搜档网
当前位置:搜档网 › NACA0012翼型的截面与升力阻力曲线图

NACA0012翼型的截面与升力阻力曲线图

NACA0012翼型的截面与升力阻力曲线图
NACA0012翼型的截面与升力阻力曲线图

NACA0012翼型的截面与升力阻力曲线图NACA0012翼型是垂直轴风力机的优选翼型,这里根据美国网站提供的技术资料绘制了翼型截面图与升力曲线图,还有根据技术书籍描绘的升力阻力曲线图,供大家参考。

NACA0012翼型的截面图

由于NACA0012是对称翼型,在下图左侧数据表中仅列出了单边的数据,表中c是弦长(弦长为1.00);x是弦长坐标(单位是x/c);y是对应x位置的翼面与弦的距离(单位是y/c)。

图1 NACA0012翼型数据与截面图

NACA0012翼型的升力曲线图

图2是根据美国的技术资料数据绘制的NACA0012翼型的升力曲线图,在这张图中有多根升力曲线,

显示了当雷诺数不同时翼型的最大升力系数与失速攻角都有较大的变化。

图2 NACA0012翼型升力系数曲线图

NACA0012翼型的大攻角升力、阻力曲线图

图3是根据“21世纪能源与动力工程类创新型应用人才培养规划教材“风力机空气动力学””一书图7.29描绘的NACA0012翼型的大攻角升力、阻力曲线图,供大家参考。

图3 NACA0012翼型大攻角升力、阻力曲线图

该图显示了翼型攻角从-5度到180度的升力与阻力系数的变化,攻角在0度至10度升力系数随攻角增大而增大,阻力系数很小;超过12度时升力系数下降,阻力系数上升;攻角到40度后升力与阻力系数先是相同,然后阻力系数继续上升,升力系数下降。

NACA0012翼型的升/阻比变化曲线

在图3中显示了翼型的升力与阻力随攻角的变化曲线,在实际应用中更关心的是在正常工作时的阻力情况,图4是根据“风能技术”(美Tony Burton,武鑫译)一书图3.100描绘,图中显示了NACA0012翼型在不同攻角时的升力/阻力系数比变化曲线。

图3 NACA0012翼型升/阻比变化曲线

可见在失速前有最大的升力/阻力系数比值,升力约为阻力的50多倍。当然这是一个光滑的翼型在较高雷诺数时的状态,多数情况会比该比值低一些。

附:叶片雷诺数计算示例

从图2看到翼型的升力曲线受雷诺数影响较大,下面给出了叶片雷诺数的简单计算方法。

叶片的雷诺数可直接用公式Re=(ρ/μ)(vl),

将有关数据代入计算即可。

ρ与μ随气温气压变化较大,但在固定的环境里气压变化较小、气温变化较大,我们选在标准大气压下,气温为0度、10度、20度、30度四种情况来计算。通过查阅相关手册,计算ρ/μ的数值:算得:

0度时ρ/μ=75187 10度时ρ/μ=70077

20度时ρ/μ=66186 30度时ρ/μ=48193

如果叶片宽度为1m,叶片与空气的相对速度为30m,代入Re=ρ/μ(vl)计算得:

0度时Re=2255610 10度时Re=2102310

20度时Re=1985580 30度时Re=1445790

如果叶片宽度为0.2m,叶片与空气的相对速度为10m,代入Re=ρ/μ(vl)计算得:

0度时Re=150374 10度时Re=140154

20度时Re=132372 30度时Re=96386

前面的翼型的升力曲线图未提供雷诺数在160000以下的数据,可能原数据主要围绕飞行器使用,没有较小翼型低速运行时的数据。上述0.2m宽翼型、10m/s速度的雷诺数均小于160000,在该图上就没有了。

由于许多翼型的雷诺数在低于60000后,升力明显下降,建议叶片宽度应在0.1m以上,较宽的翼型才能有较高的运行效率,翼型的雷诺数能在1000000以上是比较理想的状态。

以上计算结果是表面光滑的叶片,如果叶片表面粗糙或有粘覆物雷诺数与计算结果会有差别。

阻力定律和升力定律

阻力定律和升力定律 想要把风力的动能转化成电能,首先要先把动能转化成机械能,然后再将机械能转化成电能。第一步转化,是通过风电机叶片来实现的。 从动能到机械能的转化,有两个定律:阻力定律和升力定律。 阻力定律 风会对切割它移动方向上的任意面积A 形成一个力,这个力就是阻力。 图:阻力作用为推动力 阻力根下面的参数成比例关系: 风速v 的平方 切割面积 f 该面积的阻力系数cw 空气密度ρ 阻力系数cW (W是德语里“阻力”的第一个字母) 也叫做阻力附加值或者直接称为cW-值。这个值是用来表示某个物体对空气形成阻力的大小的,可以在风洞里进行测定。 cW 值越小,空气阻力也就越小。比如一个圆盘横向对风的Cw 值大约是1.11,而方盘大约是1.10,球体大约是0.45。 在汽车工业中,工程师们都在研究如何将汽车的cW 值变的更小,这样汽车在行进时的阻力就会最小化。比如丰田的Prius的cW值是0.26,而大众的Golf是0.325,雪铁龙的2CV阻力系数是0.50,一辆普通的卡车阻力系数是0.8。

古老的波斯风车(世界上最早的风车)是通过利用阻力来运作的。如上图所示,风车建在墙内,当风吹过开口,就会推动暴露的叶片,从而带动整个风车旋转。

风速计也是利用阻力原理来实现的。风杯风速计上风杯的cW-值分别是1.33和0.33(迎风时和背风时)。风杯迎风时的阻力要比背风时的阻力大很多,所以风杯风速计才会迎风旋转。 通过阻力定律来运动的转子无法转动的比风速更快(增速值小于1),属于亚风速转子。这种转子能量损失较大,效率系数(流体动力学上的作用参数)非常小。(波斯风车大概0.17,风杯风速计大概0.08) 升力定律 现代风电机的叶片是通过升力定律来实现转动的,升力是推动力。 图:升力作为动力 Auftrieb:浮力; schnelle Luftbewegung:速度快的空气运动; langsame Luftbewegung:速度慢的空气运动 飞机、直升机或者风电机的叶片顶部的面积要大于底部的面积。由于空气在顶部划过的距离更长,所以顶部空气运动的速度要比底部的空气速度要快,这样就产生了升力。

V1VRV2飞机起飞速度与飞机升力和阻力详细讲解

V1 VR V2飞机起飞速度与飞机升力和阻力详解 V1 VR V2飞机起飞速度详解 V1 VR V2的概念: 首先捡容易的来说。Vr,这个r就是rotate的缩写,所以Vr可以叫做抬前轮速度或者抬头速度。只有当飞机加速到Vr的时候,飞行员才可以带杆让飞机抬头离地,如果小于这个速度,很容易造成擦机尾。 再说V1。这个速度,我们通常称其为决断速度。我们知道,飞机发生机械故障是不会分时候的,任何状态下都可能出现某个部件失效的情况。如果故障发生在天上,那么就靠机组的处理;如果发生在地面上,那就比较简单了,干脆不起飞了,滑回去,让机务人员来处理。可是,如果这个故障发生在起飞滑跑这个“地面——空中”的临界状态下呢?这就比较难办了。 显然,这时候我们有两种选择——不起飞了,让飞机继续留在地面上,或者继续起飞,让飞机到空中去再说。其实无论是否继续起飞,我们都不能一概而论。因为如果这时候飞机速度已经很大,很接近抬前轮的速度了,虽然还没有离地,但此时刹车可能已经无法确保飞机能在剩余的跑道上停住了。如果在这种大速度下贸然中断起飞,从而导致飞机冲出跑道,也许造成的损失比那个故障本身造成的损失会大得多。反过来说,如果这时候速度并不是很大,我们只要及时采取必

要的措施,完全可以让飞机在跑道上安全得停下来,我们依然决定继续起飞的话,那显然也不合适,因为毕竟在地面上处理故障要比在空中处理故障更安全更有效。这时候大家应该差不多有了这么个印象——如果在滑跑速度比较小的时候出问题了,我们就停下来;如果在滑跑速度很大的时候出问题了,我们就继续起飞。可是,到底多大算是“大”速度,多小算是“小”速度呢?V1的出现就解决了这个问题。我们在每次飞行前,都要确定一个V1速度,假如问题出现在V1之前,我们就停下来(这时候是完全能够停下来的);如果问题出现在V1之后,那就说明现在刹车已经来不及了,只能继续起飞。所以,这个V1我们叫决断速度——在这个速度我们要做决断——起飞,还是不起飞! 再说V2。这个V2我们通常叫做起飞安全速度,或者干脆就叫安全速度。当飞机离地后速度达到了V2,我们就认定飞机已经成功的起飞了,转而进入爬升状态。 嗯,这下大家知道这三个速度对于一次起飞来说,是相当重要的,可是这三个速度到底怎么确定是多少呢?这就要说到《起飞分析手册》了。 在每次起飞过程中,影响这三个速度的因素大概有以下这么几个:飞机的全重、跑道长度、道面情况(是湿的还是干的)、跑道的坡度、风速的情况、机场周围的障碍物情况、外界温度……等等。这里面有的因素是固定的,例如跑道长度、坡度这些,有的因素是变量,每次飞行都不一样,例如飞机全重、温度等几项。航空公司会利用一

飞机升力与阻力详解(图文)

飞行基础知识①升力与阻力详解(图文) 升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。 对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,

升力系数及阻力系数

答:首先要在-里设置参考速度和长度 然后--中设置监测,就可以了 阻力和升力是可以得到地,得到之后再除以**就可以了 问题:中升阻力系数如何定义? 答:升力系数定义: 地升力系数是将升力除以参考值计算地动压(**(**)***(**)*),可以说只是对作用力进行了无量纲化,对自己有用地升力系数还需要动手计算一下,一下积分地面积和力,自己计算.文档收集自网络,仅用于个人学习 其实本身系数就是一个无量纲化地过程,不同地系数有不同地参考值,就像计算数时地参考长度,是一个特征长度,反应特征即可 作为、也是具有特定含义地系数,参考面积地取法是特定地,比如投影面积等等,但是这个在里是没有体现地 里面你不做设置,就是照上面地帖子这样计算出来地, 并不是你所期望地参考值,自己需要设定,对需要地参考值要做在里面设定文档收集自网络,仅用于个人学习 风阻系数:空气阻力是汽车行驶时所遇到最大地也是最重要地外力.空气阻力系数,又称风阻系数,是计算汽车空气阻力地一个重要系数.它是通过风洞实验和下滑实验所确定地一个数学参数, 用它可以计算出汽车在行驶时地空气阻力.文档收集自网络,仅用于个人学习空气阻力是汽车行驶时所遇到最大地也是最重要地外力.风阻系数是通过风洞实验和下滑实验所确定地一个数学参数,用它可以计算出汽车在行驶时地空气阻力.风阻系数地大少取决于汽车地外形.风阻系数愈大,则空气阻力愈大.现代汽车地风阻系数一般在之间. 文档收集自网络,仅用于个人学习 下面是一些物体地风阻: 垂直平面体风阻系数大约 球体风阻系数大约 一般轿车风阻系数 好些地跑车在 赛车可以达到 飞禽在 飞机达到 目前雨滴地风阻系数最小 在左右 风阻是车辆行驶时来自空气地阻力,一般空气阻力有三种形式,第一是气流撞击车辆正面所产生地阻力,就像拿一块木板顶风而行,所受到地阻力几乎都是气流撞击所产生地阻力. 第二是摩擦阻力,空气与划过车身一样会产生摩擦力,然而以一般车辆能行驶地最快速度来说,摩擦阻力小到几乎可以忽略.第三则是外型阻力(下图可说明何谓外型阻力),一般来说,车辆高速行驶时,外型阻力是最主要地空气阻力来源.外型所造成地阻力来自车后方地真空区,真空区越大,阻力就越大. 一般来说,三厢式地房车之外型阻力会比掀背式休旅车小.文档收集自网络,仅用于个人学习 车辆在行驶时,所要克服地阻力有机件损耗阻力、轮胎产生地滚动阻力(一般也称做路阻)及空气阻力. 车辆在行驶时,所要克服地阻力有机件损耗阻力、轮胎产生地滚动阻力(一般也称做路阻)及空气阻力. 随著车辆行驶速度地增加,空气阻力也逐渐成为最主要地行车阻力,在时速以上时,空气阻力几乎占所有行车阻力地. 文档收集自网络,仅用于个人学习一般车辆在前进时,所受到风地阻力大致来自前方,除非侧面风速特别大.不然不会对

fluent中升力系数,阻力系数和压力系数定义

问题:圆柱绕流在fluent中如何得到阻力系数和升力系数?具体的设置是怎样的?是要监测得到阻力和升力吗?它们分别怎么设置来得到? 答:首先要在report-reference value里设置参考速度和长度 然后solve-monitor-force中设置监测drag,lift就可以了 阻力和升力是可以得到的,得到之后再除以1/2pV**2S就可以了 问题:fluent中升阻力系数如何定义? 答:升力系数定义: FLUENT的升力系数是将升力除以参考值计算的动压 (0.5*density*(velocity**2)*area=0.5*1.225*(1**2)*1=0.6125),可以说只是对作用力进行了无量纲化,对自己有用的升力系数还需要动手计算一下,report一下积分的面积和力,自己计算。 其实本身系数就是一个无量纲化的过程,不同的系数有不同的参考值,就像计算Re数时的参考长度,是一个特征长度,反应特征即可 作为Cl、Cd也是具有特定含义的系数,参考面积的取法是特定的,比如投影面积等等,但是这个在Fluent里是没有体现的 Fluent里面你不做设置,就是照上面的帖子这样计算出来的, 并不是你所期望的参考值,自己需要设定,对需要的参考值要做在里面设定 另外:参考值的改变不影响迭代计算的过程,只是在后处理一些参数的时候应用到 user guide 的相关内容 26.8 Reference Values You can control the reference values that are used in the computation of derived physical quantities and nondimensional coefficients. These reference values are used only for postprocessing. Some examples of the use of reference values include the following:

飞机结构和组成

飞行的主要组成部分及功用 到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成: 1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。机翼上还可安装发动机、起落架和油箱等。不同用途的飞机其机翼形状、大小也各有不同。 2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。 3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。垂直尾翼包括固定的垂直安定面和可动的方向舵。尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。 4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。 5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。 飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。 二、飞机的升力和阻力 飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理: 流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。 连续性定理阐述了流体在流动中流速和管道切面之间的关系。流体在流动中,不仅流速和管道切面相互联系,而且流速和压力之间也相互联系。伯努利定理就是要阐述流体流动在流动中流速和压力之间的关系。 伯努利定理基本内容:流体在一个管道中流动时,流速大的地方压力小,流速小的地方压力

飞机升力与阻力详解

升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,

飞行升力与阻力详解

1. 升力是怎样产生的: 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 2. 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。 对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼的气流与河床中的流水类似,由于机翼一般是不对称的,上表面比较凸,

飞机升力与阻力详解

. 飞行基础知识①升力与阻力详解(图文) 升力是怎样产生的 任何航空器都必须产生大于自身重力的升力才能升空飞行,这是航空器飞行的基本原理。前面我们提到,航空器可分为轻于空气的航空器和重于空气的航空器两大类,轻于空气的航空器如气球、飞艇等,其主要部分是一个大大的气囊,中间充以比空气密度小的气体(如热空气、氢气等),这样就如同我们小时候的玩具氢气球一样,可以依靠空气的静浮力升上空中。远在一千多年以前,我们的祖先便发明了孔明灯这种借助热气升空的精巧器具,可以算得上是轻于空气的航空器的鼻祖了。 然而,对于重于空气的航空器如飞机,又是靠什么力量飞上天空的呢? 相信大家小时候都玩过风筝或是竹蜻蜓,这两种小小的玩意构造十分简单,但却蕴含着深刻的飞行原理。飞机的机翼包括固定翼和旋翼两种,风筝的升空原理与滑翔机有一些类似,都是靠迎面气流吹动而产生向上的升力,但与固定翼的飞机有一定的差别;而旋翼机与竹蜻蜓却有着异曲同工之妙,都是靠旋翼旋转产生向上的升力。 机翼是怎样产生升力的呢? 让我们先来做一个小小的试验:手持一张白纸的一端,由于重力的作用,白纸的另一端会自然垂下,现在我们将白纸拿到嘴前,沿着水平方向吹气,看看会发生什么样的情况。哈,白纸不但没有被吹开,垂下的一端反而飘了起来,这是什么原因呢?流体力学的基本原理告诉我们,流动慢的大气压强较大,而流动快的大气压强较小,白纸上面的空气被吹动,流动较快,压强比白纸下面不动的空气小,因此将白纸托了起来。这一基本原理在足球运动中也得到了体现。大家可能都听说过足球比赛中的“香蕉球”,在发角球时,脚法好的队员可以使足球绕过球门框和守门员,直接飞入球门,由于足球的飞行路线是弯曲的,形似一只香蕉,因此叫做“香蕉球”。这股使足球偏转的神秘力量也来自于空气的压力差,由于足球在踢出后向前飞行的同时还绕自身的轴线旋转,因此在足球的两个侧面相对于空气的运动速度不同,所受到的空气的压力也不同,是空气的压力差蒙蔽了守门员。 对于固定翼的飞机,当它在空气中以一定的速度飞行时,根据相对运动的原理,机翼相对于空气的运动可以看作是机翼不动,而空气气流以一定的速度流过机翼。空气的流动在日常生活中是看不见的,但低速气流的流动却与水流有较大的相似性。日常的生活经验告诉我们,当水流以一个相对稳定的流量流过河床时,在河面较宽的地方流速慢,在河面较窄的地方流速快。流过机翼

机翼升力与伯努利方程

机翼升力与伯努利方程 摘 要:本文首先介绍连续性方程和伯努利方程的基本原理,然后对于飞机靠机翼能够产生升力的原因进行理论分析,并使用一些物理方法和公式进行简化和计算,最后使用歼-10的相关数据进行验证。另外还介绍了机翼升力的逆应用。 关键词:机翼升力 伯努利方程 连续性方程 人类自古以来就梦想着能像鸟一样在天空中飞翔。作为二十世纪最重大的发明之一,飞机使得人类的这个梦想得以实现。而飞天成功与流体力学的发展有着分不开的联系。 流体力学,是研究流体的力学运动规律及其应用的学科。其中的伯努利方程从经典力学的能量守恒出发,表述了流体定常运动下的流速、压力、管道高程之间的关系,为如今的固定翼飞机飞行提供了理论基础。 一、伯努利方程 在介绍伯努利方程之前,不得不先说明一下连续性方程。 理想流体作稳定流动时,流体通过同一流管中任何截面的体积流量皆相等。这就是理想流体的连续性原理。它表示流体在流动时,应遵守质量守恒定律,其数学表示为 t Sv cos = (1) 其中,v 为流速,S 为流管的截面面积。由此方程我们可以得到这样一个结论:对于同一流管,截面积越小,流速越大;截面积越大,流速越小。 通过连续性原理和功能守恒原理推导出的伯努利方程揭示了液体流动过程中的能量变化规律。它表示理想流体作定常流动时,应遵守能量守恒定律,其数学表示为 t gh v p cos 2 1 2=++ ρρ (2) 其中,p 为此处流体的压强,ρ为此处流体的密度,v 为此处流体的流速, h 为此处距基准面的高度,g 为重力加速度。由此方程可以得到一个结论:同一流管等高处两点,流速大的地方压强小,流速小的地方压强大。

NACA0012翼型的截面与升力阻力曲线图

NACA0012翼型的截面与升力阻力曲线图NACA0012翼型是垂直轴风力机的优选翼型,这里根据美国网站提供的技术资料绘制了翼型截面图与 升力曲线图,还有根据技术书籍描绘的升力阻力曲线图,供大家参考。 NACA0012翼型的截面图 由于NACA0012是对称翼型,在下图左侧数据表中仅列出了单边的数据,表中c是弦长(弦长为1.00);x是弦长坐标(单位是x/c);y是对应x位置的翼面与弦的距离(单位是y/c)。

图1 NACA0012翼型数据与截面图 NACA0012翼型的升力曲线图 图2是根据美国的技术资料数据绘制的NACA0012翼型的升力曲线图,在这张图中有多根升力曲线,显示了当雷诺数不同时翼型的最大升力系数与失速攻角都有较大的变化。

图2 NACA0012翼型升力系数曲线图 NACA0012翼型的大攻角升力、阻力曲线图 图3是根据“21世纪能源与动力工程类创新型应用人才培养规划教材“风力机空气动力学””一书图7.29描绘的NACA0012翼型的大攻角升力、阻力曲线图,供大家参考。 图3 NACA0012翼型大攻角升力、阻力曲线图

该图显示了翼型攻角从-5度到180度的升力与阻力系数的变化,攻角在0度至10度升力系数随攻角 增大而增大,阻力系数很小;超过12度时升力系数下降,阻力系数上升;攻角到40度后升力与阻力系 数先是相同,然后阻力系数继续上升,升力系数下降。 NACA0012翼型的升/阻比变化曲线 在图3中显示了翼型的升力与阻力随攻角的变化曲线,在实际应用中更关心的是在正常工作时的阻力情况,图4是根据“风能技术”(美Tony Burton,武鑫译)一书图3.100描绘,图中显示了NACA0012翼型在不同攻角时的升力/阻力系数比变化曲线。 图3 NACA0012翼型升/阻比变化曲线 可见在失速前有最大的升力/阻力系数比值,升力约为阻力的50多倍。当然这是一个光滑的翼型在较 高雷诺数时的状态,多数情况会比该比值低一些。 附:叶片雷诺数计算示例 从图2看到翼型的升力曲线受雷诺数影响较大,下面给出了叶片雷诺数的简单计算方法。 叶片的雷诺数可直接用公式Re=(ρ/μ)(vl), 将有关数据代入计算即可。 ρ与μ随气温气压变化较大,但在固定的环境里气压变化较小、气温变化较大,我们选在标准大气压下,气温为0度、10度、20度、30度四种情况来计算。通过查阅相关手册,计算ρ/μ的数值:算得:0度时ρ/μ=75187 10度时ρ/μ=70077 20度时ρ/μ=66186 30度时ρ/μ=48193 如果叶片宽度为1m,叶片与空气的相对速度为30m,代入Re=ρ/μ(vl)计算得: 0度时Re=2255610 10度时Re=2102310 20度时Re=1985580 30度时Re=1445790

最新流体力学飞机升力产生的原因

机翼升力原理的分析 摘要:关于机翼升力产生的原因,一直以来有多种理论和实验来说明,本文我们将通过对几种理论的分析来说明机翼升力产生的真正原因,同时我们也要分析这些弊端,与本文的观点对照,去伪存真。 【关键词】:机翼升力,理论 一.飞机升力产生的伯努利原理 图1表示机翼与气流的关系,飞机机翼一般前端圆钝,后端尖锐,上表面拱起,下表面较平前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。机翼所产生的升力源于机翼相对于空气的运动。我们假设以机翼为参考系,空气相对于机翼运动,翼弦与气流方向的夹角叫做迎角。空气流过机翼前缘,分成上下两股,分别沿机翼上下表面流过。由于机翼有一定的正迎角,上表面又比较凸出,所以上表面流线弯曲大,流管变细,流速加快,压力减小;下表面流管变粗,流速减慢,压力增大。于是机翼上下表面出现压力差,上下表面压力差在垂直于相对气流方向的总和就是机翼的升力。 流体在流动时,除应遵守质量守恒定律外,还应遵守能量守恒定律。这条定律在空气动力学中称为伯努利原理,其数学表示为 (常量)C V P =+221ρ 方程中P 为静压,1/2ρV*2为动压,因此伯努利方程可以表述为:稳定气流中,在同一流管的任一截面上,空气的动压和静压之和保持不变。即流速变大压强变小,反之流速变小压强变大。 二、对机翼升力的误解

1.教材对飞机升力的解释人教版教材是这样引导学生的:几十吨重的飞机为什么能够腾空而起?秘密在于机翼。你观察过飞机的机翼吗?它的截面是什么形状?将飞机升力产生的焦点指向机翼的形状。接着这样解释:飞机前进时,机翼与周围的空气发生相对运动,相当于有气流迎面流过机翼,气流被机翼分成上下两部分,由于机翼横截面的形状上下不对称,在相同的时间内,机翼上方气流流过的路程较长,因而速度较大,它对机翼的压强较小;下方气流通过的路程较短,因而速度较小,它对机翼的压强较大。因此在机翼的上下表面存在压强差,这就产生了向上的升力。在学生学过这部分知识后,若教师提问:机翼的升力是怎样产生的?学生都认为是由机翼的形状产生的,甚至许多教师也是这样认为的。实际上这样的观点是不全面的,会对学生造成误导,产生这样的原因是由教材的不恰当表述造成的。 2.学生实验中的发现引出的问题课后,好奇心使一些学生反反复复用电吹风机对着机翼模型吹气,发现了无法解释的现象:当机翼模型的凸面向下时,用电吹风吹气,机翼模型也能产生升力“飞”起来。按照教材的解释,此时产生的升力方向向下,机翼模型重力方向也向下,二者的合力向下,机翼模型不会升起来,事实上它却升了起来,显然教材的解释出现了问题。按照教材的说法,也无法解释早期双翼飞机的平板形机翼是如何产生升力的。现代许多战斗机机翼是上下对称的菱形,它们是怎样产生升力的?飞行表演时机腹向上的倒飞如何解释?显然教材对飞机升力的解释有一定的片面性,需要改进表述方法。 三.飞机升力产生的其他原因 1.康达效应指的是,气流流经机翼曲面时,气流会紧贴机翼表面(这当然也有一点伯努利效应的含义)。这样,机翼的形状有效地改变了气流的方向,使离开机翼的气流相对飞机作向下的高速运动。机翼推开气流,但这个运动受力的反作用力作用于机翼上,相当于气流也在推开机翼,这个力使得机翼向上举起。 2.气流冲击效应是指实际上,飞机产生升力的一个重要原因还与气流的冲击角度有关。捏住纸的上边缘两角,使纸自然下垂,对着纸的上边缘上方水平吹气,纸会飘起来,这是伯努利效应的结果;但正对着下垂的纸面水平吹气,纸也会飘起来,这是气流冲击效应的结果。当气流相对于机翼从前下方以一定的角度吹时,机翼就会产生向上的升力,机翼模型凸面向下也能“飞”起来就是这个原因。为此,现代飞机的机翼与其自身有一个大约4°的倾角,当飞机从将场起飞时,机头总是高高抬起形成更大的迎角,以获得较大的气流冲击效应。气流的冲击力在机翼上分解为对飞机的阻力和向上的升力,飞机的发动机产生的推力克服阻力使飞机前进,向上的升力使飞机腾空而起。机翼迎角的作用换而言之就是改变气流的运动方向,好像把空气向下推,因而空气对机翼产生向上的反作用力,把机翼向上推,产生升力。飞机倒飞表演时总是机头高昂,形成较大的迎角,只要迎角合适,产生的升力照样能使飞机在空中飞行。

升力的产生

1.1低速空气动力学基础知识 1.1.1气流及其特性 日常生活中,我们可以观察到河水在河道窄的地方流速大,河道宽的地方流速小;山谷里的风比开阔地的风大;穿堂风比院里的风大等。这说明流体在流管截面小的地方流速大,在截面积大的地方流速小。 1.空气流动的连续性原理 当气流连续不断,稳定地流过变截面的管道时,既不能中断,也不能堆积;那么同一时间,流过任意截面的气流质量相等(图1-1-1),这就是流体连续性原理。它可用下式表示: Q=ρVF(1-1-1)式中:Q———单位时间内,流过任意截面的空气质量; ρ———空气密度; V———气流速度; F———流管的截面积。 图1-1-1流体连续性原理示意图 显然,在图1-1-1所示的截面上,各处ρ 1V 1 F 1 =ρ 2 V 2 F 2 =常量,也就是说V =常量/ρF 从上式可见,气流速度V由流管的截面积和空气密度决定。试验表明,当气流在低速流动时ρ的变化量很小,通常认为没有变化。这时,流管截面积小时,气流速度大,反之亦然。 2.压力和流速的关系 当我们向两张平行的纸间吹气时,就会发现纸会互相靠拢。气体流动的这种现象,也可以用图1-1-2的实验证实。从图中可见,当水流过变截面管道时,在管径大的地方,玻璃管内的水柱升高;而管径小的地方,玻璃管内水柱降低。这说明二者的压力不同。 气流的压力和流速之间数量关系,可用伯努力方程表示。 P+1/2ρV2=常数(全压)(1-1-2)式中:P———静压,它是流管里空气作用管壁的压力(也是单位体积内空气的压力); 1/2ρV2———动压,表示单位体积内气流的动能。伯努力方程表示,在同一流管中,气流速度增大时,动压增大,而静压减小;反之亦然。 1-容器;2-管道;3-玻璃管 图1-1-2 流体在容器和管道中的流动情况 1.1.2机翼升力的产生及其影响因素 飞机之所以能在空气中飞行,最基本的条件是,当它在空中飞行时必须产生一种能克服

飞机升力和阻力的产生

飞机在空气中运动或者空气流过飞机时,就会产生作用于飞机的空气动力,飞机各部分所受到的空气动力的总和,叫总空气动力,通常用R表示。一般情况,这个力是向上并向后倾斜的,根据它所起的作用,可将它分解为垂直于相对气流方向和平等于相对气流方向的两个分力。垂直方向的力叫升力,用Y表示。升力通常是起支托飞机的作用。平等方向阻碍飞机前进的力叫阴力,用X表示。 飞机的升力绝大部份是机翼产生的,尾翼通常产生负升力,飞机其它部份产生的升力很小,一般都不考虑。至于飞机的阻力,只要是暴露在相对气流中的任何部件,都是要产生的。 一、升力的产生 从流线谱可以看出:空气流到机翼前缘,分成上、下两股,分别沿机翼上、下表面流过,而在机翼后缘重新汇合向后流去。在机翼上表面,由于比较凸出,流管变细,说明流速加快,压力降低。在机翼下表面,气流受到阻挡作用,流管变粗,流速减慢,压力增大。于是,机翼上、下表面出现了压力差,垂直于相对气流方向的压力差的总和,就是机翼的升力。 机翼升力的着力点,即升力作用线和翼弦的交点,叫压力中心。 机翼各部位升力的大小是不同的,要想了解机翼各个部位升力的大小,就需知道机翼表面压力分布的情形。 机翼表面压力的颁可通过实验来测定。凡是比大气压力低的叫吸力(负压力),凡是比大气压力高的叫压力(正压力)。机翼表面各点的吸力和正压力都可用向量表示。向量的长短表示吸力或正压力的大小。向量的方向同机翼表面垂直,箭头方向朝外,表示吸力;箭头指向机翼表面,表示正压力。将各个向量的外端用平滑的曲线连接起来。压力最低(即吸力最大)的一点,叫最低压力点。在前缘附近,流速为零,压力最高的一点,叫驻点。 机翼压力分布并不是一成不变的。如果机翼在相对气流中的关系位置改变了,流线谱就会改变,机翼的压力分布也就随之而变。 机翼升力的产生主要是靠上表面吸力的作用,而不是主要靠下表面的压力高于大气压的情况下,由上表面吸力所形成的升力,一般占总升力的60%到80%左右,而下表面的正压力所形成的升力只不过占总升力的20%到40%左右。如果下表面的压力低于大气压力产生向下的吸力,则机翼总升力就等于上表面吸力减去下表面的吸力。在此情况下,机翼升力就完全由上表面吸力所形成。 二、阻力的产生 阻力是与飞机运动方向相反的空气动力,起着阻碍飞机前进的作用,按其产生的原因可分为摩擦,产生一个阻止飞机前进的力。这个力就是摩擦阻力。 (一)摩擦阻力 摩擦阻力是在“附面层”(或叫边界层)内产生的。所谓附面层,就是指,空气流过飞机时,贴近飞机表面、气流速度由层外主流速度逐渐降低为零的那一层空气流动层。附面层是怎样形成的呢?原来是,当有粘性的空气流过飞机时,紧贴飞机表面的一层空气,与飞机表面发生粘性摩擦,这一层空气完全粘附在飞机表面上,气流速度降低为零。紧靠这静止空气层的外面第二气流层,因受这静止空气层粘性摩擦的作用,气流速度也要降低,但这种作用要弱些,因此气流速度不会降低为零。再往外,第三气流层又要受第二气流层粘性摩擦的作用,气流速度也要降低,但这种作用更弱些,因此气流速度降低就更少些。这样,沿垂直于飞机表面的方向,从飞机表面向外,由于粘性摩擦作用的减弱,气流速度就一层一层的逐渐增大,到附面层边界,就和主流速度相等了。这层气流速度由零逐渐增大到主流速度的空气层,就是附面层。附面层内,气流速度之所以越贴近飞机表面越慢,这必然是由于这些流动空气受到了飞机表面给它的向前的作用这些被减慢的空气,也必然要给飞机表面一个向后的反作用力,这就是飞机表面的摩擦阻力。 附面层按其性质不同,可分为层流附面层和紊流附面层。就机翼而言,一般在最大厚度以前,附面层的气流各层不相混杂而分层的流动。这部份叫层流附面层。在这之后,气流流动转变为杂乱无章,并且出现了旋涡和横向运动。这部份叫率流附面层。层流转变为紊流的那一点叫转捩点。附面层内的摩擦阻力与附面层的性质

相关主题