搜档网
当前位置:搜档网 › AC伺服电机安全注意事项 中容量伺服电机使用手册

AC伺服电机安全注意事项 中容量伺服电机使用手册

MANUAL NO. TOMP C230100 04A

SGMG , SGMS , SGMD , SGMU

Type SGMG , SGMS , SGMD , SGMU

AC

SAFETY PRECAUTIONS

AC Servomotor

Guide to Handling Medium-capacity Servomotors

SGMG , SGMS , SGMD , SGMU

? ?乍

$&? ?

Ё ?? ? ???

AC

AC (TOBP C230200 00)

?

?

?

?

?

General Precautions

?The drawings presented in this instructions are sometimes shown without covers or protective guards. Always replace the equipment's cover or protective guard as specified first, and then operate the products in accordance with the instructions.

?The drawings presented in this instructions are typical examples and may not match the product you received.?These instructions are subject to change due to product improvement, specification modification, and instructions improvement. When these instructions are revised, the instructions code is updated and the new instructions is published as a next edition.

?If the instructions must be ordered due to loss or damage, inform your nearest Yaskawa representative or office.?Yaskawa will not take responsibility for the results of unauthorized modifications of this product. Yaskawa shall not be liable for any damages or troubles resulting from unauthorized modification.

indicate that fire is prohibited as follows:

一般注意事项

?为了进行详细说明,本手册中的部分插图在描绘时去掉了外罩或安全保护体。在实际运行时,请务必按规定将外

罩或安全保护体安装到原来的位置,再根据用户手册的说明进行运行。?本手册中的插图为代表性图例,可能会与您收到的产品有所不同。

?由于产品改良、规格变更以及为提高本手册的使用便利性,我们将会适时对本手册进行变更。变更后,本手册的资料编号将进行更新,并作为改订版发行。

?因破损或遗失而需索取本手册时,请与本公司代理店或离您最近的分公司联系。联系时请告知资料编号。

?对于客户自行改造的产品,本公司不对质量提供任何保证。因改造产品所造成的伤害及损失,本公司概不负责。

。例如严禁烟火时,表示为

IP67 SGMSV-70 SGMSS-70 IP22

Protective Structure

The protection class of the servomotor is IP67. (The protection class of SGMSV-70 and SGMSS-70 servomotors with cooling fans are IP22.)

Observe the following precautions to ensure the required class of protection.

伺服电机的保护构造

伺服电机的保护等级为“IP67”。(但带冷却风扇的SGMSV-70型和SGMSS-70型为“IP22”)。

关于保护构造(保护等级)请注意如下事项。

e- https://www.sodocs.net/doc/7d10059792.html,/

Heat

The heat generated in the servomotor is discharged into the heat sink on the servomotor through the motor flange. Before installing the servomotor, refer to the user’s manual, catalog, or

Yaskawa’s products and technical information website at https://www.sodocs.net/doc/7d10059792.html,/ for the required size of heat sink for your model of servomotor.

伺服电机的散热

伺服电机产生的热量通过电机法兰传到伺服电机的安装侧(散热片)进行散热。因此,在安装伺服电机前,请先通过用户手册、产品样本或本公司的技术信息网站(https://www.sodocs.net/doc/7d10059792.html, )确认适合各机型的散热片尺寸。

Route the cables so that no stress is subject to the cables and connectors.

进行接线作业时请不要对电缆及接头过度用力。

Handling Cables

Observe the following precautions when connecting cables.

电缆类的接线作业

连接电缆时请注意以下事项。

Connection with Machines 伺服电机和机械的连接?

? Handling Eyebolts

? 吊环螺栓的使用

? ? Couplings

? 联轴器的联结

Do not tighten the eyebolts too tightly. Tightening too tightly with implements may result in damage to the screw hole.

紧固吊环螺栓时请不要用力过猛。如果使用工具过度紧固时,会导致螺孔损坏。

Be careful not to subject the shafts to any force or shock when installing the coupling.

When connecting with machines, set the radial load and the thrust load to the maximum allowable values specified in the user’s manual and catalog.

安装联轴器时切勿对轴进行敲打。

此外,在安装负载时,请务必确保轴向负载和径向负载不要超过用户手册及产品样本的规定值。

?

? Belts

Note:Select an appropriate belt in accordance with the servomotor’s allowable radial load and output. When

the servomotor accelerates or decelerates, the stress and strain applied by the servomotor’s

acceleration/deceleration torque must be also taken into consideration when selecting a belt because

this force is added to the initial tension.

? 传动带的联结

请根据伺服电机的允许径向负载以及电机的输出功率选择合适的传动带。

此外,伺服电机加减速时同样会对传动带产生拉力,选择传动带时应将这部分力考虑在内。

(NBR)

Servomotors with Oil Seals

If the servomotor is to be used in a location where oil might splash onto the servomotor’s shaft

opening, use a servomotor with an oil seal. A servomotor without an oil seal can only be used in a

location where oil does not splash.

The following restrictions apply to the use of servomotors with oil seals.

Note:A single lip, spring-loaded oil seal made of nitrile butadiene rubber (NBR) is used.

Check the type of oil to be used with the oil seal.

带油封的伺服电机

在轴贯通部会被溅到油滴的环境使用时,请选择带油封的伺服电机。如果不会被溅到油滴则可使

用标准伺服电机。

带油封的伺服电机的使用条件如下所示。

油封的材料为丁腈橡胶(NBR),类型为带弹簧单唇型。

使用前请确认对应油的种类。

Do not use a servomotor with an oil seal where the

oil seal is submerged in oil.

If the servomotor is used under such conditions, oil

will enter the servomotor and result in servomotor

failure.

油封不可浸到油面以下使用。

否则会因伺服电机内部浸油导致故障。

Holding Brakes

The holding brake enables the servomotor in the position. Do not use it to stop the servomotor. If

the holding brake is used to stop the servomotor, the holding brake, the encoder, or other device

may fail to operate. Before starting the servomotor, always turn on the power supply of the holding

brake and release the holding brake. For details, refer to the timing chart described in the user’s

manual.

保持制动器的使用

该制动器只能用于保持(固定)伺服电机,不可用于电机的停止用途。如果用于停止电机,会导

致保持制动器及编码器发生故障。此外,运行伺服电机时,应先给保持制动器通电,将其打开后

再运行电机。详细内容请参照用户手册的时序图。

?

? Brake Power Supply

? 制动器电源的确认

?

? Operating Time

? 保持制动器动作时间的确认

Conditions Often Misidentified as Servomotor Failure

Heat from Servomotors with Holding Brakes

The following condition is often misidentified as a servomotor failure.

容易被误诊为故障的情况

带制动器伺服电机的发热

下述情况并非故障。

Play of Output Shaft for Servomotors with Holding Brakes

The following condition is often misidentified as a servomotor failure.

带保持制动器伺服电机的输出轴有游隙

下述情况并非故障。

伺服电机的驱动器和电机的变频器有什么区别和联系

伺服电机的驱动器和电机的变频器有什么区别和联系 通常情况下,是不会这样作的,因为如果伺服电机在有自身驱动的时候,应该属于独立的系统,再连接变频器不能达到直接驱动的目的。 但是如果伺服控制器和变频器具备通信接口,同时需要达到同步或其他通信功能,可以如此连接,前提条件是变频器和伺服控制器具备强大的通讯功能或可编程功能,日系产品没有见过如此使用,欧美部分产品可以实现这样的配置。 另外一种情况是伺服控制器和变频器都作为上位控制的从站,实际是总线控制, 和你的描述有本质的区别。 PLC给出的控制信号可以直接送到伺服电机的驱动 伺服的基本概念是准确、精确、快速定位。变频是伺服控制的一个必须的内部环节,伺服驱动器中同样存在变频(要进行无级调速。但伺服将电流环速度环或者位置环都闭合进行控制,这是很大的区别。除此外,伺服电机的构造与普通电机是有区别的,要满足快速响应和准确定位。现在市面上流通的交流伺服电机多为永磁同步交流伺服,但这种电机受工艺限制,很难做到很大的功率,十几KW 以上的同步伺服价格及其昂贵,这样在现场应用允许的情况下多采用交流异步伺服,这时很多驱动器就是高端变频器,带编码器反馈闭环控制。所谓伺服就是要满足准确、精确、快速定位,只要满足就不存在伺服变频之争。 一、两者的共同点: 交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等通过载波频率和PWM 调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/p ,n转速,f频率, p极对数

交流伺服电机选型重点学习的手册范本.doc

ST 系列交流伺服电机型号编号说明 1:表示电机外径 , 单位 :mm。 2:表示电机是正弦波驱动的永磁同步交流伺服电机。 3:表示电机安装的反馈元件,M—光电编码器,X—旋转变压器。 4:表示电机零速转矩,其值为三位数×,单位:Nm。 5:表示电机额定转速,其值为二位数×100,单位: rpm。 6:表示电机适配的驱动器工作电压,L— AC220V, H— AC380V。 7:表示反馈元件的规格,F—复合式增量光电编码器(2500 C/T ), R— 1 对极旋转变压器。 8:表示电机类型,B—基本型。 9:表示电机安装了失电制动器。 SD系列交流伺服驱动器型号编号说明 1:表示采用空间矢量调制方式(SVPWM)的交流伺服驱动器 2:表示 IPM 模块的额定电流( 15/20/30/50/75A ) 3:表示功能代码( M:数字量与模拟量兼容) ●交流伺服电机与伺服驱动器适配表 ST系列电机ST系列电机ST 系列电机主要参数 适配驱动器 额定功率 电机型号额定转矩额定转速外形尺寸零售价 ( 元 ) 110ST-M02030 2 Nm 3000rpm 110×110×158 1500 110ST-M04030 4 Nm 3000rpm 110×110×185 1700 110ST-M05030 5 Nm 3000rpm 110×110×2001800 110ST-M06020 6 Nm 2000rpm SD15M 110×110×217 1900 SD20MN 110ST-M06030 6 Nm 3000rpm SD30MN 110×110×217 1900 SD50MN 130ST-M04025 4 Nm 2500rpm SD75MN 130×130×163 1800 130ST-M05025 5 Nm 2500rpm 130×130×171 2100 130ST-M06025 6 Nm 2500rpm 130×130×181 2400 130ST-M07720Nm2000rpm130×130×1952900

直流(DC)与交流(AC)伺服电机及驱动

目录 直流(DC与交流(AC伺服电机及驱动 (1 1.直流(DC伺服电机及其驱动 (1 (1直流伺服电机的特性及选用 (1 (2直流伺服电机与驱动 (2 (3PWM直流调速驱动系统原理 (3 2.交流(AC伺服电机及其驱动 (4 直流(DC与交流(AC伺服电机及驱动 1.直流(DC伺服电机及其驱动 (1直流伺服电机的特性及选用 直流伺服电机通过电刷和换向器产生的整流作用,使磁场磁动势和电枢电流磁动势正交,从而产生转矩。其电枢大多为永久磁铁。 直流伺服电机具有较高的响应速度、精度和频率,优良的控制特性等优点。但由于使用电刷和换向器,故寿命较低,需要定期维修。 20世纪60年代研制出了小惯量直流伺服电机,其电枢无槽,绕组直接粘接固定在电枢铁心上,因而转动惯量小、反应灵敏、动态特性好,适用于高速且负载惯量较小的场合,否则需根据其具体的惯量比设置精密齿轮副才能与负载惯量匹配,增加了成本。 直流印刷电枢电动机是一种盘形伺服电机,电枢由导电板的切口成形,导体的线圈端部起换向器作用,这种空心式高性能伺服电机大多用于工业机器人、小型NC 机床及线切割机床上。

宽调速直流伺服电机的结构特点是励磁便于调整,易于安排补偿绕组和换向极,电动机的换向性能得到改善,成本低,可以在较宽的速度范围内得到恒转速特性。永久磁铁的宽调速直流伺服电机的结构如下图所示。有不带制动器a和带制动器b两种结构。 电动机定子(磁钢1采用矫顽力高、不易去磁的永磁材料(如铁氧体永久磁铁、转子(电枢2直径大并且有槽,因而热容量大,结构上又采用了通常凸极式和隐极式永磁电动机磁路的组合,提高了电动机气隙磁通密度。同时,在电动机尾部装有高精密低纹波的测速发电机,并可加装光电编码器或旋转变压器及制动器,为速度环提供了较高的增量,能获得优良的低速刚度和动态性能。 日本发那科(FANUC公司生产的用于工业机器人、CNC机床、加工中心(MC 的L系列(低惯量系列、M系列(中惯量系列和H系列(大惯量系列直流伺服电机。其中L系列适合于频繁启动、制动场合应用,M系列是在H系列的基础上发展起来的,其惯量较H系列小,适合于晶体管脉宽调制(PWM驱动,因而提高了整个伺服系统的频率响应。而H系列是大惯量控制用电动机,它有较大的输出功率,采用六相全波

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

新力川伺服驱动使用说明

感谢您使用本产品,本使用操作手册提供LCDA系列伺服驱动器的相关信息。内容包括: ●伺服驱动器和伺服电机的安装与检查 ●伺服驱动器的组成说明 ●试运行操作的步骤 ●伺服驱动器的控制功能介绍与调整方法 ●所有参数说明 ●通讯协议说明 ●检测与保养 ●异常排除 ●应用例解说 本使用操作手册适合下列使用者参考: ●伺服系统设计者 ●安装或配线人员 ●试运行调机人员 ●维护或检查人员 在使用前,请您仔细详读本手册以确保使用上的正确。此外,请将它妥善保存在安全的地点以便随时查阅。下列在您尚未读完本手册时,务必遵守事项: ●安装的环境必须没有水气,腐蚀性气体或可燃性气体。 ●接线时,禁止将三相电源接至马达U、V、W的连接器,因为一旦接错 时将损坏伺服驱动器。 ●接地工程必须确实实施。 ●在通电时,请勿拆解驱动器、马达或更改配线。 ●在通电动作前,请确定紧急停机装置是否随时开启。 ●在通电动作时,请勿接触散热片,以免烫伤。 如果您在使用上仍有问题,请洽询经销商或者本公司客服中心。

安全注意事项 LCDA 系列为一开放型(Open Type )伺服驱动器,操作时须安装于遮蔽式的控制箱内。本驱动器利用精密的回授控制与结合高速运算能力的数字信号处理器(Digital Signal Processor,DSP ),控制IGBT 产生精确的电流输出,用来驱动三相永磁式同步交流伺服马达(PMSM )达到精准定位。 LCDA 系列可使用于工业应用场合上,且建议安装于使用手册中的配线(电)箱环境(驱动器、线材与电机都必须安装于符合环境等级的安装环境最低要求规格)。 在按收检验、安装、配线、操作、维护与检查时,应随时注意以下安全注意事项。 标志[危险]、[警告]与[禁止]代表的含义: ? 意指可能潜藏危险,若未遵守要求可能会对人员造成严 重伤或致命 ? 意指可能潜藏危险,若未遵守可能会对人员造成中度的 伤害,或导致产品严重损坏,甚至故障 ? 意指绝对禁止的行动,若未遵守可能会导致产品损坏, 或甚至故障而无法使用

交流伺服电机与伺服驱动器

SEAMADE 交流伺服电机与伺服驱动器 ●简介 交流伺服技术自八十年代初发展至今,技术日臻成就,性能不断提高,现已广泛应用于数控机床、印刷包装机械、纺织机械、自动化生产等自动化领域。 ●特点 电机:选用高工作温度,高磁能积优质的永磁材料制作,使用优化的电磁参数设计,电机长期运行仍保持优良的工作状态;用正弦波电流驱动,低速特性好;电机惯量适中,满足各种场合应用;IP65的防护等级,特别适用于工业环境。 驱动器:SDXXX 系列交流伺服是本公司研发的新一代交流伺服驱动器,主要采用最新的IRMCK201作为核心运算单元,并采用了复杂可编程器件EPLD及三菱智能功率模块,具有集成度高,体积小,响应速度快,保护完善,可靠性高等一系列优点。伺服电机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。调速比为1:5000,从低速到高速都具有转矩特性。通过修改参数可对伺服系统的工作方式、运行特性作出适当的设置,以适应不同的要求。改进的空间矢量控制算法,比普通的SPWM产生的力矩更大,噪音更小。高达3倍的过载能力,带负载能力强。完善的保护功能:过流,过压,过热和编码器故障。监视功能允许15个参数状态,包括位置误差,电机转速、反馈脉冲、指令脉冲、电机电流等。高适应性,能够适应高速高精度电机,可以配套2-8磁极,200-6000线编码器的各型号电机。 ST系列交流伺服电机型号编号说明 110 ST -M 050 30 L F B Z 1 2 3 4 5 6 7 8 9 1: 表示电机外径,单位:mm。 2:表示电机是正弦波驱动的永磁同步交流伺服电机。 3:表示电机安装的反馈元件,M—光电编码器,X—旋转变压器。 4:表示电机零速转矩,其值为三位数×0.1,单位:Nm。 5:表示电机额定转速,其值为二位数×100,单位:rpm。 6:表示电机适配的驱动器工作电压,L—AC220V,H—AC380V。 7:表示反馈元件的规格,F—复合式增量光电编码器(2500 C/T),R—1对极旋转变压器。8:表示电机类型,B—基本型。 9:表示电机安装了失电制动器。 SD系列交流伺服驱动器型号编号说明 SD 30 MN 1 2 3 1:表示采用空间矢量调制方式(SVPWM)的交流伺服驱动器 2:表示IPM模块的额定电流(15/20/30/50/75A) 3:表示功能代码(M:数字量与模拟量兼容)

伺服驱动器的工作原理复习过程

伺服驱动器的工作原 理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以

用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

交流伺服电机驱动器使用说明书.

交流伺服电机驱动器使用说明书 1 ?特点 16位CPU+32位DSP三环(位置、速度、电流)全数字化控制脉冲序列、速度、转矩 多种指令及其组合控制 转速、转矩实时动态显示 完善的自诊断保护功能,免维护型产品交流同步全封闭伺服电机适应各种恶劣环境体 积小、重量轻 2 ?指标 输入电源三相200V -10%?+15% 50/60HZ 控制方法IGBT PWM(正弦波) 反馈增量式编码器(2500P/r ) 控制输入伺服-ON报警清除CW、CCW驱动、静止 指令输入输入电压土10V 控制电源DC12?24V 最大200mA 保护功能OU LU OS OL OH REG OC ST CPU 错误,DSP错误,系统错误 通讯RS232C 频率特性200Hz或更高(Jm=Jc时)体积L250 X W85 X H205 重量3.8Kg 3?原理 见米纳斯驱动器方框图(图1)和控制方框图(图2) 4?接线 4.1主回路 卸下盖板坚固螺丝;取下端子盖板。用足够线经和连接器尺寸作连接,导线应采用额定温度600C以上的铜体线,装上端子盖板,拧紧盖板螺丝。螺丝拧紧力矩大于 1.2Nm M4或 2.0 Nm M5时才可能损坏端子,接地线径为2.0mn i 具体见接线图3 4.2CN SIG 连接器[ 具体见接线图4 驱动器和电机之间的电缆长度最大20M 这些线至少要离开主电路接线30cm,不要让这些线与电源进线走一线槽; 或让它们捆扎在一起 线经0.18mm2或以上屏蔽双绞线,有足够的耐弯曲力 屏蔽驱动器侧的屏蔽应连接到CN.SIG连接器的20脚,电机侧应连接到J 脚 若电缆长于10M,则编码器电源线+5V、0V应接双线 4.3CN I/F 连接 控制器等周边设备与驱动器之间距离最大为3M 这些线至少和主电路接线相隔30cm ,不要让这些线与电源进线走同一线槽 或和它们捆扎在一起 COM和COM之间的控制电源(V DC)由用户供给 控制信号输出端子可以接受最大24V或50mA不要施加超过此限位的电压 和电流 若用控制信号直接使继电器动作要象左图所示那样,并联一只二极管到继电 器。不接二极管或接错了二极管的极性,都将可能损坏驱动器 机身接地点(FG)要接到驱动器的一个接地端子具体见接线图5 5.参数

伺服电机控制技术的应用与发展

龙源期刊网 https://www.sodocs.net/doc/7d10059792.html, 伺服电机控制技术的应用与发展 作者:黄新宇 来源:《科学导报·科学工程与电力》2019年第07期 【摘要】现阶段,随着社会的发展,我国的科学技术的发展也有了很大的进步。电机的 主要功能是将电能转变为机械能,应用领域非常广泛,涉及航空、机械运转以及运输等多个行业。电力电子技术水平的不断提升,使电机功能更加多样化,尤其是在信息时代下,更体现了智能化的特点。电机为电机控制技术发展提供推动力,使其可以更加多方位地满足安全需求。处理器和数字化伺服系统的协调发展,相应提高了数控系统计算性能,达到了缩减时间的目的。硬件伺服控制系统实现了向软件伺服控制系统的转变,提高了伺服系统运行性能。这些变革都为加工技术提供了推动力。 【关键词】伺服电机;控制技术;应用与发展 1 伺服控制系统 1.1 开环伺服系统 开环伺服系统中并未设置检测反馈设备,因此也不存在运动反馈控制回路。一旦设备发出了脉冲指令,这时电动机便开始运行。虽然可能存在运动误差,但是不会做出任何信息错误反馈。期间,步进电动机在开环伺服中是最为关键的驱动部件。步进电机在步距角精度、机械传动精度等方面具有极大优势,直接关系到开环系统的精准度。通常,针对开环系统精準度没有过高要求。尽管步进电动机的转速不高,部件运行期间也存在限制,但其结构精简、可靠性高、制造成本低,所以为控制电路赋予了简单的特点。因此,开环控制系统内部没有对精度和速度提出严格要求的装置,一般会使用步进电动机。 1.2 半闭环伺服系统 该系统中的主要装置为无刷旋转变压器,用以检测位置、速度,而最关键的部件是装载中放置的脉冲编码器。电机轴中装载了系统内全部反馈信号,此外也包括负责系统机械传动的装置。非线性因素不会对系统运行造成影响,相反还会为安装调试提供便利。机械传动装置精准度与半闭环伺服系统定位精准度有直接关系,即便是机械传动装置的精度低,但是通过数控装置中具备的误差补偿和间隙补偿两种功能,也会提升其精准度。所以,半闭环伺服系统更多被应用于数控机床。 图1所示是伺服电机控制系统,它以C8051F060为核心,同时还有显示电路、编码器、编码器处理电路、RS485通信电路、伺服电机驱动电路、伺服电机。 2 伺服电机控制技术的应用

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

交流伺服电机选型手册

ST系列交流伺服电机型号编号说明? 1: 表示电机外径,单位:mm。? 2:表示电机是正弦波驱动的永磁同步交流伺服电机。? 3:表示电机安装的反馈元件,M—光电编码器,X—旋转变压器。? 4:表示电机零速转矩,其值为三位数×,单位:Nm。? 5:表示电机额定转速,其值为二位数×100,单位:rpm。? 6:表示电机适配的驱动器工作电压,L—AC220V,H—AC380V。? 7:表示反馈元件的规格,F—复合式增量光电编码器(2500 C/T),R—1对极旋转变压器。? 8:表示电机类型,B—基本型。? 9:表示电机安装了失电制动器。 SD系列交流伺服驱动器型号编号说明? 1:表示采用空间矢量调制方式(SVPWM)的交流伺服驱动器? 2:表示IPM模块的额定电流(15/20/30/50/75A)? 3:表示功能代码(M:数字量与模拟量兼容) ●交流伺服电机与伺服驱动器适配表 ST系列电机主要参数 适配驱动器 ST系列电机ST系列电机电机型号额定转矩额定转速额定功率外形尺寸零售价(元) 110ST-M02030 2 Nm3000rpm SD15M SD20MN SD30MN SD50MN SD75MN 110×110×1581500 110ST-M04030 4 Nm3000rpm110×110×1851700 110ST-M05030 5 Nm3000rpm110×110×2001800 110ST-M06020 6 Nm2000rpm110×110×2171900 110ST-M06030 6 Nm3000rpm110×110×2171900 130ST-M04025 4 Nm2500rpm130×130×1631800 130ST-M05025 5 Nm2500rpm130×130×1712100 130ST-M06025 6 Nm2500rpm130×130×1812400 130ST-M07720 Nm2000rpm130×130×1952900 130ST-M07730 Nm3000rpm130×130×1952900 130ST-M1001510 Nm1500rpm130×130×2193200 130ST-M1002510 Nm2500rpm130×130×2193200 130ST-M1501515 Nm1500rpm130×130×2673620 130ST-M1502515 Nm2500rpm130×130×2673620 ST系列交流伺服电机

永磁同步伺服电机驱动器原理

永磁同步伺服电机驱动器原理: 1、引言: 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交 流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着 长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交 流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成 了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满 足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已 经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方 法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能 的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机 和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器 硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是 国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构: 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口 单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中 伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的 交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于 高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统 的驱动系统所不可比拟的。

交流伺服电机的应用领域

交流伺服电机的应用领域 下面我们来看一下伺服电机和其他电机(如步进电机)相比到底有什么优点 1、精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; 2、转速:高速性能好,一般额定转速能达到2000~3000转; 3、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; 4、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; 5、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内; 6、舒适性:发热和噪音明显降低。 简单点说就是:我们平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。而伺服电机和步进电机是说停就停,说走就走(反应极快)。但步进电机存在失步现象。 (当然有这么多好处价格就相应的上去了就看怎么选择了) 至于原理什么的我觉得就没有必要深入了解了(如果你是做销售的话) 应用领域就太多了。只要是要有动力源的,而且对精度有要求的一般都可能涉及到伺服电机。如机床、印刷设备、包装设备、纺织设备、激光加工设备、机器人、自动化生产线等对工艺精度、加工效率和工作可靠性等要求相对较高的设备。 本人感觉数控机床上用的尤其多,你重点跑一些数控机床厂,一台机床(就说小型数控),他的主轴部分就需要一台,进给部分也需要一台(其他部分根据要求厂家会选择动力源),比如客户会因为成本原因选择步进电机,但你值得一试 你也可以多关心一下那些老师傅们经常跑那些领域 谢谢不够的话你再补充一下问题,我可以再详细一点 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较步进电机和交流伺服电机性能比较步进电机和交流伺服电机性能比较c。一、控制精度不同两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。二、低频特性不同步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。三、矩频特性不同步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。四、过载能力

交流伺服电机驱动器使用说明书.

交流伺服电机驱动器使用说明书 1.特点 ●16位CPU+32位DSP三环(位置、速度、电流)全数字化控制 ●脉冲序列、速度、转矩多种指令及其组合控制 ●转速、转矩实时动态显示 ●完善的自诊断保护功能,免维护型产品 ●交流同步全封闭伺服电机适应各种恶劣环境 ●体积小、重量轻 2.指标 ●输入电源三相200V -10%~+15% 50/60HZ ●控制方法IGBT PWM(正弦波) ●反馈增量式编码器(2500P/r) ●控制输入伺服-ON 报警清除CW、CCW驱动、静止 ●指令输入输入电压±10V ●控制电源DC12~24V 最大200mA ●保护功能OU LU OS OL OH REG OC ST CPU错误,DSP错误,系统错误 ●通讯RS232C ●频率特性200Hz或更高(Jm=Jc时) ●体积L250 ×W85 ×H205 ●重量 3.8Kg 3.原理 见米纳斯驱动器方框图(图1)和控制方框图(图2) 4.接线 4.1主回路 卸下盖板坚固螺丝;取下端子盖板。用足够线经和连接器尺寸作连接,导线应采用额定温度600C以上的铜体线,装上端子盖板,拧紧盖板螺丝。螺丝拧紧力矩大于1.2Nm M4或2.0 Nm M5时才可能损坏端子,接地线径为2.0mm2 具体见接线图3 4.2 CN SIG 连接器[ 具体见接线图4 ●驱动器和电机之间的电缆长度最大20M ●这些线至少要离开主电路接线30cm,不要让这些线与电源进线走一线槽; 或让它们捆扎在一起 ●线经0.18mm2或以上屏蔽双绞线,有足够的耐弯曲力 ●屏蔽驱动器侧的屏蔽应连接到CN.SIG 连接器的20脚,电机侧应连接到J 脚 ●若电缆长于10M,则编码器电源线+5V、0V应接双线 4.3 CN I/F 连接 ●控制器等周边设备与驱动器之间距离最大为3M ●这些线至少和主电路接线相隔30cm ,不要让这些线与电源进线走同一线槽 或和它们捆扎在一起 ●COM+和COM-之间的控制电源(V DC)由用户供给

伺服电机应用技术

3.2.4 定位运行 1、运行模式 NC213的定位运行模式有多种选择,分成两类。第一类称为direct operation,第二类称为memory operation,这两类操作是伺服控制模块普遍使用的方式。Memory operation一般用于较高级控制模块,direct operation则高、低级控制模块均可采用。 伺服控制模块为PLC系统中的一组扩充单元,由CPU模块指挥控制,direct operation 与memory operation差别就在于指挥方式的不同。 1)direct operation运行模式 如图3.23所示,CPU模块每下一次指令,控制器执行一次运行动作;如果要进行三个运行动作,必须由CPU按照程序下指令。因此,CPU工作负荷较重,而且指令下达需要传递处理,密集操作运动时不易掌控时间间隔,适合运动控制较不密集的系统。Direct operation 的控制参数较少,用户较易使用。 2)memory operation运行模式 如图3.24所示,CPU模块每下一次指令,控制器可执行连续不同的运行动作,运行动作之间的逻辑控制由伺服控制器自行处理。因此,CPU工作负荷较轻,可处理较多其他工作。Memory operation运行效率较佳,但控制参数较复杂,就好像管理者工作项目要交代清楚,而执行者必须全权处理的方式。NC213为双轴控制模块,memory operation运行模式可进行二轴直线补间运动等较复杂的运行动作控制。 2、direct operation参数设置区 Direct operation定位运行只要在已定义的参数区内设置运行参数即可,以绝对坐标定位及相对坐标定位所需参数如图3.25所示。必须注意的是,当前使用的模块型号为NC213,注意寄存器的分配方式。

伺服电机驱动器的工作原理

伺服电机驱动器的工作原理 伺服驱动器又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。 伺服进给系统的要求 1、调速范围宽 2、定位精度高 3、有足够的传动刚性和高的速度稳定性 4、快速响应,无超调 为了保证生产率和加工质量,除了要求有较高的定位精度外,还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。 5、低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时间内可以过载4~6倍而不损坏。 6、可靠性高 要求数控机床的进给驱动系统可靠性高、工作稳定性好,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。 对电机的要求 1、从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。 2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。 3、为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。 4、电机应能承受频繁启、制动和反转。 常州丰迪电气有限公司是一家专业生产三相步进电机、交流伺服电机、三相伺服电机、伺服电机驱动器、步进电机驱动器的企业,产品主要用于各类数控机床、医疗机械、包装机械、纺织机械等自动化控制领域。公司技术力量雄厚,生产工艺精湛,电机全部采用优质材料,技术性能和质量指标达到国内同类产品的领先水平,丰迪始终以诚信、共赢的经营宗旨立足于市场。下面就由丰迪电气讲述下伺服电机驱动器的工作原理。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。

相关主题