搜档网
当前位置:搜档网 › Solid187

Solid187

Solid187
Solid187

Solid187

3维10节点四面体固体结构单元

Solid187单元描述

solid187单元是一个高阶3维10节点固体结构单元,SOLID187具有二次位移模式可以

更好的模拟不规则的模型(例如通过不同的CAD/CAM 系统建立的模型)。

单元通过10个节点来定义,每个节点有3个沿着xyz方向平移的自由度.单元支持塑性,超弹性, 蠕变,,应力刚化,大变形和大应变能力.还可采用混合模式模拟几乎不可压缩弹塑

材料和完全不可压缩超弹性材料。可以查看ANSYS, Inc. Theory Reference了解SOLID187的

更多细节。

图 187.1 Solid187 单元

SOLID187 输入数据

单元的几何,节点的位置和坐标系见Figure 187.1: "SOLID187 Geometry".

除了节点,单元输入数据还包括各向同性和各向异性材料属性,各向同性和各向异性材料,平行于单元坐标系方向,关于单元坐标系的描述见Linear Material Properties.

关于单元加载的描述见Node and Element Loads,压力可作为面力加载在如Figure 187.1: "SOLID187 Geometry". 带圆圈的数字所指的单元面上,正的压力指向单元内部,温度可作为单元体力作用在节点上,节点 I 的温度默认

为 TUNIF 指定的温度,如果其他节点的温度没有指定,默认和 I 节点温度相同。一般情况下,如果没有其他的温度被指定,都默认为TUNIF 指定的温度。

如同Coordinate Systems里面的描述一样,你可以使用ESYS定义材料的方向和应力应变输出的方向,使用RSYS来选择输出是在材料坐标系还是在全局坐标系。对于超弹性材料,应力应变的输出总是在全局坐标系方向而不是材料或单元坐标系。

KEYOPT(6) = 1或者2则单元采用混合模式,要了解关于混合模式使用的更多信息,可以访问ANSYS Elements Reference里面的Applications of Mixed u-P Formulations。

你可以通过ISTRESS或ISFILE命令给单元施加初始应力,可以通过ANSYS Basic Analysis Guide里的Initial Stress Loading访问更多的信息。同样的,你可以设置KEYOPT(10) = 1通过子程序USTRESS来读入初始应力,可以通过ANSYS User Programmable Features了解子程序的更多信息。

solid187单元自动包括应力刚化的影响,如果要考虑应力刚化引起的刚度矩阵的不对称,可以使用NROPT,UNSYM。

下一个表格概述了单元输入,Element Input给出了单元输入的一般描述。

SOLID187 单元输入摘要

节点: I, J, K, L, M, N, O, P, Q, R

节点自由度:UX,UY,UZ

实常数:没有

材料参数EX,EY,EZ,(PRXY,PRYZ,PRXZ or NUXY,NUYZ,NUXZ),

ALPX,ALPY,ALPZ(或者CTEX, CTEY, CTEZ 或THSX, THSY, THSZ),

DENS,GXY,GYZ,GXZ,DAMP

表面载荷压力s——表面1 (J-I-K), 表面2 (I-J-L), 表面3 (J-K-L), 表面4 (K-I-L)

体载荷温度——T(I), T(J), T(K), T(L), T(M), T(N), T(O), T(P), T(Q), T(R)

特殊功能塑性,超弹性,粘弹性,粘塑性,蠕变,应力强化,大变形,大应变,初始应力导入,自动单元选择技术,单元死活。

支持用TB命令下列的下列类型的表格:ANEL, BISO, MISO, NLISO, BKIN, MKIN, KINH, CHABOCHE, HILL, RA TE, CREEP, HYPER, PRONY, SHIFT, CAST,

SMA, and USER.

注意:可以查看ANSYS, Inc. Theory Reference获得关于

单元材料的更多信息。查看Automatic Selection of

Element Technologies和ETCONTROL获得更多关于单元

选择的信息。

KEYOPT(6)

单元公式:

0 -- 使用纯位移模式(默认)

1 -- 使用混合模式,静水压力在单元中保持不变(推荐在超弹性

性材料时使用)

KEYOPT(10)

用户定义初始应力:

0 -- 没有用户子程序提供初始应力(默认)

1 -- 通过用户子程序读取初始应力(参见Guide to ANSYS User Programmable

Features得到关于子程序编写的细节)

SOLID187 输出数据

SOLID187单元的输出包括两种:

节点位移和全部的节点解答

如表Table 187.1: "SOLID187 Element Output Definitions"所示的额外单元输出。

不同的项目在Figure 187.2: "SOLID187 Stress Output".描述,单元应力方向平行于单元坐标系,任意表面的表面应力输出在表面坐标系都是有效的。(KEYOPT(6)).面JIK的坐标系在Figure 187.2: "SOLID187 Stress Output"描述,其他面的坐标系和压力面节点描述的方向类似。仅仅当Element Solution

里面描述的条件满足时表面应力输出有效,关于求解输出的一般性描述见The Item and Sequence Number Table. ,查看ANSYS Basic Analysis Guide了解查看结果的方法。

图 187.2 SOLID187 应力输出

单元输出表使用下列符号:

名称栏内冒号(:)表示此条可用组件名的方法访问[ETABLE, ESOL]。0 栏指示此条在Jobname.OUT文件是否可用,R 栏指示此条在结果文件中是否可用。

无论在0 栏还是在R 栏,Y 表示此条目一直有效,如果是一个数字并且在表后有说明,则是条件有效的,-- 表示此条目无效。

表 187.1 SOLID187单元输出定义表

1.非线形求解,仅仅当单元为非线形材料时输出。

2.仅仅当单元存在热载荷时输出。

3.仅仅在命令*GET中有效。

4.仅仅当OUTRES,LOCI使用时有效。

5.仅仅当USERMAT用户子程序和TB,STATE使用有效

6.等效应变使用有效泊松比:对于弹性和热分析,有效泊松比由用户指定

(MP,PRXY);对于塑性和蠕变分析,有效泊松比为0.5。

7.对于形状记忆合金材料,转化应变作为塑性应变输出。

Table 187.2: "SOLID187 Item and Sequence Numbers"列出了可通过ETABLE使用顺序号输出的方法。参见ANSYS Basic Analysis Guide里的The General Postprocessor (POST1)和手册里面的The Item and Sequence Number

Table获得更多信息. 在表Table 187.2: "SOLID187 Item and Sequence Numbers"使用了下列符号:

名字:

定义在Table 187.1: "SOLID187 Element Output Definitions"中输出

项:

为ETABLE命令预先指定的项名称。

I,J,...,R

在节点 I,J,...,R的顺序号。

表 187.2 SOLID187 项和顺序号

查看手册里面的Surface Solution了解用ETABLE按顺序号进行表面输出。SOLID187 假设和限制

零体积单元是不允许的。

单元可以如Figure 187.1: "SOLID187 Geometry"所示编号或者节点L位于I, J, K平面的下面。

一个去掉中间节点的边暗示它的位移模式是线性的,而不是二次。可以查看ANSYS Modeling and Meshing Guide里面的Quadratic Elements (Midside Nodes)得到关于中间节点的更多信息。

如果你使用混合模式(KEYOPT(6) = 1),没有中间节点可能失败。

如果你使用混合模式(KEYOPT(6) = 1), 你必须使用或者稀疏求解器(默认)或者波前求解器

应力刚化效应在几何非线性分析时总是打开的,在几何线性分析(NLGEOM,OFF)当指定SSTIF,ON时忽略,预应力影响可以通过PSTRES命令激活。

SOLID187 产品限制

这个单元没有任何指定产品的限制。

ansys各种结构单元介绍

一、单元分类 MP - ANSYS/Multiphysics DY - ANSYS/LS-Dyna3D FL - ANSYS/Flotran ME - ANSYS/Mechanical PR - ANSYS/Professional PP - ANSYS/PrepPost ST - ANSYS/Structural EM - ANSYS/Emag 3D ED - ANSYS/ED

LINK1 —二维杆单元 单元描述: LINK1单元有着广泛的工程应用,比如:桁架、连杆、弹簧等等。这种二维杆单元是杆轴方向的拉压单元,每个节点有2个自由度:沿节点坐标系x、y方向的平动。就象在铰接结构中的表现一样,本单元不承受弯矩。单元的详细特性请参考理论手册。三维杆单元的描述参见LINK8。 下图是本单元的示意图。 PLANE2 —二维6节点三角形结构实体单元 单元描述: PLANE2是与8节点PLANE82单元对应的6节点三角形单元。单元的位移特性是二次曲线,适合于模拟不规则的网格(比如由不同的CAD/CAM系统得到的网格)。 本单元由六个节点定义,每个节点有2个自由度:沿节点坐标系x、y 方向的平动。本单元可作为平面单元(平面应力或平面应变)或者作为轴对称单元使用。本单元还具有塑性、蠕变、膨胀、应力刚化、大变形、大应变等功能。详细特性请参考理论手册。 下图是本单元的示意图。

BEAM3二维弹性梁单元 BEAM3是一个轴向拉压和弯曲单元,每个节点有3个自由度:沿节点坐标系x、y方向的平动和绕z轴的转动。单元的详细特性请参考理论手册。其它的二维梁单元是塑性梁单元(BEAM23)和变截面非对称梁单元(BEAM54)。 下图是本单元的示意图。 BEAM4三维弹性梁单元 单元描述: BEAM4是一个轴向拉压、扭转和弯曲单元,每个节点有6个自由度:沿节点坐标系的x、y、z方向的平动和绕x、y、z轴的转动。本单元具有应力刚化和大变形功能。在大变形(有限转动)分析中允许使用一致切线刚度矩阵选项。本单元的详细特性请参考理论手册。变截面非对称弹性梁单元的描述参见BEAM44,三维塑性梁单元的描述参见BEAM24。

第七章 ansys梁单元分析和横截面形状

第七章梁分析和横截面形状 7.1 梁分析概况 梁单元用于生成三维结构的一维理想化数学模型。与实体单元和壳单元相比,梁单元求解效率更高。 本章的内容只适用于 BEAM44(三维变截面单元)和另两种有限元应变单元 BEAM188 和 BEAM189 (三维梁单元)。这些梁单元与ANSYS 的其他梁单元相比,提供了更健壮的非线性分析能力,显著地改进了截面数据定义功能和可视化特性。参阅《ANSYS Elements Reference》中关于 BEAM44、BEAM188 和 BEAM189 单元的描述。 注意--如要对 BEAM44 单元采用本章论述的横截面定义功能,必须清楚不能应用这些功能来定义斜削的截面。此外,本章所述的后处理可视化功能不能应用于 BEAM44 单元。 注意--用户定义横截面功能可能不能应用CDWRITE命令。 7.2 何为横截面 横截面定义为垂直于梁轴的截面的形状。ANSYS提供有11种常用的梁横截面库,并支持用户自定义截面形状。当定义了一个横截面时,ANSYS 建立一个9节点的数值模型来确定梁的截面特性(Iyy,Izz 等),并求解泊松方程得到扭转特征。 图7-1是一个标准的Z型横截面,示出了截面的质心和剪切中心,以及计算得到的横截面特性。 图7-1 Z型横截面图

横截面和用户自定义截面网格将存储在横截面库文件中。如果用BEAM44、BEAM188、BEAM189 单元来模拟线实体,可用LATT命令将梁横截面属性赋予线实体。 7.3 如何生成横截面 用下列步骤生成横截面: 1、定义截面并与代表相应截面形状的截面号(Dection ID)关联。 2、定义截面的几何特性数值。 ANSYS 提供了表7-1 所列出的命令,可以完成横截面生成、查看、列表和操作横截面库的功能。 表7-1 ANSYS 横截面命令 命令GUI菜单路径目的 PRSSOL MainMenu>GeneralPostproc>ListRes ults> SectionSolutionUtilityMenu> List>Results>SectionSolution 打印梁截面结果 (BEAM44不支持) SECTYP E MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 用SEID关联截面子类 型 SECDAT A MainMenu>Preprocessor>Sections>- Beam-CommonSectns 定义截面几何数据 SECOFF SET MainMenu>Preprocessor>Sections>- Beam-CommonSectnsMainMenu> Preprocessor>Sections>-Beam-Cust omSectns>ReadSectMesh 定义梁截面的截面偏 离 SECCON TROLS MainMenu>Preprocessor>Sections>- Beam-Add/Edit 覆盖程序计算的属性 值 SECNUM MainMenu>Preprocessor>-Attribute s-Define>DefaultAttribsMainMenu> Preprocessor>-Modeling-Create>El ements>ElemAttributes 识别关联到一个单元 的SECID

ANSYS单元特性之命令流算例

EX1.1 (LINK1) (1)进入后处理模块,显示节点位移和杆件内力 MID_NODE = NODE (A/2,-B,0 )! 寻找距离位置(A/2,-B,0)最近的点,存入MID_NODE *GET,DISP,NODE,MID_NODE,U,Y!提取节点MID_NODE上的位移UY,若果已知要求的节点,直接提取即可。 LEFT_EL = ENEARN (MID_NODE)! 需找距离节点MID_NODE最近的单元,存入LEFT_EL ETABLE,STRS,LS,1! 用轴向应力SAXL的编号“LS,1”定义单元表STRS *GET,STRSS,ELEM,LEFT_EL,ETAB,STRS! 从单元表STRS中提取LEFT_EL单元的应力结果,存入变量STRSS。注意:提取的轴向应力结果具体到指定的单元。 (2)申明数组,提取计算结果,并比较计算误差 *DIM,LABEL,CHAR,2!定义2个元素的字符型数组LABEL *DIM,V ALUE,,2,3!定义2*3的数值型数组V ALUE LABEL(1) = 'STRS_MPa','DEF_mm' ! 给字符型数组的第1个元素赋值 *VFILL,V ALUE(1,1),DATA,1,-0.05498 ! 给其他数值型数组中的元素赋值 *VFILL,V ALUE(1,2),DATA,STRSS,DISP *VFILL,V ALUE(1,3),DATA,ABS(STRSS /1 ) ,ABS( DISP /0.05498 ) /OUT,EX1_1,out !将输出内容重定向到文件EX1_1.out /COM ! 以注释形式输出内容 /COM,------------------- EX1.1 RESULTS COMPARISON --------------------- /COM, /COM, | TARGET | ANSYS | RATIO /COM, *VWRITE,LABEL(1),V ALUE(1,1),V ALUE(1,2),V ALUE(1,3) (1X,A8,' ',F10.3,' ',F10.3,' ',1F5.3) /COM,---------------------------------------------------------------- /OUT ! 结束数据重定向,关闭输出文件 FINISH *LIST,EX1_1,out ! 列表显示文件EX1_1.out的内容 EX1.2 (LINK1) /PNUM, NODE,1!打开节点编号显示 /NUMBER, 2!只显示编号,不使用色彩 列表显示节点位移和单元的计算结果 PRDISP! 列表显示节点位移值计算结果 ETABLE, MFORX,SMISC,1!以杆单元的轴力为内容,建立单元表MFORX ETABLE, SAXL, LS, 1 !以杆的轴向应力为内容,建立单元表SAXL ETABLE, EPELAXL, LEPEL, 1! 以杆单元的轴向应变为内容,建立单元表EPELAXL PRETAB! 显示单元表中的计算结果

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)、beam3是2D的梁单元,只能解决2维的问题。 2)、beam4是3D的梁单元,可以解决3维的空间梁问题。 3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构) 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。

第8章 CMOS基本逻辑单元

8.2.1 CMOS 互补逻辑 图8.11 CMOS 互补逻辑 反相器 与非门 或非门 综合逻辑门 (1) 基本的CMOS 与非门、或非门 图CMOS 与非门和或非门 CMOS 与非门:P 并N 串 CMOS 或非门:P 串N 并 CMOS 与非门、或非门的不同表示符号 5 NAND2 logic circuit. 6 7 NAND2 VTC analysis. 8 Layout of NAND2 for V M calculation. 9 Simplification of the series-connected nFETs.

10 Simplification of parallel-connected pFETs. ,仅使用另一输入端作开关转换时 13 15 NOR2 VTC construction. 按最佳噪容要求,无论是与非门还是或非门,最佳噪容条件为为了稳定输出高低电平,可在输入输出端分别加倒相器作缓冲级。下图所示为带缓冲级的二输入端与非门电路。 CMOS 集成门的输出缓冲级:输出特性与倒相器相同 B A B A Y ?=+=带缓冲级的CMOS 与非门电路

带缓冲级的CMOS 或非门电路 B A B A Y +=?=下图所示为带缓冲级的二输入端或非门电路。 静态CMOS 逻辑门具有以下特点 22232627

实现8个变量“与”的三种方案 2930 31 用与或非门实现“异或”“同或”功能 ) 伪NMOS 逻辑(a) 与非门(b) 或非门 34 8.2.3 动态CMOS 逻辑 () E D C AB Z ++=简化电路 36

ansys关于薄板、厚板、壳单元的特性区别要点

一、板壳弯曲理论简介 1. 板壳分类 按板面内特征尺寸与厚度之比划分: 当L/h < (5~8) 时为厚板,应采用实体单元。 当(5~8) < L/h < (80~100) 时为薄板,可选2D 实体或壳单元 当L/h > (80~100) 时为薄膜,可采用薄膜单元。 壳类结构按曲率半径与壳厚度之比划分: 当R/h >= 20 时为薄壳结构,可选择薄壳单元。 当6 < R/h < 20 时为中厚壳结构,选择中厚壳单元。 当R/h <= 6 时为厚壳结构。 上述各式中h 为板壳厚度,L 为平板面内特征尺度,R 为壳体中面的曲率半径。2. 薄板理论的基本假定 薄板所受外力有如下三种情况: ①外力为作用于中面内的面内荷载。弹性力学平面应力问题。 ②外力为垂直于中面的侧向荷载。薄板弯曲问题。 ③面内荷载与侧向荷载共同作用。 所谓薄板理论即板的厚度远小于中面的最小尺寸,而挠度又远小于板厚的情况,也称为古典薄板理论。 薄板通常采用Kirchhoff-Love 基本假定: ①平行于板中面的各层互不挤压,即σz = 0。 ②直法线假定:该假定忽略了剪应力和所引起的剪切变形,且认为板弯曲时沿板厚方向各点的挠度相等。 ③中面内各点都无平行于中面的位移。 薄板小挠度理论在板的边界附近、开孔板、复合材料板等情况中,其结果不够精确。 3. 中厚板理论的基本假定 考虑横向剪切变形的板理论,一般称为中厚板理论或Reissner(瑞斯纳)理论。该理论不再采用直法线假定,而是采用直线假定,同时板内各点的挠度不等于中面挠度。 自Reissner 提出考虑横向剪切变形的平板弯曲理论后,又出现了许多精化理论。但大致分为两类,如Mindlin(明特林)等人的理论和Власов(符拉索夫)等人的理论。 厚板理论是平板弯曲的精确理论,即从3D 弹性力学出发研究弹性曲面的精确表达式。 4. 薄壳理论的基本假定 也称为Kirchhoff-Love(克希霍夫-勒夫)假定: ①薄壳变形前与中曲面垂直的直线,变形后仍然位于已变形中曲面的垂直线上,且其长度保持不变。

FPGA的逻辑单元与门是什么对应关系

FPGA的逻辑单元与门是什么对应关系 一般而言FPGA等效门数的计算方法有两种,一是把FPGA基本单元(如LUT+FF,ESB/BRAM)和实现相同功能的标准门阵列比较,门阵列中包含的门数即为该FPGA 基本单元的等效门数,然后乘以基本单元的数目就可以 得到FPGA门数估计值;二是分别用FPGA和标准门阵列实现相同的功能,从中统计出FPGA的等效门数,这种方 法比较多的依赖于经验数据。 对于第一种方法,FPGA包括LUT/FF/RAM等资源,分析各种资源等效门数时,总原则是等效原则,就是实现 相同的功能,在标准门阵列中需要的门数就是 FPGA该 资源等效门数,例如实现一个带寄存器输出的4输入XOR,在FPGA中需要用一个LUT和1个FF实现,在标准门阵列中一般要用21个与非门实现,于是1个LUT+1个FF 等效于21个门。对ESB(BRAM),由于用标准门阵列实 现1bit的RAM时一般需要4个门,因此 SB/BARM 做RAM 使用时,1bit等效4个门,对Altera FPGA中一个 2048bit的ESB,等效门数为8K。光靠这些数据还不能比较准确地计算出FPGA的等效门数。因为这只是一种简单情况,实际情况要复杂很多。 例如,如果实现的是带寄存器输出地2输入XOR,

FPGA也要用1个LUT+FF,而标准门阵列只需要8个NAND,于是1 个LUT+1个FF只等效于8个门。同时特定功能的实现,在不同的标准门阵列系列中需要的门数也不一样,因此等效门的计算只能是个大概的数值。也就是说对于某一具体型号FPGA的门数估计,与FPGA资源的用途有密切关系。LUT用于实现2输入XOR和4输入XOR等效门数不一样(分别为1和 13);FF不带异步清零、复位、时钟使能和带这些端口的等效门数不同(分别为8和13);ESB(BRAM)做RAM使用时,1bit等效4个门,1个 2048bit的BRAM等效8K门,但是做查找表使用时可能只相当于不到200门。因此估计FPGA的等效门数需要做更细致的分析。 下面以EP20K1000E为例详细说明FPGA等效门数的估计方法。 (1)计算逻辑阵列的等效门数 估算EP20K1000E的门数时,把FPGA特定资源和LCA300K 标准逻辑阵列的门数(LSI LCA300K Data Book)比较,可以对FPGA等效门做出估计。FPGA一个LUT+FF等效门数计算如图2所示 即LUT+FF等效于8~21个门,上限和下限分别由实现简单函数、复杂函数分别界定。 APEX20K 的等效门数也可以根据经验数据获得,把超

ANSYS中单元的选择

在结构分析中,“结构”一般指结构分析的力学模型。按几何特征和单元种类,结构可分为杆系结构、板壳结构和实体结构。杆系结构:其杆件特征是一个方向的尺度远大于其它两个方向的尺度,例如长度远大于截面高度和宽度的梁。元类型有杆、梁和管单元(一般单称为线单元)。板壳结构:是一个方向的尺度远小于其它两个方向尺度的结构,如平板结构和壳结构。单元为壳单元。实体结构:则是指三个方向的尺度约为同量级的结构,例如挡土墙、堤坝、基础等。单元为3D实体单元和2D 实体单元。 杆系结构: ①当构件15>L/h≥4时,采用考虑剪切变形的梁单元。(h为杆系的高度) ②当构件L/h≥15时, 采用不考虑剪切变形的梁单元。 ③BEAM18X系列可不必考虑L/h的值,但在使用时必须达到一定程度的网格密度。对于薄壁杆件结构,由于剪切变形影响很大,所以必须考虑剪切变形的影响。 板壳结构: 当L/h<5~8时为厚板,应采用实体单元。(h为板壳的厚度)当5~880~100时,采用薄膜单元。

对于壳类结构,一般R/h≥20为薄壳结构,可选择薄壳单元,否则选择中厚壳单元。 对于既非梁亦非板壳结构,可选择3D实体单元。 杆单元适用于模拟桁架、缆索、链杆、弹簧等构件。该类单元只承受杆轴向的拉压,不承受弯矩,节点只有平动自由度。不同的单元具有弹性、塑性、蠕变、膨胀、大转动、大挠度(也称大变形)、大应变(也称有限应变)、应刚化(也称几何刚度、初始应力刚度等)等功能 ⑴杆单元均为均质直杆,面积和长度不能为零(LINK11无面积参数)。仅承受杆端荷载,温度沿杆元长线性变化。杆元中的应力相同,可考虑初应变。 ⑵LINK10属非线性单元,需迭代求解。LINK11可作用线荷载;仅有集中质量方式。 ⑶LINK180无实常数型初应变,但可输入初应力文件,可考虑附加质量;大变形分析时,横截面面积可以是变化的,即可为轴向伸长的函数或刚性的。 ⑷通常用LINK1和LINK8模拟桁架结构,如屋架、网架、网壳、桁架桥、桅杆、塔架等结构,以及吊桥的吊杆、拱桥的系杆等构件,必须注意线性静力分析时,结构不能是几何可

ansys各种单元及使用

ansys单元类型种类统计 单元名称种类单元号 LINK (共12种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09种)3,4,23,24,44,54,161,188,189 SOLID (共30 种)5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05种)7,14,37,39,40 INFIN (共04种)9,47,110,111 CONTAC (共05种)12,26,48,49,52 PIPE (共06种)16,17,18,20,59,60 MASS (共03种)21,71,166 MATRIX (共02种)27,50 SHELL (共19种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01种)36 HYPER (共06种)56,58,74,84,86,158 VISCO (共05种)88,89,106,107,108 CIRCU (共03种)94,124,125 TRANS (共02种)109,126 INTER (共05种)115,192,193,194,195 HF (共03种)118,119,120 ROM (共01种)144 SURF (共04种)151,152,153,154 COMBI (共01种)165 TARGE (共02种)169,170 CONTA (共06种)171,172,173,174,175,178 PRETS (共01种)179 MPC (共01种)184 MESH (共01种)20

基本数字逻辑单元HDL描述(第3讲)

基本数字逻辑单元HDL 描述 LOGO

基本数字逻辑单元HDL 描述 --时序逻辑电路HDL 描述 时序逻辑电路的输出状态不仅与输入变量的状态有关,而且还与系统原先的状态有关。 ?时序电路最重要的特点是存在着记忆单元部分;?时序电路主要包括: ?触发器和锁存器?计数器?移位寄存器?脉冲宽度调制等。

时序逻辑电路HDL 描述 --D 触发器HDL 描述 D触发器是数字电路中应用最多的一种时序电路。 输入输出CLR PRE CE D C Q 1X X X X 001X X X 1000X X 无变化0010↑00 011↑ 1 D 触发器真值表

D 触发器HDL 描述 --带时钟使能和异步置位的D 触发器描述 module v_registers_5 (C, D, CE, PRE, Q); input C, CE, PRE;input [3:0] D; output reg [3:0] Q; always @(posedge C or posedge PRE)begin if (PRE) Q <= 4'b1111;else if (CE) Q <= D;end endmodule

时序逻辑电路HDL描述 --Jk触发器HDL描述 JK触发器真值表 输入输出R S CE J K C Q 1X X X X↑0 01X X X↑1 000X X X无变化 00100X无变化 00101↑0 00111↑翻转 00110↑1

Jk 触发器HDL 描述 --带时钟使能和异步置位/复位的JK 触发器 module JK_FF(CLK,J,K,Q,RS,SET);input CLK,J,K,SET,RS;output Q;reg Q; always @(posedge CLK or negedge RS or negedge SET)begin if(!RS) Q <= 1'b0; else if(!SET) Q <= 1'b1;else 下一页继续

ANSYS分析中的单元选择方法

ANSYS分析中的单元选择方法 ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上; 一、设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元; 二、根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围; 三、确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型: Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元; 四、根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”; 五、根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。 六、进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作: 仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

ANSYS单元详解

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。 Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。 Beam4是具有拉压扭弯能力的单轴元素。每个节点有6个自由度,x,y,z,绕x,y,z 轴。具有应力强化和大变形能力。在大变形分析中,提供了协调相切劲度矩阵选项。

第四课:算术逻辑单元

一:算术逻辑单元——(ALU) 1)比如二进制的00101010是十进制的42,所以表示储存数字是计算机的重要功能,但真正的目标是计算,有意义的处理数字:比如把“两个数相加”这些操作由计算机的“算术逻辑单元”处理,简称“ALU” 2)ALU是计算机的数学大脑,ALU*就是*计算机里负责运算的组件,基本其他所有部件都用到它。3)最著名的ALU——英特尔——74181,1970年,它是第一个封装在单个芯片的完整ALU。 4)用布尔逻辑做个简单的ALU电路,功能和74181一样,用它从头做出一台电脑 二:ALU有两个单元,1个算术单元和一个逻辑单元 1)算术单元:它负责计算机里的所有数字在操作,例:加减法。它还会做很多其他的事情,比如给某个数字加1,“把两个数字相加”这叫增量运算 2)最简单的加法电路:是拿2个bit加在一起(bit是0或1);有2个输入:A和B,一个输出,就是两个数字的和,需要注意的是:A,B,输出,这3个都是单个(bit)(0或1) 文案大全

3)输入只有4种可能:前三个是0+0=0 1+0=1 0+1=1 (记住在二进制里面,1与true相同,0与false相同。 4)这组输入和输出,和XOR门的逻辑完全一样, 所以我们可以把XOR用作1位加法器(adder) 但第四个输入组合,1+1,是个特例。1+1=2(显然)但二进制里面没有2,二进制里1+1的结果文案大全

是0,1进到下一位,和是10(二进制)XOR的输出。只对了一部分。1+1输出0,但我们需要一根额外的线代表“进位”只有输出是1和1时,进位才是true因为算出来的结果用一个bit 存不下,方便的是,我们刚好有个逻辑门能做这个事,“AND”门,只有当两个输入为“true” 的输出才为“true”所以我们把它加到电路中。这个电路叫叫“半加器” 文案大全

ANSYS单元类型详细

把收集到得ANSYS单元类型向大家交流下。 初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。 单元类型的选择,跟你要解决的问题本身密切相关。在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。 1.该选杆单元(Link)还是梁单元(Beam)? 这个比较容易理解。杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。 梁单元则既可以承受拉,压,还可以承受弯矩。如果你的结构中要承受弯矩,肯定不能选杆单元。 对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于: 1)beam3是2D的梁单元,只能解决2维的问题。 2)beam4是3D的梁单元,可以解决3维的空间梁问题。 3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。 2.对于薄壁结构,是选实体单元还是壳单元? 对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。 实际工程中常用的shell单元有shell63,shell93。shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。对于一般的问题,选用shell63就足够了。 除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺

ANSYS常用单元

目录 目录 (1) 1. LINK1 (2) 2. LINK8 (4) 3. LINK10 (6) 4. BEAM3 (8) 5. BEAM23 (11) 6. BEAM188 (13) 7. PIPE16 (16) 8. PIPE17 (19) 9. PIPE18 (22) 10. PIPE20 (25) 11. MPC184 (27) 12. PLAN2 (29) 13. PLAN42 (32) 14. PLAN82 (35) 15. PLAN182 (38) 16. PLAN183 (40) 17. SOLID45 (43) 18. SOLID46 (47) 19. SOLID92 (51) 20. SOLID95 (54) 21. SOLID185 (57) 22. SOLID186 (60) 23. SOLID187 (63) 24. SOLID191 (66)

25. MASS21 (69) 1. LINK1 1.1单元描述 LINK1单元在工程中有着广泛的应用,适用于系杆,连杆,弹簧等等。作为单轴拉压单元,LINK1有两个单元节点,每个节点有节点X,Y两个方向自由度。单元不适用于弯曲分析。 图:LINK1 二维系杆 1.2单元输入数据摘要 1.3单元输出数据摘要 单元输出数据有以下两种: ●所有求解节点的节点位移 ●附加单元输出项,见单元输出说明表 图:LINK1 应力表示

1.4单元假设及单元限定 系杆单元假设为圆杆,轴向力加载在两端,单元为各向同性。单元长度必须大于零,既节点I,J不允许重合。系杆必须位于XY平面内,必须有一个面大于零。温度假定沿着杆长方向线性变化。单元位移功能指杆应力分布均匀。在应力刚度矩阵累加时,预应力进行第一次累计。 1.5产品应用中的单元限定 当应用于下述情况中,除上述单元假设及限定外,还必须指定特别限定: ●阻尼材质属性不允许使用 ●体影响载荷不适用 ●仅允许的特殊特征是应力刚化材料和大变形

ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型 一、单元 (1)link(杆)系列: link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。 link10用来模拟拉索,注意要加初应变,一根索可多分单元。 link180是link10的加强版,一般用来模拟拉索。 (2)beam(梁)系列: beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。该单元需要手工在实常数中输入Iyy和Izz,注意方向。 beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。 beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。可见188单元已经很完善,建议使用。beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。 (3)shell(板壳)系列 shell41一般用来模拟膜。 shell63可针对一般的板壳,注意仅限弹性分析。它的塑性版本是shell43。加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。 (4)solid(体)系列 土木中常用的就solid45、solid46、solid65、solid95等。 solid45就不用多说了,solid95是它的带中结点版本。

Xilinx和Altera FPGA的基本逻辑单元对比

Xilinx和Altera FPGA的基本逻辑单元对比 要比较Xilinx和Altera的FPGA,就要清楚两个大厂FPGA的结构,由于各自利益,两家的FPGA结构各不相同,参数也各不相同,但可以统一到LUT(Look-Up-Table)查找表上。 以Altera的Cyclone II系列的EP2C35,以及Xilinx的Spartan-3E系列的XC3S500E为例。可以参考Datasheet。 Cyclone II Spartan-3E 其中Altera的LE和Xilnx的LC对应于LUT的结构。 Altera 从LE的结构可以知道1 LE = 1 LUT

Xilinx Logic Cell = 4-input Look-Up Table (LUT) + a ‘D’ flip-flop; Datasheet 上有公式:"Equivalent Logic Cells" equals "Total CLBs" x 8 Logic Cells/CLB x 1.125 effectiveness 即有:9LEs/CLB; 下图是1 Slice的结构,从Slice的结构可以看到1 CLB =4 Slice=9 LC

从而可以知道Xilinx和Altera FPGA逻辑资源的对应关系: (为了统一度量衡(感觉像QSH一样),业界一般会归结到BLM(Basic Logic Module)

1 BLM=1 LUT4(四输入查找表)+1 寄存器(可以配置成1 触发器DFF或1 锁存器)+多路复用器mux 1 BLM=1 LC(Xilinx)=4/9 Slice(Xilinx)= 1/9 CLB(Xilinx)=1 LE(Altera) =0.125 LAB(Altera)=2.25 Tile(Actel) 于是就可以知道Altera的Cyclone II系列的EP2C35有33216个LUT,我用的是Xilinx的Spartan-3E系列的XC3S500E有9312个LUT ,加上EP2C35还有4个PLL,我的 XC3S500E就更比不上了。

ansys各种单元及使用

ansys 单元类型种类统计单元名称种类单元号 LINK (共12 种) 1,8,10,11,31,32,33,34,68,160,167,180 PLANE (共20 种)2,13,25,35,42,53,55,67,75,77,78,82,83,121,145,146,162,182,183,223 BEAM (共09 种)3,4,23,24,44,54,161,188,189 SOLID (共30 种) 5,45,46,62,64,65,69,70,87,90,92,95,96,97,98,117,122,123,127,128,147,148,164,168, 185,186,187,191,226,227 COMBIN (共05 种)7,14,37,39,40 INFIN (共04 种)9,47,110,111 CONTAC (共05 种)12,26,48,49,52 PIPE (共06 种)16,17,18,20,59,60 MASS (共03 种)21,71,166 MATRIX (共02 种)27,50 SHELL (共19 种)28,41,43,51,57,61,63,91,93,99,131,132,143,150,157,163,181,208,209 FLUID (共14 种)29,30,38,79,80,81,116,129,130,136,138,139,141,142 SOURC (共01 种)36 HYPER (共06 种)56,58,74,84,86,158 VISCO (共05 种)88,89,106,107,108 CIRCU (共03 种)94,124,125 TRANS (共02 种)109,126 INTER (共05 种)115,192,193,194,195 HF (共03 种)118,119,120 ROM (共01 种)144 SURF (共04 种)151,152,153,154 COMBI (共01 种)165 TARGE (共02 种)169,170 CONTA (共06 种)171,172,173,174,175,178 PRETS (共01 种)179 MPC (共01 种)184 MESH (共01 种)20

ANSYS单元类型-详细

ANSYS单元类型(详细) 把收集到得ANSYS单元类型向大家交流下。 Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。每个自由度的质量和惯性矩分别定义。 Link1可用于各种工程应用中。根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。这个2维杆元素是一个单轴拉压元素,在每个节点都有两个自由度。X,y,方向。铰接,没有弯矩。 Link8可用于不同工程中的杆。可用作模拟构架,下垂电缆,连杆,弹簧等。3维杆元素是单轴拉压元素。每个点有3个自由度。X,y,z方向。作为铰接结构,没有弯矩。具有塑性,徐变,膨胀,应力强化和大变形的特性。 Link10 3维杆元素,具有双线性劲度矩阵的特性,单向轴拉(或压)元素。对于单向轴拉,如果元素变成受压,则硬度就消失了。此特性可用于静力钢缆中,当整个钢缆模拟成一个元素时。当需要静力元素能力但静力元素又不是初始输入时,也可用于动力分析中。该元素是shell41的线形式,keyopt(1)=2,’cloth’选项。如果分析的目的是为了研究元素的运动,(没有静定元素),可用与其相似但不能松弛的元素(如link8和pipe59)代替。当最终的结构是一个拉紧的结构的时候,Link10也不能用作静定集中分析中。但是由于最终局于一点的结果松弛条件也是有可能的。在这种情况下,要用其他的元素或在link10中使用‘显示动力’技术。Link10每个节点有3个自由度,x,y,z方向。在拉(或压)中都没有抗弯能力,但是可以通过在每个link10元素上叠加一个小面积的量元素来实现。具有应力强化和大变形能力。 Link11用于模拟水压圆筒以及其他经受大旋转的结构。此元素为单轴拉压元素,每个节点有3个自由度。X,y,z方向。没有弯扭荷载。 Link180可用于不同的工程中。可用来模拟构架,连杆,弹簧,等。此3维杆元素是单轴拉压元素,每个节点有3个自由度。X,y,z方向。作为胶接结构,不考虑弯矩。具有塑性,徐变,旋转,大变形,大应变能力。link180在任何分析中都包括应力强化项(分析中,nlgeon,on),此为缺省值。支持弹性,各向同性硬化塑性,运动上的硬化塑性,希尔各向异性塑性,chaboche 非线性硬化塑性和徐变等。 Beam3单轴元素,具有拉,压,弯性能。在每个节点有3个自由度。X,y,方向以及绕z轴的旋转。

相关主题