人机飞行管理规定

无人机飞行管理规定 1.从事通用航空飞行活动的单位、个人使用机场飞行空域、航路、航线,应当按照国家有关规定向飞行管制部门提出申请,经批准后方可实施。 2.从事通用航空飞行活动的单位、个人,根据飞行活动要求,需要划设临时飞行空域的,应当向有关飞行管制部门提出划设临时飞行空域的申请。划设临时飞行空域的申请,应当在拟使用临时飞行空域7个工作日前向有关飞行管制部门提出。负责批准该临时飞行空域的飞行管制部门应当在拟使用临时飞行空域3个工作日前作出批准或者不予批准的决定,并通知申请人。 以下摘取的部分无人机法规: (1)无人机(UA:Unmanned Aircraft),是由控制站管理(包括远程操纵或自主飞行)的航空器。也称远程驾驶航空器(RPA:Remotely Piloted Aircraft) (2)无人机系统(UAS:Unmanned Aircraft System),也称远程驾驶航空器系统(RPAS:Remotely Piloted Aircraft Systems),是指由无人机、相关的控制站、所需的指令与控制数据链路以及批准的型号设计规定的任何其他部件组成的系统。 (3)无人机系统驾驶员,由运营人指派对无人机的运行负有必不可少职责并在飞行期间适时操纵无人机的人。

(4)无人机系统的机长,是指在系统运行时间内负责整个无人机系统运行和安全的驾驶员。 (5)无人机观测员,由运营人指定的训练有素的人员,通过目视观测无人机,协助无人机驾驶员安全实施飞行,通常由运营人管理,无证照要求。 (6)运营人,是指从事或拟从事航空器运营的个人、组织或企业。 (7)控制站(也称遥控站、地面站),无人机系统的组成部分,包括用于操纵无人机的设备。 (8)指令与控制数据链路(C2:Commandand Control datalink),是指无人机和控制站之间为飞行管理之目的的数据链接。 (9)感知与避让,是指看见、察觉或发现交通冲突或其他危险并采取适当行动的能力。 (10)无人机感知与避让系统,是指无人机机载安装的一种设备,用以确保无人机与其它航空器保持一定的安全飞行间隔,相当于载人航空器的防撞系统。在融合空域中运行的Ⅺ、Ⅻ类无人机应安装此种系统。 (11)视距内(VLOS:Visual Line of Sight)运行,无人机在驾驶员或观测员与无人机保持直接目视视觉接触的范围内运行,且该范围为目视视距内半径不大于500米,人、机相对高度不大于120米。

无人机数据传输系统-手册

1.概论: 无人机,即无人驾驶的飞机。是指在飞机上没有驾驶员,只是由程序控制自动飞行或者由人在地面或母机上进行遥控的飞机。它装有自动驾驶仪、程序控制系统、遥控与遥测系统、自动导航系统、自动着陆系统等,通过这些系统可以实现远距离飞行并得以控制。无人机与有人驾驶的飞机相比而言,重量轻、体积小、造价低、隐蔽性好,特别宜于执行危险性大的任务,因此被广泛应用。 二、无人机的特点及技术要求 无人机没有飞行员,其飞行任务的完成是由无人飞行器、地面控制站和发射器组成的无人机系统在地面指挥小组的控制一下实现的。据此,无人机具有以下特点: (1)结构简单。没有常规驾驶舱,无人机结构尺寸比有人驾驶飞机小得多。有一种无尾无人机在结构上比常规飞机缩小40%以上。重量减轻,体积变小,有利于提高飞行性能和降低研制难度。 (2)安全性强。无人机在操纵人员培训和执行任务时对人员具有高度的安全性,保护有生力量和稀缺的人力资源。可以用来执行危险性大的任务。 (3)性能提高。无人机在设计时不用考虑飞行员的因素。许多受到人生理和心理所限的技术都可在无人机上使用,从而突破了有人在机的危险,保证了飞行的安全性。 (4)一机多用,稍作改进后发展为轻型近距离对地攻击机。

(5)采用成熟的发动机和主要机载设备,以减少研制风险与经费投入,加快研制进度。联合研制以减小投资风险、解决经费不足有利于扩大出口及扬长技术与设备优势。 (6)研制综合训练系统。技术要求有: (1)信息技术包括信息的收集和融合,信息的评估和表达,防御性的信息战、自动目标确定和识别等; (2)设备组成包括低成本结构、小型化及模块化电子设备、低可见性天线、小型精确武器、可储存的高性能发动机及电动作动器等; (3)性能实现包括先进的低可见性和维护性技术、任务管理和规划、组合模拟和训练环境等。 三、无人机系统按照功能划分,主要包括四部分: (1)飞行器系统 包括空中和地面两大部分。空中部分包括:无人机、机载电子设备和辅助设备等,主要完成飞行任务。地面部分包括:飞行器定位系统、飞行器控制系统、导航系统以及发射回收系统,主要完成对飞行器的遥控、遥测和导航任务,空中与地面系统通过数据链路建立起紧密联系。 (2)数据链系统 包括:遥控、遥测、跟踪测量设备、信息传输设备、数据中继设备等用以指挥操纵飞机飞行,并将飞机的状态参数及侦察信息数据传到控制站。 (3)任务设备系统 包括:为完成各种任务而需要在飞机上装载的任务设备。

多旋翼无人机飞行控制系统设计研究

www?ele169?com | 27实验研究 0 引言 多旋翼无人机是集合多项现代高新科技的成果,无人机 行业的蓬勃发展是中国崛起、中国航空产业崛起的重要体现,多旋翼无人机具有系统安全性好、可靠性高、负载能力强等特点,具有非常广阔的应用前景。多旋翼无人机的作业方式相比于传统的人工作业方式,大大提高了作业效率、降低作业成本与风险。在无线通信技术与图像处理技术快速发 展的背景下,多旋翼无人机逐渐向智能化的方向发展,另外, 独特的机械结构使多旋翼无人机更加灵活。随着无人机在人们生活中的进一步普及,无人机故障的影响也会越来越大,在大多数故障中,主要是控制器故障后果最为严重,所以飞行控制器的结构健康管理始终受到人们高度重视。1 多旋翼无人机任务需求分析 多旋翼无人机飞行控制系统主要服务于公安消防、公共 安全、勘察搜救等领域,对无人机的飞行安全、可靠性等要求较高,针对多旋翼无人机所应用的特殊场合,其飞行控制 系统需要具备以下性能指标:首先要具备机载飞控系统与地面站两部分,由机载飞控 系统来进行控制律的运算,通过电机控制指令对地面站发送的信息进行接收。地面站会显示无人机当前的飞行状态以及 主控件的基本性能。其次要具有良好的传感器以及多种飞行模式,传感器主要对无人机飞行姿态、高度、位置等信息进行采集,通过机载计算机对相应数据进行处理,多旋翼无人机存在多种飞行模式,需要根据实际情况选择最佳飞行模 式。最后,多旋翼无人机飞行控制系统要具有多种读取遥控 信号的方式,实现多种多旋翼无人机的飞行控制。还要具有在线调整及保存相关的控制参数功能、在异常情况下应急处理功能等。根据多旋翼无人机飞控系统的要求指标,提出了飞控系统具体的设计要求: ■1.1 飞行控制处理器 飞行控制处理器需要对传感数据进行收集并处理,对控 制律进行运算,保持与地面站之间通信畅通。飞行控制处理器只有缩短调节电机转速的指令周期,才能更好的发挥控制性能。由于飞行控制处理器面临的任务众多,所以要求飞控处理器处理速度快、计算能力强。飞控处理器必须快速对传感器数据进行读取,第一时间与无线通信设备进行连接,实现与地面站之间的通信,另外飞控处理器必须具备存储空间大、低功耗、体积小等特点。 ■1.2 传感器传感器需要选择精度较高的传感器以及通信距离较远的无线通信设备,满足飞控系统的性能指标,确保传感器使用简单、通信接口通用。 ■1.3 软件开发多旋翼无人机的飞控软件系统要有很强的可靠性与稳定性,具备通信链路异常状况下的紧急处理,具备相应的备份程序,避免无人机在飞行过程中发生故障,另外地面站要具备故障报警功能。飞行控制系统的采样频率不易过小以免出现控制输出调节量滞后造成严重后果。2 多旋翼无人机飞行控制系统总体架构设计多旋翼无人机飞行控制系统总体架构由机载部分与地面站部分组成,机载部分主要由飞控处理模块、传感器模块、电源模块、执行机构构成。地面部分与机载部分之间的信息交互 主要通过无线通信模块来完成。飞控系统总体架构如图1所示。图1 飞控系统总体架构 ■2.1 飞控系统硬件平台设计当前的飞行控制系统控制芯片多采用ARM、DSP 等高 速处理器,单处理器的使用会抑制控制系统的进一步拓展,多旋翼无人机飞行控制系统设计研究张建学 (中国民航飞行学院计算机学院,四川广汉,618307)摘要:多旋翼无人机具有优良的操作性能、维护简单、成本较低等特点,已经成为微小型无人机的主流,获得了广大的消费群体。飞控系统作为无人机的核心技术,始终是无人机学术与工程领域研究的热点。本文以多旋翼无人机为研究对象,根据多旋翼无人机的结构特点,对飞行控制系统进行设计与研究,从硬件原理与软件原理对多旋翼无人机飞行控制系统的构建过程进行详细介绍。关键词:多旋翼;无人机;飞控系统

无人机室内编队飞行计算机视觉定位

无人机室内编队飞行计算机视觉定位 方案设计

目录 1:项目需求 (3) 2:系统整体设计 (3) 3:标识设计 (6) 4:目标定位跟踪 (7) 5:研究基础和团队 (7)

1:项目需求 本项目是针对室内多机编队飞行而生。 飞行环境 1、飞行空间:长8米,宽4米,高2.8米 2、飞机尺寸:长10cm,宽10cm; 3、飞机数量:16架; 4、飞行高度1.5米 5、飞行间距40cm 视觉定位要求 1、平面定位精度5cm; 2、飞机头尾方位角1°; 3、输出速率大于30hz; 4、延迟小于100ms; 2:系统整体设计 室内导航与定位是无人机编队飞行的核心技术,一旦无人机像人一样室内活动自如,将开启一个比现有规模还大的室内市场,对于室外环境,全球导航卫星系统(Global Navigation Satellite System, GNSS)诸如美国的全球定位系统(Global Positioning System, GPS)、我国的北斗卫星导航系统(BeiDou Navigation Satellite System,

BDS)能够为用户提供较高精度的定位服务,基本满足了用户在室外场景中对基于位置服务的需求。然而,个人用户、服务机器人、扫地机器人等有大量的定位需求发生在室内场景。而室内场景受到建筑物的遮挡,GNSS信号快速衰减,甚至完全拒止,无法满足室内场景中导航定位的需要。因此,室内定位技术成为工业界与学术界研究的热点。在各行业应用需求的推动下,室内定位技术得到了快速的发展。目前,国内外研究已提出了射频识别技术(Radio Frequency Identification, RFID)、蓝牙、WLAN(Wireless Local Area Networks)、超宽带(Ultra-Wideband, UWB),光流技术和运动捕捉等室内定位技术及系统,其中部分定位技术已经商用。但是,由于室内场景的复杂性和多样性,不同的室内定位技术也具有不同的缺点和局限性,尚未形成与GPS类似的普适解决方案。 射频,WLAN和UWB技术由于射频的不确定性,适应于范围大,精度要求较低的场合,光流法定位精度高,适合于无人机在室内的空中精确悬浮和定位。运动捕捉技术是目前最成功的无人机室内编队飞行动态定位技术,代表有英国Oxford Metrics Limited公司,英国Oxford Metrics Limited公司是世界上一家非常著名的光学动作捕捉(Motion Capture)系统供应商,它的这项技术在70 年代服务于英国海军,从事遥感、测控技术设备的研究与生产。进入80年代他们将自己在军事领域里的高新技术,逐渐用于民用方面,在医疗、运动、工程、生物等诸多领域生产制造用于动作捕捉的Motion Capture系统。80年代末,OML又将动作捕捉系统技术应用

无人机管控现状总结及建议

无人机管控现状 全国空中交通管制二十四个分区:空军二十(4+4+3+4+5),海军四个。 五个战区、一个海军: 1、北部战区:长春、沈阳、大连、济南; 2、中部战区:北京、大同、西安、武汉; 3、南部战区:广州、南宁、昆明; 4、东部战区:上海、南京、福州、漳州; 5、西部战区:成都、乌鲁木齐、拉萨、兰州、鼎新; 6、海军:海口、宁波、山海关、青岛。 截至八月初,不完全统计,目前,四川、重庆、福建、云南、北京、天津、河北、新疆、广东、吉林、江苏、陕西等12个省市区陆续出台无人机相关的禁飞、限飞命令或通告;另外有深圳、石家庄、月牙泉、武汉、黄山、大连、柳州、扬州泰州、桂林、泉州、东莞、齐齐哈尔、无锡等十余个城市也在行者区域内禁限飞,或者在机场周边划出了大面积的净空保护区。 ?对于无人机申报管理有相当完善的政策与登记系统的省市区有: 香港特别行政区、澳门特别行政区; ?有具体政策出台,各相关部门分工明确的省市区有: 江苏省、广东省、江西省、重庆市、四川省、陕西省和黑龙江省; ?通过多方面咨询能了解大概流程,但没有明确政策,各部门没有明确分工的省市区有:北京市、天津市、上海市、浙江省、河南省、河北省、吉林省、宁夏回族自治区、辽宁省、甘肃省、山东省、安徽省、福建省、广西壮族自治区、海南省、湖北省、内蒙古自治区、新疆维吾尔自治区、贵州省和西藏自治区;

?暂时没有相关管理规定或无从得知相关信息的省市区有: 湖南省、青海省、台湾省、云南省和山西省。 5.17 全国 2017年1月至6月,全国发生了10余起航班备降或返航,影响旅客万余人。深圳、南京尤甚。 ●全国首批155个民航机场的禁飞区确立。 ●国家民航局发布《民用无人驾驶航空器实名制登记管理规定》。6月1日起,对质量在 250克以上的无人机实施注册登记。(基本上是个能飞的就比这个重吧微笑脸) 由于相关规定各省比较类似,仅列举几个出台明确规定的(仅摘录不是全部)。 6月陕西(中部战区) ●在陕西省范围内开展无人驾驶航空器飞行活动,应当飞行前一天15时前向94188部队 航空管制部门或民航空中管制部门提出申请,经批准后方可实施。 ●飞行计划申请单位(个人)应在组织飞行前2小时向申报飞行计划的航空管制部门提出 联系放飞事宜、经批准后方可组织飞行。组织飞行的单位(个人)要将航空器的起飞、降落时刻及时通报航管部门。 ●无人驾驶航空器飞行的计划申请内容包括:单位、航空器型号、架数、使用的机场或临 时起降点、任务性质、飞行区域、飞行高度、飞行日期、预计开始和结束时刻及现场人员联系方式等。 ●针对违规飞行行为将依照《中华人民共和国民用航空法》、《中华人民共和国治安管理处 罚法》、《通用航空飞行管制条例》等法律法规予以处罚 ●设置很多公园可供爱好者放飞

旋翼无人机的组成部分

旋翼无人机的组成部分 1、动力系统 (1)电动机 小型四旋翼无人机(轴距250mm左右)大都选用KV2000左右(配5-6寸桨)的电机。 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,当前市场上的大部分电子调速器的刷新频率都大于400hz。 (3)电调连接板 电调连接板,其本质为一块电源配电板,用于简化电池与电调、电调与飞控之间的电气连接,同时可以避免导线拆装时的反复焊接。 (4)桨叶 桨叶与电机的搭配主要是从机架大小、能否提供足够动力这两方面进行考虑。 (5)电池 现在几乎所有的四旋翼无人机都使用锂电池,主要考量电池的容量、放电速率、自身重量。如:ACE格瑞普2200mAh锂电池,充电倍率20C,重量186g,尺寸25mm*34mm*105mm 2、支撑和外观系统 支撑和外观系统(机架)是指无人机的承载平台,所有设备都是用机架承载起来飞上天上的,所以无人机的机架好坏,很大程度上决定了这部无人机的使用寿命。衡量一个机架的好坏,可以从坚固程度、使用方便程度、元器件安装是否合理等等方面考察。 现在常见的无人机,多数指多轴飞行器的形式,机架的组成大同小异,主要由中心板、力臂、脚架组成,有结构简单的特点。 多轴飞行器的轴数,从两轴开始,到十多轴都有,但常见的还是以4、6、8轴为主。轴数越多、螺旋桨越多、机架的负载就越大,但相对地结构也就变得越复杂。 3、飞控制系统 (1)飞控原理 四旋翼飞行器的控制系统分为两个部分:飞行控制系统和无刷直流电机调速系统。飞行控制系统通过IMU惯性测量单位(由陀螺传感器和加速度传感器组成)检测飞行姿态,通过无线通讯模块与地面遥感器通讯。4个无刷直流电机调速系统总线与飞行控制器通信,通过

无人机管理制度及运用

无人机管理制度及运用 一、无人机管理制度 为贯彻“安全第一、预防为主、综合治理”的安全方针,有序推 进安全生产标准化、管理精细化,弘扬“高标严管品质清廉”的精神。我分部购入大疆无人机1台,运用于安全质量环保、抢险救灾和形 象进度等方面的监测。依据中国民用航空局飞行标准司《轻小型民 用无人机系统运行暂行规定》征求意见稿,特制定本《制度》。 1、无人机纳入分部项管会管理,无人机使用和保管由分部安质部负责,其他人员使用需在安质部登记备案。 2、无人机操作员必须认真负责、不得粗心大意、不得盲目蛮干、以免危机他人的生命或财产安全。无人机操作员必须经过出售方的 培训并考核合格才能操作。 3、无人机操作员在酒后或受任何药物影响其工作能力时,严禁操作无人机,避免造成安全事件。 4、无人机起飞前操作员必须掌握天气情况、周边环境等,在风雨雪雾雷电等恶劣天气下严禁飞行,以免损坏。 5、在开阔的场地飞行:飞行时请远离建筑物、数木、高压线以及其它障碍物,同时远离水面、人群和动物。 6、在视距范围内飞行:请保持飞行器始终在视距范围内,避免飞到可能阻挡视线的物体后面造成损坏。 7、无人机与各类架空线路距离必须大于7m以上,无人机飞行 垂直高度距离路基顶面不得大于60m,无人机飞行水平宽度不得超 越青连铁路红线外30m,严禁在其它地方飞行。

8、本制度最终解释权归分部安质部,本制度不足之处在无人机使用过程中进行修订。 二、无人机性能简介 大疆PHANTOM 3 Advanced无人机由飞行器和遥控器组成。 飞行器起飞重量1280g,最大起飞速度5m/s,最大下降速度3m/s,最大水平飞行速度16m/s,最大飞行海拔高度6000m,最大平面控 制距离5000m,最大垂直飞行高度120m。 无人机机身展示 三、无人机在安全质量环保检查中的运用 运用无人机在安全质量检查中达到了“横向到边、纵向到底、全 方位无死角”的效果。在绿化工程和防护栅栏工程检查中发挥的作用 尤为突出,通过航拍能全方位的掌握施工现场存在的问题,并分析 影像资料、查找原因、以安全检查“四定”原则下发整改通知单,督 促现场积极整改,确保安全生产、质量合格。

相关主题