搜档网
当前位置:搜档网 › 水体重金属污染及处理技术

水体重金属污染及处理技术

水体重金属污染及处理技术
水体重金属污染及处理技术

水体重金属污染研究现状及治理技术

摘要:随着人口的日益增长和工业的迅猛发展,大量污染物被排放到水体中,造成了严重的环境污染和生态破坏,特别是水体重金属污染是危害最严重的的水污染问题之一。本文介绍了水体重金属污染现状及危害,论述了水体重金属污染的研究进展,并着重介绍了水体重金属污染处理方法和修复技术。

关键字:水体污染;重金属;治理方法;修复技术

引言

水环境是一个开放和动态的体系,其中生物与非生物环境是相互关联和相互作用的[1]。未经达标处理的废水排入自然水体中,可导致污染物(如重金属)浓度超过其环境容量,进而破坏水体生态功能,造成水环境污染[2]。水体中的重金属污染主要来自两部分:自然源和人为源[3]。自然源主要是岩石风化的碎屑产物,通过自然途径进入水体中的重金属。人为污染源主要包括矿山开采、金属冶炼加工及化工生产废水、化石燃料的燃烧、施用农药化肥和生活垃圾等人为污染源。其中人为污染源使得重金属污染物事故性的排放,对水体的危害最为严重[4]。水体中的重金属具有稳定性、难降解性、亲脂性、持久性和高度危害性等特点[5-8],并且随着人类的活动造成水体污染的重金属的数量和种类急剧增多,引起了严重的生态系统问题[9]。因此针对水体重金属污染问题,各国政府都已经采取相应的手段进行处理和修复。但是,目前如何正确的、有效的处理水体重金属的污染仍是科研工作者和各广大环保工作者研究的热点之一。本文主要对水体重金属污染现状及危害,研究进展及治理方法和处理修复技术进行综述。

1 水体重金属污染现状及危害

大量重金属的存在给水体生态系统造成了严重的危害,使得环境重金属污染日趋严重,水体重金属污染已经成为国内外亟需解决的环境问题[10,11]。中国首次严重的水体重金属污染出现在1983年的京杭运河的杭州段[12],根据不同文献的报道和研究[13-15]显示中国七大水系:珠江水系、长江水系、太湖水系、淮河水系、黄河水系、海河水系、松辽水系都不同程度的受到重金属的污染。综合来看,中国的水体重金属污染情况已经非常严重。国外水体重金属污染现状也不容乐观,早在20世纪50年代,日本就曾出现由于汞污染引起的“水俣病”和镉污染引起

的“骨痛病”事件,波兰由于采矿和冶炼废物导致约50%的地表水达不到水质三级标准[16]。可见,水体重金属污染已成为全球性的环境污染问题。

同时水体中的重金属污染物危害性也不容小觑。重金属污染物一旦进入水生生态系统后将对水生植物和动物等产生影响,并通过食物链发生富集,引起人体机能的病变,危害人类健康[17]。其中重金属对植物产生恶劣影响主要表现为:抑制水生植物的光合作用、呼吸作用,同时也会抑制酶的活性,这就造成核酸组成发生变化,导致水生植物细胞的体积缩小,生长受到抑制等[18]。而且有的重金属污染物还具有三致(致癌、致畸、致突变)效应并可能通过食物链直接或间接地影响到人类的自身健康[19]。据联合国世界卫生组织统计,由于全球工业污染,世界上约80%的人口饮用水无法达到卫生标准,在已知的人类疾病中70%~80%与水污染有关[20]。

2 水体重金属的研究进展

Islam和Tanaka[21]综述了重金属进入水体的各种来源以及对生态系统和水生生物的危害,引起众多学者对水体重金属污染的重视。我国首个“十二五”规划中就提出水体重金属污染防治的问题,凸显了当前我国水体重金属污染问题的严重性及治理的紧迫性。

2.1 重金属在水中的迁移转化研究

重金属污染物进入水体中后,主要通过沉淀溶解、氧化还原、配合络合、胶体形成、吸附解析等一系列化学作用迁移转化,参与和干扰各种环境化学过程和物质循环,最终以一种或多种形态长期存留在环境中,造成永久性的潜在危害[22]。其中吸附解析是重金属在水体中迁移转化的十分重要过程。

2.2 重金属在水中的化学形态研究

目前,重金属形态的研究与分析方法还没有统一的划分标准和分析程序,常根据研究的具体要求和实验条件而定。根据不同形态重金属的粒径大小,以能否通过0.45μm孔径滤膜为标准将天然水中重金属的形态分为溶解态和颗粒态[23]。不同形态其生物毒性和环境的行为不同,主要受水环境的pH值、络合剂含量、氧化还原等条件控制[24]。

2.3 水体重金属污染生物学效应和生态效应

生物学效应研究很早就已经广泛展开,Kaplan等[25]研究表明水体中重金属

污染物Cr6+对水生动植物的毒性要远远大于Cr3+的毒性。Wageman和Barica[26]在研究Cu对藻类的毒性时发现:Cu的毒性主要由Cu2+、CuOH+和Cu(OH)2引起。另外人们已经研究发现有机汞(如甲基汞)等物质有非常大的危害性,例如1953~1961年期间影响日本南部水俣湾周围渔民的神经性疾病—水俣病就是由水体中的甲基汞引发的[25,27]。重金属在水中积累到一定程度就会对水体—植物—动物系统产生危害,并通过食物链的放大作用影响人类健康。当生物体内重金属积累到一定程度后就会出现受害症状,生理受阻,发育停滞,甚至死亡,整个生态系统的结构、功能崩溃[28],这就是水体重金属污染的生态效应。

2.4 重金属的指示指标

该方面的研究包括两个基本内容,一是水体受到重金属污染指示研究,二是重金属造成水体污染程度大小的指示研究。人们习惯以重金属污染物在水体中的绝对含量多少表示水体受重金属污染的程度,目前越来越多的人建议使用一些植物和水体微生物数量及活性变化特征作为重金属对水体造成污染大小的指示[29,30]。

3 水体重金属污染的处理方法

总的来说,水体重金属污染修复治理采用以下两条基本途径,一是降低重金属在水体中的迁移能力和生物可利用性;二是将重金属从被污染水体中彻底清除[19]。目前常用的废水净化处理技术主要有三类,即物理化学处理法、化学处理法和生物处理法。

3.1 物理化学方法

3.1.1 传统物理方法

蒸发法的原理是通过使水蒸发而浓缩废水,工艺成熟简单,但耗能大,杂质含量高,会严重干扰重金属资源回收。换水法是将被重金属污染的水体移去,换上新鲜水,水量一般要求较小,应用局限性明显。稀释法就是把被重金属污染的水混入未污染的水体中,从而降低重金属污染物浓度。此法适于轻度污染水体的治理。这三种物理处理方法有各自的局限性,对于处理如今重金属污染的情况来说已渐渐地被否定。

3.1.2 离子交换法和吸附法

离子交换法和吸附法是目前物理化学方法中的新方法。离子交换法[31]是利

用重金属离子交换剂与污染水体中的重金属物质发生交换作用,从水体中把重金属交换出来,达到治理目的的一种方法。吸附法[32-35]是利用固体吸附剂将废水中的金属离子吸附于其表面而除去的方法。重金属离子的去除效果主要与吸附剂的结构有关,因此对廉价、吸附容量大、便于实际操作的吸附剂的开发一直是该领域的研究热点。

3.1.3 溶剂萃取法

溶剂萃取法[36]是利用重金属离子在水中和在萃取剂中的溶解度不同,使重金属在萃取剂中进行浓缩的方法。传统的液体萃取剂可连续操作性强,重金属分离效果好,但消耗大量的萃取剂,由于这些萃取剂存在对人体和环境毒性较强,反萃取过程繁琐等问题使其在工业应用中受到限制。

3.1.4 膜分离法

膜分离法[37]是利用具有选择透过性的半透膜,在给予外界能量的情况下,溶液中的溶剂和溶质将发生分离,以此达到去除废水中重金属的目的一种方法。

3.2 化学方法

化学方法包括化学沉淀法[38,39],其中沉淀法又可分为包括中和凝聚沉淀法、硫化物沉淀法、钡盐沉淀法、铁氧体共沉淀法等[40,41]。近年来,已有关于采用修复剂稳定水体重金属的研究报道,其中黏土矿物类修复材料因其可以吸附多种重金属,并且具有成本低、易获取、环境友好等特点,在水体重金属污染治理中得到了广泛应用[42]。

3.2.1 氧化还原法

氧化还原法[43]是在废水中投加还原剂,使其中的重金属离子发生价态的改变并形成沉淀的方法,多用于处理含Cr6+、Cd2+和Hg2+的废水。该法操作简单方便,运行稳定,处理效果可靠,运行费用较低。但需要投加大量的还原剂,形成的沉渣体积大,处理后的污水偏碱性,直接排放将导致土壤碱化,造成环境的二次污染。

3.2.2 电解修复法

电解修复法[44]是利用金属离子在电解时能够从相对高浓度的溶液中分离出来的方法。主要用于电镀废水的处理,缺点是耗能大,废水处理量小,不适于处理较低浓度的含重金属离子的废水。近年来,国内外普遍采用一种异位处理技术,

即泵—处理技术[45]来修复重金属污染地下水,该技术在很多国家都有广泛的应用,且成熟度较高。

3.2.3 电絮凝—凝聚法

电絮凝法[46]产生的絮体颗粒小,絮体分散均匀,阴极电解产生的氢气能够发挥较好的气浮作用。丁春生等[47]对电凝聚法处理含Cr6+、Cu2+废水的影响研究表明,在一定条件下,在很短的时间内,即可达到较稳定的去除效果。电凝聚法[48]的最新研究方向是周期换向的脉冲信号电凝聚,既具备高压脉冲电凝聚法的优点,又由于两极均可溶,更有利于金属离子与胶体间的絮凝作用,防止电极钝化。

3.2.4 微电解

微电解[48]是基于电极表面的化学反应,在电解槽中加入一定量的活性填料,重金属废水为电解质,活性填料就形成了原电池,在填料的表面,电流在成千上万个细小的微电池内流动,在低压直流的作用下发生的电化学反应和絮凝作用,进而将水体重金属离子有效地去除。微电解技术以活性填料为原电池、金属废水为电解质,在发生电化学反应的同时,还具有氧化还原、絮凝吸附和置换等效应,操作简单、污染物去除效率高等特点[49]。电解—微电解相结合的复合电解技术是微电解发展的方向之一,探讨复合微电解技术的反应机理、过程动力学是目前该领域的研究重点。

3.3 生物方法

生物方法主要指利用水生植物,水生动物等对水体中的重金属污染修复的方法。有研究表明[50],大量水生植物对重金属Zn、Cd、Pb、Cr、Ni、Cu、Fe等有很强的吸收积累能力。水生植物在生长过程中,由于根系的泌氧作用,在根际周围形成氧化层,一些还原态的重金属被氧化后沉积于根表面,形成氧化物膜,从而影响根际重金属的迁移转化。任臖等[51]研究显示,芦苇、水葱和菖蒲都可以对水体内的Cd进行有效的吸收,去除Cd最高能够达到4620mg/kg,其中菖蒲的吸收能力显著高于和芦苇。长苞香蒲内也能够积蓄浓度很高的重金属,能够当作对重金属的污染进行修复的物种。王谦等[52]重点阐述了4种生活型水生植物(挺水、漂浮、浮叶和沉水)对重金属的蓄积效果。许多研究也表明,沉水植物对水体重金属有更好的吸附和富集效果,因为相比于其他生活型植物,沉水型

植物更多地依赖其茎叶从水中吸收重金属[53-55]。练建国等[56]研究表明,香蒲对重金属钼的耐毒性、去除率富集量均高于芦苇,是重金属钼废水修复的优良选择。

另外还有水体底栖动物的富集作用以及微生物絮凝法,生物吸附法等生物方法。其中微生物藻类修复法[18]主要是利用水体中的微生物或者向污染水体中补充经驯化的高效微生物对水体重金属进行固定和形态的转化。该方法主要针对重金属具有很强的耐毒性和积累能力的特点。

4 水体重金属污染修复技术

4.1 人工湿地修复技术

人工湿地修复技术[57]是由人工建造和控制运行,利用土壤、人工介质、植物和微生物等的作用,对投配到湿地上的放射性重金属污水进行净化处理的一种技术。其作用机制包括吸附、滞留、过滤、氧化还原、沉淀、微生物分解、转化、植物遮蔽和残留物积累等。人工湿地一般由氧化池、生化段和沉降池3部分组成。Croza[58]等利用实验室人工湿地处理含铀废水,80d后可以使水体中铀的质量浓度从8mg/L降低到0.4mg/L,铀去除率高达95%。

4.2 植物固定修复技术

植物固定技术[57]是利用植物及一些添加物质使环境中的放射性重金属流动性降低、生物可利用性下降,并使放射性重金属对生物的毒性降低的一种修复手段。使用植物对水体内的重金属进行去除使近些年新发展的修复手段,相比物化法,植物修复被认为是一种更为绿色的修复方法[59],其修复的主要方式为根滤。在我国,具有使用价值的植物大部分是典型水生的杂草,最典型的就是空心莲子草和凤眼莲[60]。另外,利用分子生物学、基因工程学技术培育出有良好遗传形状、生物量大、能适应不同水体污染的植物新品种将是今后植物修复的研究方向[61]。

5 总结和展望

综上所述,在进行重金属废水的处理时,其方法不止一种。这些方法有自己的优点,同时也有缺点。因此,在废水处理中,为满足日益严格的环保要求,要结合实际情况,选择合适的处理方法,也可以将几种方法结合起来进行重金属废水的处理,发挥各种方法的长处和优势,以便取得较好的处理效果。

总之,水体重金属污染的日趋严重已引起全球各国的关注。现在除了严格控

制各种污水的排放外,另一项重要工作就是采取有效措施治理、修复被重金属污染的水体,并实现重金属废水的再利用。一方面,各国政府应尽量调整工业产业结构,在工业生产中尽量减少重金属污染物的产生,其次是推行清洁生产,严格控制重金属污染物的排放,改进工艺以减轻重金属污染物对人体健康和生态的危害。另一方面,只有人人都意识到其危害,从我做起,从一点一滴做起,才能从根本上消除污染源,避免重金属对水体的污染,真正改善水体环境。

参考文献

[1]王伟,樊祥科,黄春贵等.江苏省五大湖泊水体重金属的检测与比较分析[J].https://www.sodocs.net/doc/7b8015370.html,keSci.(湖泊科学),2016,28(1):494~501.

[2]NASER H A. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review[J]. Marine Pollution Bulletin, 2013, 72(1): 6~13.

[3]王海东,方凤满,谢宏芳.中国水体重金属污染研究现状与展望[J].广东微量元素科学,2010,17(1):14~18.

[4]Na Chen, Jiasheng Hao, Ying Wang, et al. Single and binary-combined acute toxicity of heavy metal ion Hg2+, Cu2+, Cd2+, Ag+, Zn2+ and Pb2+ to Hydra[J]. Journal of Biology, 2007, 24(3): 32~35.

[5]耿雅妮.河流金属污染研究进展[J].中国农学通报,2012,28(11):262~265.

[6]阳辉,樊贵盛,刘婷.河流底泥重金属分布特征及生态风险评价[J].水土保持通报,2014,34(2):208~212.

[7]Fenglian F, Qi W. Removal of heavy metal ions from wastewaters: A review[J]. Journal of Environmental Management, 2011, 92: 407~418.

[8]林娜娜,许秋瑾,胡小贞等.江西崇义县小河流域重金属污染现状及评价[J].环境科学研究,2014,27(9):1051~1060.

[9]郑慧.重金属废水的处理技术研究和发展趋势[J].广东化工,2009,36(198):134~135.

[10]蒋雪,温超,曹珊珊.重金属污染水体植物修复研究进展[J].应用化工,2016,45(10):1982~1990.

[11]Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metal soccurrence and toxicity for plants: a review[J]. Environmental Chemistry Letters, 2010, 8: 199~216.

[12]孙伟峰,肖迪.水体重金属污染现状及治理技术[J].能源与节能,2012(2):49~50.

[13]岳霞,刘魁,林夏露等.中国七大主要水系重金属污染现状[J].应用化工,2014,20(3):209~223.

[14]王静,王鑫,吴宇峰.农田土壤重金属污染及污染修复技术研究进展[J].绿色科技,2011,3:85~88.

[15]Yang X, Duan J, Wang L, et al. Heavy metal pollution and health risk assessment in the Wei River in China[J]. Environmental Monitoring and Assessment, 2015, 187: 111~122.

[16]Li P, Qian H, Howard K W F, et al. Heavy metal contamination of Yellow River alluvial sediments, northwest China[J]. Environmental Earth Sciences, 2015, 73: 3403~3415.

[17]罗巧玉,王晓娟,林双双等.AM真菌对重金属污染土壤生物修复的应用与机理[J].生态学报,2013,33(13):3898~3906.

[18]杨瑞香.水体重金属污染来源及治理技术研究进展[J].资源节约与环保,2016(4):66.

[19]杨正亮,冯贵颖,呼世斌等.水体重金属污染研究现状及治理技术[J].干旱地区农业研究,2005,23(1):219~222.

[20]He B, Yun Z J, Shi J B, et al. Research progress of heavy metal pollution in China: Sources, analytical methods, status, and toxicity[J]. Chinese Science Bulletin, 2013, 58: 134~140.

[21]Islam MS,Tanaka M.Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis.Marine Pollution Bulletin, 2004, 48: 624~649.

[22]戴树桂.环境化学[M].北京:北京高等教育出版社,2006.

[23]雷衍之.养殖水环境化学[M].北京:北京农业出版社,2004.

[24]王新伟,何江,李朝生.水体重金属的形态分析方法[J].内蒙古大学学报,2002,33(5):587~591.

[25]Kaplan D, Stadler T. Algal biotechnology[M]. London: Elsevier Applied Science, 1988: 179.

[26]Wageman R, Baricl J. Speciation and rate of copper from leake water with implications to toxicity[J]. Water Res, 1979, 13:515~523.

[27]刘清,王之键,汤鸿宵.铜的形态分布与Daphnia magna急性毒性关系[J].环境化学,1998,17(1):14~18.

[28]Yin S, Feng C, Li Y, et al. Heavy metal pollution in the surface water of the Yangtze Estuary: A 5-year follow-up study[J]. Chemosphere, 2015, 138: 718~725.

[29]Nav rot J, Amiel A J, Kronfield J. Patella vulgata: abiological monitor of coastal pollution a preliminary study[J]. Environm ental Pollution, 1974, (7): 303~308.

[30]Haug A, Melsum S, Omang S. Estimation of heavy metal pollution in two Norwegian fjord areas by analysis of the brown alga Ascophylium nodusum[J]. Environm ental Pollution, 1974, (7): 179~182.

[31]顾土堂,陆娟,李丹.水体重金属污染研究现状及其治理技术[J].智能环保,2016:264.

[32]林木兰,吴兰兰,崔升等.新型重金属离子吸附剂的研究进展[J].材料导报,2015,29(10):18~23.

[33]刘敏敏,于水利,侯立安.重金属废水处理技术概述[J].中国工程科学,2014,16(7):100~105.

[34]邓景衡,余侃萍,肖国光等.吸附法处理重金属废水的研究进展[J].工业水处理,2014,34(11):4~7.

[35]张帆,李箐,谭建华等.吸附法处理重金属废水的研究进展[J].化工进展,2013,32(11):2749~2756.

[36]Kim N, Park M, Park D. A new efficient forest biowaste as biosorbent for removal of cationic heavy metals[J]. Bioresource Technology, 2015, 175: 629~632.

[37]周晓勇,田亚运,李辉宇等.重金属废水处理方法研究进展[J].河南化工,2014,31(4):21~27.

[38]谭浩强,吴维,刘志斌等.化学沉淀法去除水中镉的特性研究[J].供水技术,2010,4(4):9~11.

[39]Perales-Perez, Oscar Tohji,Kazuyuki Umetsu,et al.Theory and practice of the removal of heavy-metal ions by their precipitationas ferrite-type compounds from aqueous solution at ambient temperature[J]. Metallurgi-cal Review of MMIJ, 2001, 17(2): 137~179.

[40]贾燕,汪洋.重金属废水处理技术的概况及前景展望[J].中国西部科技:学术版,2007,(4):10~13.

[41]刘有才,钟宏,刘洪萍.重金属废水处理技术研究现状与发展趋势[J].广东化工,2005,32(4):36~39.

[42]SHABNI K S ARDEJANI F DBADII K, etal. Preoaraton characterization of novel nano-mineral for the removal of several heavy metals from aqueous solution: batch and continuous systems[J]. Arabian Journal of Chemistry, 2013, 12(1): 1~20.

[43]茹振修,柴路秀,刘艳宾.氧化还原法处理冶金综合电镀废水[J].中国有色冶金,2011,40(6):60~62.

[44]M.Tsezos, R.G.L. McCready, Hofstede. , etal. The Continuous recovery of uranium from biologically leached solutions using immobilizedbiomass[J]. Biotechn ol Bioeng. 2009, 34: 125~126.

[45]孙庆春,崔康平,许为义等.重金属污染地下水修复的渗透反应墙技术[J].安全与环境工程,2013,20(5):53~56.

[46]刘玉玲,陆君,马晓云等.电絮凝过程处理含铬废水的工艺及机理[J].环境工程学报,2014,8(9):3640~3644.

[47]丁春生,黄燕,缪佳等.电凝聚法去除废水中重金属离子Cr6+、Cu2+的研究[J].中国给水排水,2012,28(3):71~74.

[48]李真莹,韩相奎.微电解法的作用机理及其在废水中处理的应用[J].辽宁化工,2011,40(10):1049~1051.

[49]刘秋华,刘敏超.Fe/C复合规整型微电解材料去除废水中的Ni2+[J].环境工程学报,2015,9(11):5455~5462.

[50]李飞宇.土壤重金属污染的生物修复技术[J].环境科学与技术,2011,34(12):148~151.

[51]LIU J DONG Y, XU H, et al. Accumulation of Cd, Pb and Zn by 19 wetland species in constructed wetland[J]. Journal of Hazardous Materials, 2007, 147(3): 947~953.

[52]任珺,陶玲,杨倩等.菖蒲和水葱对水体中Cd富集能力的研究[J].农业环境科学学报,2010(9):1757~1762.

[53]王谦,成水平.大型水生植物修复重金属污染水体研究进展[J].环境科学与技术,2010,33(5):96~102.

[54]潘义宏,王宏斌,谷兆萍等.大型水生植物对重金属的富集与转移[J].生态学报,2010,30(23):6430~6441.

[55]周雪玲,熊建秋,简敏非等.乐安河-鄱阳湖湿地优势水生植物对重金属污染物的富集作用[J].江西师范大学学报:自然科学版,2013,37(2):210~215.

[56]练建国,许士国.芦苇和香蒲对重金属钼的吸附特性研究[J].环境科学,2012,32(11):3335~3340.

[57]严政,谢水波,苑士超等.放射性重金属污染的植物修复技术[J].铀矿治,2012,31(1):51~56.

[58]Lakatos G, Kiss M K, Kiss M, et al. Application of constructed wetlands for wastewater treatment in Hungary[J]. Water Science and Technology. 1997, 35(5): 331~336.

[59]Rezania S, Ponraj M, Talaiekhonzani A, et al. Persoectives of phytore- mediation using water hyacinth for removal of heavy metal, organic and inorganic pollutants in wasterwater[J]. Journal of Environmental Management, 2015, 163: 125~133.

[60]胡月.水体重金属污染修复研究[J].资源节约与环保,2016(8):49.

[61]Shah K, Singh P, Nahakpam S. Effect of cadmium uptake and heat stress on root ultrastructure, membrane damage and antioxidative response in rice seedlings[J]. Plant Biochem Biotechnol, 2013, 22(1): 103~112.

金属废水处理概况

概述 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机 器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重 金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高, 目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环 是发展的主流方向。 1电镀重金属废水治理技术的现状 1 .1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉 法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。 中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过 预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。与中和沉淀法相比,硫化物 沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,而且反应的pH值在7—9之间,处理后的废水一般不用中和。硫化物沉淀法的缺点是[2]:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时防止有害气体硫化氢生成和硫化物离子残留问题。 1.2氧化还原处理 1.2.1化学还原法

电镀废水中各种重金属废水处理反应原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 (2) 2.含氰废水 (3) 3.含镍废水 (4) 4.含锌废水 (5) 5.含铜废水 (6) 6.含砷废水 (8) 7.含银废水 (9) 8.含氟废水 (10) 9.含磷废水 (11) 10.含汞废水 (11) 11.氢氟酸回收 (14) 12.研磨废水 (14) 13.晶体硅废水 (15) 14.含铅废水 (17) 15.含镉废水 (17)

1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。 含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件 下,六价铬主要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬 的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv

重金属废水处理原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件下,六价铬主 要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬的还原在酸性条件下反应较 快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚

硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3 沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2.含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu(CN) 2- 以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN) 6 4- 被氧化后仍然以络离 子存在,所以氰离子并不能解离氧化,增加了破氰难度。 氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN?+OCl?+H 2 O==CNCl+2OH??

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

我国水体重金属污染状况20150326

重金属具有高毒性、持久性、难降解性等特点已越来越受到国内外学者的关注。通过自然途径进入水体中的重金属一般不会对水体造成污染,但由于人类活动导致的大量含有重金属的污染物进入水环境中,不但造成重大的经济损失,而且对生态系统和人类健康产生重大影响。 1.水体重金属污染现状 城市生活污水、工业废水和矿山开采、金属冶炼等所产生的污染物通过不同方式进入水中,使水体中的重金属含量急剧升高。我国各大江河湖库普遍受到不同程度的重金属污染,其底质的污染率高达80.1%,而且已经开始影响到水体的质量。通过研究矿区地表水、浈水河、大沂河、黄河、香港河流、松花江、巢湖、太湖、红枫湖、南湖、黄浦江、钦州湾、胶州湾、长江、南黄海等水体中痕量金属含量及其变化,得到以下结论:(1)地表水受到重金属的复合污染,铅锌矿区水体中Ph严重污染、Hg中度污染,Zn轻度污染。(2)受水环境条件影响,重金属主要赋存在悬浮物和沉积物中。一般悬浮颗粒物中重金属的含量比沉积物中高几倍,是水体溶解态重金属的几百倍。水体中污染物的含量很低,市区河段高于非市区河段。(3)湖泊支流中的含量普遍高于湖区,河口污染较严重。(4)水体中重金属含量与pH值有关,碱性条件易沉淀于底泥,酸性条件易释放。(5)长江口水体中重金属的含量:枯水期大于洪水期,底层大于表层,而且各种金属相关性较好,说明其来源相同。(6)南黄海表层海水中重金属含量比临近海湾海水低,高于外海,重金属分布:近岸海区大于中部地区。(7)海水中重金属分布受径流、大气干湿沉降、pH、盐度和自身性质等复合因子控制,在局部海区某个因子起主要作用,Pb主要受大气沉降影响,Cd受盐度和pH影响,Hg受海水中有机碳影响较多,As与沉积物再悬浮有关。(8)胶州湾东北部海域污染较为严重,西南部相对较轻;春夏季表层含量大于底层含量,秋季底层含量高于表层含量。 2.水体重金属的主要来源 水体中的重金属污染主要来自两部分:自然源和人为源。自然源主要是岩石风化的碎屑产物,通过自然途径进入水体中的重金属一般不会对水体造成污染;人为污染源主要包括采矿和冶炼、金属加工、化工、废电池处理、电子、造革和染料、大气干湿沉降、农药和化肥的使用等,是造成水体重金属污染的主要原因。城市发展过程中化石燃料的燃烧、采矿和冶炼是向环境释放重金属的最主要污染源;金属开采、冶炼导致Pb、Zn、Cd在环境介质中的积累相当高;尾矿渣堆放,经雨水淋溶,地表径流进入水体,造成水体中金属污染;各种工业废水和固体废弃物的渗出液直接排入水体,以及被重金属污染的土壤颗粒被地面径流带到水体,使水体中金属含量升高。目前,工业污染和交通污染是重金属污染的主要原因之一,Zn、Al、Ti、Sn主要来自纺织工业,C0、Cr、Cd、Hg来自塑料工业以及Cu、Ni、Cd、Zn、Sb来自微电子业。城市道路雨水径流中富含交通活动所产生的大量石油类、悬浮固体和重金属等污染物,能够对接受水体的水质造成明显的破坏并影响水生生态。

含重金属废水处理技术介绍

含重金属废水处理技术介绍-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

含重金属废水处理技术介绍 一、废水情况简介 1.1 含重金属废水处理难点 重金属种类多,一些重金属需要特殊的处理方法 含重金属废水一般可生化性不高,污泥需要特别处理 国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重 1.2含重金属废水处理方法 含重金属离子废水的处理方法主要有:氧化还原法、 离子交换法、 电解法、 反渗透法、气浮法、化学沉淀法等。这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。 二、我们的工艺 2.1 工艺流程 调节池 微电解反应器 混合沉淀综合池 含重金属废水 污泥处理 固化处理 重金属回收

2.2工艺说明 ?通过微电解反应器对水中Cr6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机 ?煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用 ?沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化 ?吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用 ?根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器 2.3 煤质活性炭介绍 煤质类吸附剂主要指泥炭、褐煤等,资源丰富的低品质煤质类矿物。经过适当处理如炭化、活化等能改善煤质类吸附剂的吸附性能。泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。专家研究表明,它们可用于金属离子的吸附。褐煤和

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

重金属废水处理

重金属废水的离子交换处理方案 一、水污染现状 水是一种宝贵的自然资源,随着工农业的迅速发展和人们生活水平的不断提高,对水资源的要求,无论是从质而言,还是从量而言,都有了更高的标准。水并非是取之不尽,用之不竭的天然资源,它是有限资源,对于缺水地区来说,水就更加宝贵了,防止水污染,保护水环境,目前已引起广泛共识。 水污染是指水体因外界某种物质的介入,导致原有质量特性发生改变,从而影响了原有的功能和利用价值,甚至危害人体健康,破坏生态环境。人类社会为了满足生活及生产的需求,要从各种自然水体中取用大量的水,这些水被利用后,即产生生活污水和工业废水,并最终又排入天然水体,这样就构成了一个用水的循环。 二、重金属废水的来源及特征 1.采矿过程废水,金属矿的开采废水主要含有悬浮物和酸,这是因为金属矿石或围岩中,含有硫化矿物,这些矿物经风化,水及细菌等的作用,形成酸性废水。其反应式为 2FeS 2+2H 2 O+7O 2 ——2FeSO 4 +2H 2 SO 4 矿山酸性废水一般含有一种或几种金属,非金属离子,主要有钙,铁,锰,铅,锌,铜和等。 2.炼铁过程废水,高炉煤气洗涤水是炼铁工艺的主要废水,含有大量的悬浮固体,。其主要成分是铁,铝,锌和硅等氧化物。钢铁企业的轧钢酸洗,尤其是不锈钢表面酸洗除垢,也能产生含铁,镍,锌,铅等重金属废水 3.金属加工过程废水,主要是金属表面清洗除锈产生的酸性废液。金属材料多用硫酸和盐酸酸洗,而不锈钢则要用硝酸,氢氟酸混合酸洗。酸洗后的钢材又要用清水漂洗,产生漂洗酸性废水。一般情况下,漂洗后剩余的废液含酸百分之七左右,其中含有大量溶解铁质,漂洗水的PH值为1—2。酸性废液和漂洗水,如不经处理就外排,必将造成严重的污染。 4.电镀过程废水,电镀废水主要来自镀件的漂洗,也有少量工艺废弃液排出。电镀废水的水质按镀种和电镀工艺的不同而异。一般来说,电镀废水中的重金属比较单纯,虽然水量小,但其浓度往往比较高,毒性很大,主要含有酸和铜,铬,锌,镉,镍等金属离子。 三、金属废水对环境的污染 在高度集中的现代化大工业情况下,工业生产排出的废水,特别是重金属废水对周围环境的污染日益严重。重金属的污染是把含有重金属的工业废水排入江河湖海,它将直接对渔业和农业产生严重影响,同时直接或间接地危害人体健康。现将几种重金属的危害简介如下。 1.汞(Hg )其毒性作用表现为损害细胞内酶系统蛋白质的巯基,摄取无机汞死量为75~300mg/人以上的汞,则汞在人体内就会积累,长期持续下去,就会发生慢性中毒,有机汞化合物,如烷基汞,苯基汞等,由于在脂肪中溶解度可达到在水中的100倍,因而易于进入生物组织,也有很高的积蓄作用。日本的水俣病公害就是无机汞转化为有机汞,这些汞经食物链进入人体而引起的。

含重金属废水处理技术介绍

含重金属废水处理技术介绍 一、废水情况简介 含重金属废水处理难点 重金属种类多,一些重金属需要特殊的处理方法 含重金属废水一般可生化性不高,污泥需要特别处理 国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重 含重金属废水处理方法 含重金属离子废水的处理方法主要有:氧化还原法、 离子交换法、 电解法、 反渗透法、气浮法、化学沉淀法等。这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。 二、我们的工艺 工艺流程 调节池 微电解反应器 混合沉淀综合池 含重金属废水 污泥处理 固化处理 重金属回收

工艺说明 通过微电解反应器对水中Cr 6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机 煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用 沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化 吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用 根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器 煤质活性炭介绍 煤质类吸附剂主要指泥炭、 褐煤等,资源丰富的低品质煤质类矿物。经过适当处理如炭化、 活化等能改善煤质类吸附剂的吸附性能。泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。专家研究表明,它们可用于金属离子的吸附。褐煤和泥炭含有羟基、 羧基等活性基团,其吸附性能与这些活性基团有关,金属离子在其表面既有物理吸附,又有化学吸附。天然泥炭不需要任何预处理就能用于吸附去除水中的重金属离子。但其机械强度较低,对水的亲合力强,化学稳定性较低, 达标排放或循环使用 煤质改良活性炭吸附器 活性炭再生 重金属提取回收

水体的重金属污染与防治

水体的重金属污染与防治 摘要: 近年来江河湖泊重金属含量呈逐年上升趋势,同时累积于蔬菜、肉类、鱼类、海鲜中,富集于动植物体内,已严重威胁着人们的健康,水体重金属污染已成为全球性的环境问题。本文主要介绍了水体重金属污染的来源,水体重金属污染对水生植物、水生动物的致毒作用和人体健康的危害,同时探讨相应的防治对策,为保持和重建健康水生生态系统及保障人体健康提供参考依据。水体重金属污染的防治途径主要包括两方面,即:源头控制和污染修复。污染修复的方法主要有河流稀释法,化学混凝、吸附法,离子还原、交换法,生物修复法,电动力学修复法,生物膜修复法,其中生物膜修复法具有较好的应用前景。 一、国内水体的重金属污染现状 中国水体重金属污染问题十分突出,江河湖库底质的污染率高达80.1%。黄河、淮河、松花江、辽河等十大流域的流域片,重金属超标断面的污染程度均为Ⅴ类;太湖底泥中TPb,TCd 含量均处于轻度污染水平;黄浦江干流表层沉积物中,Cd超背景值2倍、Pb超1倍;苏州河中,Pb全部超标、Cd为75%超标、Hg为62.5%超标。城市河流有35.11%的河段出现THg超地表水Ⅲ类水体标准,18.46%的河段TCd超过Ⅲ类水体标准,25%的河段TPb有超标的样本出现。由长江、珠江、黄河等河流携带入海的重金属污染物总量约为3.4万,对海洋水体的污染危害巨大。在全国近岸海域海水采样的样品中,Pb的超标率达62.9%,最大值超一类海水标准49.0倍。大连湾60%测站沉积物的Cd

含量超标,锦州湾部分测站排污口邻近海域沉积Cd、Pb的含量超过第三类海洋沉积物质量标 二、水体中重金属污染的来源 (一)工业污染源排放 据研究,煤、石油中含有Ce、Cr、Pb、Hg、Ti等金属,因此,火力发电厂排放的废气和汽车排放的尾气中含有大量的重金属,随烟尘进入大气,其中10%~30%沉降在距排放源十数公里的范围内。据估算,全世界约有1600t/a的Hg通过煤和其他石化燃料的燃烧而排放到大气中。另外,电镀、机械制造业仍是重金属污染的一大来源。 (二)废旧电池的污染 《中国环境报》记者王娅于1999年12月9日报道,1998年中国电池的产量以及消费量高达140亿节,占世界总量的1/3,每年报废的数百亿节废电池绝大部分没有回收,废电池中含有大量的Hg、Cd、Pb、Cr、Ni、Mn等重金属有害物质,泄漏到环境中,造成了极大的污染和危害。1节1号废干电池可使1㎡的土地失去利用价值,1粒纽扣电池可污600m3的水。 (三)城市化的问题 城市化的夜景缤纷灿烂,然而损坏的高压汞灯、霓虹灯、日光灯管等未能很好地处置,成为重金属污染的又一大来源;遍街的塑钢门窗、不锈钢等的切割、打磨粉末碎屑,或随垃圾混装,或入下水道排入江河,造成污染;汽车修理业废弃蓄电

重金属废水处理技术探讨

重金属废水处理技术探讨 摘要:随着经济的快速发展,大量的生产废水随之排放,导致水源和土壤受到 影响,重金属含量增多,污染越来越严重。重金属废水具有累积性、持续性、难 降解性和毒害性等特点,废水的长期排放会导致排污口附近生态环境恶化,生物 多样性逐渐减少,并通过食物链最终影响到人体。因此,关于重金属废水处理技 术的探讨具有重要的意义。本文详细探讨了重金属废水处理技术,旨在实现重金 属废水的回收利用。 关键词:重金属;废水;处理技术 重金属离子的废水主要来自于化工工业以及矿山开采以及机械加工等行业, 其所排放的重金属废水由于不能通过被生物降解的方式进行处理,长期沉积便会 对于存在的水体产生相当严重的危害,一旦危害出现,可能所导致就将是极度严 重且无法挽回的重大损失。因此,污水处理企业对于重金属废水的排放一定高度 的重视,并采取科学有效的方式进行污水有效处理,以从根本上保障重金属污水 处理的科学有效,保障水质安全。 1 化学处理法 1.1.化学沉淀法 化学沉淀法是通过向重金属废水中投加药剂,发生化学反应使重金属离子变 成不溶性物质而沉淀分离出来的方法。包括中和沉淀法、硫化物沉淀法、钡盐沉 淀法、铁氧体沉淀法等。化学沉淀法处理重金属废水具有工艺简单、去除范围广、经济实用等特点,是目前应用最广泛的处理重金属废水的方法。但这种方法很容 易受到沉淀剂和反应条件的影响,需要对沉淀剂投加量及反应条件进行准确控制。 1.2电化学法 电化学法应用电解的基本原理,使废水中重金属离子在阳极和阴极上分别发 生氧化还原反应,使重金属富集,废水中的重金属离子在阴极得到电子被还原, 这些重金属或沉淀在电极表面或沉淀到反应器底部,从而去除废水中的重金属, 并且可以回收利用。这种方法不会将废水中重金属离子的浓度降低很多,且耗能大,比较适合重金属离子浓度较高且回收价值高的电镀废水。 2 离子交换法 离子交换法是利用重金属离子与离子交换树脂发生交换反应,使废水中重金 属浓度降低的方法。离子交换树脂是一种含有离子交换基团的高分子材料。离子 交换树脂不溶于酸、碱及有机溶剂。离子交换树脂可分为阳离子交换树脂、阴离 子交换树脂和螯合树脂等。有些离子交换树脂对不同离子的亲合力不同,可以实 现对不同重金属离子的选择性分离。离子交换树脂交换吸附饱和后需进行再生。 离子交换法具有处理容量大,处理水质好,可以回用等优点,在重金属废水处理中,离子交换树脂主要用于回收有价的贵金属和稀有金属。离子交换法处理电镀 行业重金属废水已有几十年的历史,早在1980年左右,仅沈阳市就有100多家 电镀厂采用离子交换树脂除铬;上海市造船厂等企业采用强酸性阳离子交换树脂 净化镀铬浓废液也有多年历史,还有些厂家采用阳离子交换树脂,处理镀锌、镀 铜钝化液。离子交换纤维是近年来发展较快的一种新型离子交换材料,在重金属 废水处理、分离、提取中的应用研究越来越广泛。颗粒状离子交换树脂相比,离 子交换纤维吸附效果明显,交换能力强,吸附容量大,再生效果好,强度大,再 生频率高。提高离子交换树脂的吸附容量、交换速度、再生利用性及机械强度是

重金属废水处理原理及控制条件(20200831054011)

重金属废水反应原理及控制条件 1. 含铬废水 ......................... 2. 含氰废水 ......................... 3. 含镍废水 ......................... 4. 含锌废水......................... 5. 含铜废水......................... 6. 含砷废水......................... 7. 含银废水......................... 8. 含氟废水......................... 9. 含磷废水......................... 10. 含汞废水 ........................ 11. 氢氟酸回收 ........................ 12. 研磨废水 ........................ 13. 晶体硅废水 ........................ 14. 含铅废水 ........................ 15. 含镉废水 ........................ 1. 含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。

电镀废水中的六价铬主要以CrQ2_和两种形式存在,在酸性条件下,六价铬主要以CwQ2-形式存 在,碱性条件下则以CrQ2「形式存在。六价铬的还原在酸性条件下反应较快,一般要求pHv4,通常控制pH2.5?3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代 硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr (OH 3沉淀的最佳pH为 7?9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4HCrO+6NaHSO3HSO==26 (SO) 3+3NaSO+10HO 2HCrO+3NaSO+3HSO==Cr2 (SQ) 3+3NaSO+5HO 还原后用NaOH中和至pH=7?8,使Cr3+生成Cr (OH 3沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100?1000mg/L; ②废水pH为2.5?3 ③还原剂的理论用量为(重量比):亚硫酸氢钠:六价铬=4 :1 焦亚硫酸钠:六价铬=3 :1 亚硫酸钠:六价铬=4 :1 投料比不应过大,否则既浪费药剂,也可能生成 2— [Cr2 (OH 2SO]—而沉淀不下来; ORP= 25?300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7?8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2. 含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu (CN 2-以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN)64-被氧化后仍然以络离子存在,所以氰离子并不能解离氧化,增加了破氰难度。氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN+OCI+H2O==CNCI+2OH

水体重金属污染及处理技术

水体重金属污染研究现状及治理技术 摘要:随着人口的日益增长和工业的迅猛发展,大量污染物被排放到水体中,造成了严重的环境污染和生态破坏,特别是水体重金属污染是危害最严重的的水污染问题之一。本文介绍了水体重金属污染现状及危害,论述了水体重金属污染的研究进展,并着重介绍了水体重金属污染处理方法和修复技术。 关键字:水体污染;重金属;治理方法;修复技术 引言 水环境是一个开放和动态的体系,其中生物与非生物环境是相互关联和相互作用的[1]。未经达标处理的废水排入自然水体中,可导致污染物(如重金属)浓度超过其环境容量,进而破坏水体生态功能,造成水环境污染[2]。水体中的重金属污染主要来自两部分:自然源和人为源[3]。自然源主要是岩石风化的碎屑产物,通过自然途径进入水体中的重金属。人为污染源主要包括矿山开采、金属冶炼加工及化工生产废水、化石燃料的燃烧、施用农药化肥和生活垃圾等人为污染源。其中人为污染源使得重金属污染物事故性的排放,对水体的危害最为严重[4]。水体中的重金属具有稳定性、难降解性、亲脂性、持久性和高度危害性等特点[5-8],并且随着人类的活动造成水体污染的重金属的数量和种类急剧增多,引起了严重的生态系统问题[9]。因此针对水体重金属污染问题,各国政府都已经采取相应的手段进行处理和修复。但是,目前如何正确的、有效的处理水体重金属的污染仍是科研工作者和各广大环保工作者研究的热点之一。本文主要对水体重金属污染现状及危害,研究进展及治理方法和处理修复技术进行综述。 1 水体重金属污染现状及危害 大量重金属的存在给水体生态系统造成了严重的危害,使得环境重金属污染日趋严重,水体重金属污染已经成为国内外亟需解决的环境问题[10,11]。中国首次严重的水体重金属污染出现在1983 年的京杭运河的杭州段[12],根据不同文献的报道和研究[13-15]显示中国七大水系:珠江水系、长江水系、太湖水系、淮河水系、黄河水系、海河水系、松辽水系都不同程度的受到重金属的污染。综合来看,中国的水体重金属污染情况已经非常严重。国外水体重金属污染现状也不容乐观,早在20世纪50年代,日本就曾出现由于汞污染引起的“水俣病”和镉污染引起的“骨痛病” 事件,波兰由于采矿和冶炼废物导致约50%的地表水达不到水质三级标准[16]。可见,水体重金属污染已成为全球性的环境污染问

重金属废水处理技术

新型高效重金属废水资源化 处理技术研发与应用 陶 琨 廖志民 (江西金达莱环保研发中心有限公司,江西 南昌 330100) 摘 要 重金属废水处理回用及重金属资源化回收技术的应用,有利于保护环境、节约资源、提高社会经济效益。化学沉法、离子交换法、吸附法、生物法等传统处理的方法已不能满足新标准的要求。金达莱公司成功开发新型JDL重金属废水资源化处理新技术工艺,研制出技术先进、高效低耗JDL处理器,固液分离功能强,效果好。实测表明,对线路板废水中的铜、镍、铬、锌等去除率可达到99.6%以上,回收的污泥中铜含量高达55%~60%。解决了重金属废水处理关键技术,实现了真正意义上的重金属废水处理回用和重金属资源化回收,技术值得推广应用。 关键词 重金属废水;废水回用;重金属回收;污泥; 资源化 中图分类号:TN41 文献标识码:A 文章编号:1009-0096(2011)11-0064-04 Heavy metal waste water reclamation treatment technology research and application Abstract The application of heavy metal waste water treatment and recycling technology is bene? cial to environmental protection, saves resources and also brings great social and economical bene? ts. Now the traditional treatment processes, such as chemical precipitation, ion exchange, adsorption, biological and so on, can no longer meet the new discharge standard. The advanced JDL heavy metal waste water treatment and recycling technology can solve this problem well. It has many virtues, such as high ef? ciency, low consumption and good separation effect. In practical application to PCB waste water, the result show that the removal rate of Cu, Ni, Cr and Zn is above 99.6%, the content of Cu in recycled sludge can reach 55%~60%. For this technology can realize the real waste water reuse and heavy metal resource recycling, it must has important practical significance and broad application prospect. Key words heavy metal waste water; waste water reuse; heavy metal recycling; sludge; reclamation 随着我国经济、社会发展,水资源短缺、水污染问题日趋严重。重金属是水环境中的主要污染物之一,有关统计表明,我国金属废水约占废水排放总量的10%[1],主要来自电镀、线路板、采矿、冶金、化工等工业,具有潜在的危害性,特别是汞、镉、铅、铬等重金属具有显著的生物毒性,微量浓度即可产生毒性,在微生物作用下会转化为毒性更强的有机金属化合物(如甲基汞),或被生物富集通过食物链进入人体,造成慢性中毒[2]。日本水俣湾由汞中毒造成的“水俣病”和神通川流域因镉造成的“疼痛病”,我国陕西凤翔等地铅污染造成的“血铅事件”、福建紫金矿业渗漏事故造成的铜污 TAO Kun Zhi-min LIAO

水体重金属污染分布解析——以湖泊生态系统为例

水体重金属污染分布解析 摘要:植物修复是一项新兴的绿色环保重金属污染物修复技术。本文在概述我国土壤重金属污染物的种类和污染现状的基础上,以湖泊生态系统为例阐述了植物修复类型与机理、植物修复影响因素、植物修复的限制因素,并提出提高修复效率的手段,最后对重金属污染物植物修复进行了展望。 关键词:重金属;土壤污染;植物修复;湖泊生态系统 前言 土壤是人类和所有生物生存所依靠的物质基础。污染物利用水体、大气间接或直接步入土壤,在其积攒到相应程度、高于土壤自净化水平的时候,土壤生态服务水平下降,之后作用于土壤、动植物等的生存。在经济全球化的大背景下,工业化和城镇化迅速发展,土壤污染日益严重。重金属是土壤重要污染物之一,其在土壤内转移,容易被植物或微生物吸纳和使用,之后通过食物链进入人体,造成多种生理功能出现变化,造成多种急慢性疾病,比如慢性中毒、致癌以及致畸等。和其余类型的污染物进行比较,重金属污染表现出隐匿性、毒性大、长久性与无法逆转性等特征。如何防治土壤重金属污染已成为我国乃至全球的研究焦点。 物理、化学及生物的方式都可以复原此类污染土壤,然而植物修复长期以来被公认为是净化水土资源的一种绿色环保的方法,它是一种能让土壤免受扰动、绿色、生态友好的生态修复技术。近期,对此类植物修复技术的分析,尤其是耐重金属与超富集植物和其根际微生物共存系统的分析、根际分泌物在微生物群落的进化选择时期的功能,根际物理化学特点分析也得到了良好的成果。鉴于土壤重金属污染严重以及植物修复技术的重大意义,本文将从国内土壤重金属污染情况、植物修复科技和相关限制性条件三部分开展深入分析,希望为此行业的全面分析奠定基础。

常见工业废水处理工艺技术汇总

常见工业废水处理工艺技术汇总 1、线路板废水 生产线路板的企业在对线路板进行磨板、蚀刻、电镀、孔金属化、显影、脱膜等的工序过程中会产生线路板废水。线路板废水主要包括以下几种: ?化学沉铜、蚀刻工序产生的络合、螯合含铜废水,此类废水pH值在9~10,Cu2+浓度可达100~200mg/l。 ?电镀、磨板、刷板前清洗工序产生的大量酸性重金属废水(非络合铜废水),含退Sn/Pb 废水,pH值在3~4,Cu2+小于100mg/l,Sn2+小于10mg/l及微量的Pb2+等重金属。 ?干膜、脱膜、显影、脱油墨、丝网清洗等工序产生较高浓度的有机油墨废液,COD浓度一般在3000~4000mg/l。 针对线路板废水的不同特点,在处理时必须对不同的废水进行分流,采取不同的方法进行处理。 1.线路板综合废水 此类废水主要包括含酸碱、Cu2+、Sn2+、Pb2+等重金属的综合废水,其处理方法与电镀综合废水相同,采用氢氧化物混凝沉淀法处理。 2.油墨废水 脱膜和脱油墨的废水由于水量较小,一般采用间歇处理,利用有机油墨在酸性条件下,从废水中分离出来生产悬浮物的性质而去除,经过预处理后的油墨废水,可混入综合废水中与其一起进行后续处理,如水量大可单独采用生化法进行处理。 处理工艺流程如下:有机油墨废水→酸化除渣池→排入综合废水池或进行生化处理 当废水量少时,反应池内的油墨颗粒物在气泡上浮力的作用下浮出水面形成浮渣,可以用人工方法撇去;当水量大时,可用板框压滤机脱水,也可在撇渣后进行生化处理,进一步去除COD。 3.多种线路板废水综合处理 当一个线路板厂含有以上几种线路板废水时,应将铜氨络合废水、油墨废水、综合重金

工业废水中金属离子的去除方法

1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点: (1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放; (2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀; (3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理; (4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀后从废水中去除的方法。 与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应时最佳pH值在7—9之间,处理后的废水不用中和。硫化物沉淀法的缺点是:硫化物沉淀物颗粒小,易形成胶体;硫化物沉淀剂本身在水中残留,遇酸生成硫化氢气体,产生二次污染。为了防止二次污染问题,英国学者研究出了改进的硫化物沉淀法,即在需处理的废水中有选择性的加入硫化物离子和另一重金属离子(该重金属的硫化物离子平衡浓度比需要除去的重金属污染物质的硫化物的平衡浓度高)。由于加进去的重金属的硫化物比废水中的重金属的硫化物更易溶解,这样废水中原有的重金属离子就比添加进去的重金属离子先分离出来,同时能够有效地避免硫化氢的生成和硫化物离子残留的问题。 2氧化还原处理 化学还原法 电镀废水中的Cr主要以Cr6+离子形态存在,因此向废水中投加还原剂将Cr6+还原成微毒的Cr3+后,投加石灰或NaOH产生Cr(OH)3沉淀分离去除。化学还原法治理电镀废水是最早应用的治理技术之一,在我国有着广泛的应用,其治理原理简单、操作易于掌握、能承受大水量和高浓度废水冲击。根据投加还原剂的不同,可分为FeSO4法、NaHSO3法、铁屑法、SO2法等。 应用化学还原法处理含Cr废水,碱化时一般用石灰,但废渣多;用NaOH 或Na2CO3,则污泥少,但药剂费用高,处理成本大,这是化学还原法的缺点。 铁氧体法 铁氧体技术是根据生产铁氧体的原理发展起来的。在含Cr废水中加入过量的FeSO4,使Cr6+还原成Cr3+,Fe2+氧化成Fe3+,调节pH值至8左右,

相关主题