搜档网
当前位置:搜档网 › 变压器和互感器减极性和加极性的问题

变压器和互感器减极性和加极性的问题

变压器和互感器减极性和加极性的问题
变压器和互感器减极性和加极性的问题

变压器和互感器减极性和加极性的问题

减极性的意思是一次电流从极性端流入,二次电流从极性端流出,这样标注的好处是一次二次的磁通叠加刚好是零。

互感器是用来变换电流或电压的设备,是农村电工接触比较多的测量设备之一。

互感器根据用途不同分为电流互感器和电压互感器两大类。电流互感器是将电力系统中的大电流按一定的比例(称为变比),变为标准的小电流(5A或1A)。电压互感器是将一次系统(供电线路)的高电压按一定的比例(也称变比),变为标准的低电压(100V或100/V)。在实际应用中,由于电流互感器二次额定电流均设计为5A或1A,电压互感器二次额定电压均设计为100V或100/V,所以与电流、电压量值有关的各类仪表、继电器、测试设备、控制设备等就可以按统一的标准参数制作,有利于产品的规范化、标准化和提高准确度,还可以使工作人员及仪表、仪器、设备等避免直接接触高电压,因而保证了安全。

1 铭牌标志

电流互感器的性能、技术参数、接线图等标注在铭牌上和使用说明书中,安装使用前要详细阅读并掌握。

1.1 型号

电流互感器的型号由字母符号及数字组成,通常表示电流互感器绕组类型、绝缘种类、使用场所及电压等级等。字母符号含义如下:

第一位字母:L——电流互感器。

第二位字母:M——母线式(穿心式);Q——线圈式;Y——低压式;D——单匝式;F——多匝式;A——穿墙式;R——装入式;C——瓷箱式。

第三位字母:K——塑料外壳式;Z——浇注式;W——户外式;G——改进型;C——瓷绝缘;P——中频。

第四位字母:B——过流保护;D——差动保护;J——接地保护或加大容量;S——速饱和;Q——加强型。

字母后面的数字一般表示使用电压等级。例如:LMK-0.5S型,表示使用于额定电压500V及以下电路,塑料外壳的穿心式S级电流互感器。LA-10型,表示使用于额定电压10kV电路的穿墙式电流互感器。

1.2 图形标志

1.2.1 图形符号:应用于接线图或其他图纸上表示电流互感器的图形符号,它由

一横线和两个半圆组成。横线表示一次绕组,L

1、L

2

分别表示首端与末端,两个

半圆表示二次绕组,K1、K2分别表示首端与末端,见图4-1。

图4-1 减极性电流互感器标志

1.2.2 极性标志:为电流互感器一次绕组和二次绕组极性的标志符号。为了保证电流互感器在校验和测量时接线正确,均在绕组的接线端子附近进行极性标注。极性标注规则如下。

(1)一次绕组出线首端标为L

1,末端标为L

2

。绕组带有中间抽头时,首端标

为L

1,自第一个抽头起依次标为L

2

、L

3

……。

(2)二次绕组出线首端标为K

1

,末端标为K

2

。绕组带有中间抽头时,首端标

为K

1,自第一个抽头起依次标为K

2

、K

3

……。

(3)对具有多个二次独立绕组的电流互感器,依次在各个绕组标注的“K”前

加注数字区别,如1K

1、1K

2

,2K

1

、2K

2

,3K

1

、3K

2

……。

(4)L

1、K

1

或L

2

、K

2

为同极性端,也叫同名端。电流互感器一次电流I1和二

次电流I2其方向相反时称为减极性,见图4-1;反之称为加极性。为了便于记忆和接线,制造厂一般按减极性生产。

1.2.3 GB1208-86、GB1208-97等:在互感器铭牌上的这种标志,是指制造互感器符合的国家标准编号。

2 技术参数

2.1 额定容量:额定二次电流通过二次额定负荷时所消耗的视在功率。额定容量可以用视在功率V.A表示,也可以用二次额定负荷阻抗Ω表示。它们之间的换算公式为:

式中Z

N

——额定负荷阻抗,Ω;

S

N

——视在功率,V.A;

I

N

——二次额定电流,A。

例如,一台二次额定电流为5A的电流互感器,铭牌标注额定阻抗0.4Ω,如果用视在功率表示,其额定容量为多少?

将上式代入数据得,0.4,

S

N

=0.4×52=10V.A

2.2 一次额定电流:允许通过电流互感器一次绕组的用电负荷电流。用于电力系统的电流互感器一次额定电流为5~25000A,用于试验设备的精密电流互感器为

0.1~50000A。电流互感器可在一次额定电流下长期运行,负荷电流超过额定电流值时叫做过负荷,电流互感器长期过负荷运行,会烧坏绕组或减少使用寿命。

2.3 二次额定电流:允许通过电流互感器二次绕组的一次感应电流。

2.4 额定电流比(变比):一次额定电流与二次额定电流之比。

2.5 额定电压:一次绕组长期对地能够承受的最大电压(有效值以kV为单位),应不低于所接线路的额定相电压。电流互感器的额定电压分为0.5,3,6,10,35,110,220,330,500kV等几种电压等级。

2.6 10%倍数:在指定的二次负荷和任意功率因数下,电流互感器的电流误差为-10%时,一次电流对其额定值的倍数。10%倍数是与继电保护有关的技术指标。

2.7 准确度等级:表示互感器本身误差(比差和角差)的等级。目前电流互感器的准确度等级分为0.001~1多种级别,与原来相比准确度提高很大。用于发电厂、变电站、用电单位配电控制盘上的电气仪表一般采用0.5级或0.2级;用于设备、线路的继电保护一般不低于1级;用于电能计量时,视被测负荷容量或用电量多少依据规程要求来选择。

2.8 比差:互感器的误差包括比差和角差两部分。比值误差简称比差,一般用符号f表示,它等于实际的二次电流与折算到二次侧的一次电流的差值,与折算到二次侧的一次电流的比值,以百分数表示。

2.9 角差:相角误差简称角差,一般用符号δ表示,它是旋转180°后的二次电流向量与一次电流向量之间的相位差。规定二次电流向量超前于一次电流向量δ为正值,反之为负值,用分(’)为计算单位。

2.10 热稳定及动稳定倍数:电力系统故障时,电流互感器受到由于短路电流引起的巨大电流的热效应和电动力作用,电流互感器应该有能够承受而不致受到破坏的能力,这种承受的能力用热稳定和动稳定倍数表示。热稳定倍数是指热稳定电流1s内不致使电流互感器的发热超过允许限度的电流与电流互感器的额定电流之比。动稳定倍数是电流互感器所能承受的最大电流瞬时值与其额定电流之比。

电流互感器的极性

电流互感器的极性:当一次绕组中的电流由L1流入,二次绕组的电流由K1流出,这种标注的方式称为减极性标注。 1、电流速断保护(电流Ⅰ段) 几个基本概念 系统的最大运行方式 被保护线路末端发生短路时,系统等值阻抗最小,而通过保护装置的电流为最大的运行方式 系统的最小运行方式 被保护线路末端发生短路时,系统等值阻抗最大,而通过保护装置的电流为最小的运行方式 最大短路电流 在最大运行方式下流过保护装置的短路电流最大最小短路电流 在最小运行方式下流过保护装置的短路电流最小 保护装置的启动值 使保护装置启动的最小电流值 保护装置的整定 根据对继电保护装置的要求,确定保护装置的启动值、灵敏系数、动作时限等 电流速断保护保护只能保护本条线路的一部分;限时电流速断保护能保护线路的全长,但不能作为下一条相邻线路的远后备;定时限过电流保护可以做为本条线路和下一段相邻线路的后备保护。 由电流速断保护、限时电流速断保护、定时限过电流保护相互配合构成的一整套保护称为三段式保护 配电线路并不一定都要装设三段式电流保护 三段式电流保护的优点是简单可靠,缺点是受运行方式和短路电流的类型的影响 方向性电流保护原理: 方向性保护是指当短路功率从母线流向线路时(内部故障)动作而当短路功率由线路流向母线时不动作的保护,即使继电保护具有一定的方向性. 零序电流的分布,是由线路的零序阻抗和中性点接地变压器的零序阻抗及变压器接地中性点的数目和位置决定的,而与电源的数量和位置无关 线路纵差动保护是反应被保护线路首末两端电流的大小和相位,保护整条线路。当在被保护范围内任一点发生故障时,它都能瞬时切除故障。被保护线路两侧的电流互感器变比相等,极性采用减极性标注 差动保护结论: 差动保护灵敏度高 保护范围稳定 可以实现全线速动 不能作为相邻线路的后备保护

电流互感器极性及方向保护的问题

谈谈对于极性与方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢? 所谓减极性接线就就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还就是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果就是流入,那么二次侧应该就是流出;一次侧如果就是流出,那么二次侧就就是流入。 为什么一次电流与二次侧电流要相反呢? 其实这个相反就是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置?保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又就是流入了!! 因此,减极性的接法的目的就是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 与短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 与短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也就是要保证二次设备感受到的电压要与一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变与压变均采用减极性接法,也就就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧?我们必须遵循一定的规范,这个规范就就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可

变压器的绕组极性

变压器的绕组极性 1、变压器绕组的极性: 变压器绕组的极性是指变压器原、副绕组在同一磁通的作用下所产生的感应电势之间的相位关系。 同极性端(同名端):任何瞬间,两绕组中电势极性相同的两个端钮。用符号星号“*”或黑点“.”表示。如图3-3. 图3-3 变压器绕组的极性 对一、二次绕组的方向,当电流从1和3流入时,它们所产生的磁通方向相同,因此1、3端是同名端,同样2、4端也是同名端。当电流从1、4流入时,则1、4是同名端。 2、单相变压器绕组极性的判别 1)交流法(电压表法) 图3-4 交流法测变压器绕组极性 将2和4点连起来。在它的原绕组上加适当的交流电压,副绕组开路。工厂中常用36V 照明变压器输出的36V 交流电压进行测试,测试时方便又安全。 用电压表分别测出原边电压12U 、副边电压 34U 和1-3两端电压13U 。 341213U U U -=时1和3是同名端;341213U U U +=时1和4是同名端。 采用这种方法,应使电压表的量限大于 3412U U +。 2)直流法

图3-5 直流法测变压器绕组极性 接通开关,在通电瞬间,注意观察电流计指针的偏转方向,如果电流计的指针正方向偏转,则表示变压器接电池正极的端头和接电流计正极的端头为同名端(1、3);如果电流计的指针负方向偏转,则表示变压器接电池正极的端头和接电流计负极的端头为同名端(2、4)。 采用这种方法,应将高压绕组接电电池,以减少电能的消耗,而将低压绕组接电流计,减少对电流计的冲击。 3、同名端的说明: 无论单相变压器的高、低压绕组还是三相变压器同一相的高、低压绕组都是绕在同一铁心柱上的。它们是被同一主磁通所交链,高、低压绕组的感应电势的相位关系只能有两种可能,一种同相,一种反相(差180度)。

高中化学分子极性及其判断规律专题辅导

高中化学分子极性及其判断规律 张素琳 一、分类:按照分子的极性,可把分子分为两类。 1. 非极性分子:正负电荷重心重合,分子对外不显示电负性的分子。例如:H O 22、、 N Cl Br CO CS CH CCl BF 22222443、、、、、、、等。 2. 极性分子:正负电荷重心不重合,分子对外显示电负性的分子。例如H O NH 23、、 HCl 、H 2O 2等。 二、掌握常见分子极性及其空间构型:常见分子极性及其空间构型可用下表表示。 三、了解常见分子空间构型及其键角:中学常见分子空间构型及其键角列举如下: (1)H O N 222、、等双原子单质分子为直线形,夹角为180°。 (2)H O 2为平面形,夹角为104.5°。 (3)NH 3为三角锥形,夹角为107°18'。 (4)H 2S 为平面形,夹角为92°。 (5)CH CCl SiH 444()、为正四面体形,夹角为109°28'。 (6)CH Cl CH Cl CHCl 3223()、为四面体形,夹角不确定。 (7)C H 22为直线形,夹角为180°。 (8)C H 24为平面形,夹角为120°。 (9)C H 66为平面形,夹角为60°。

(10)P 4为正四面体形,夹角为109°28'。 (11)CO CS 22()为直线形,夹角为180°。 (12)BF 3为平面形,夹角为120°。 注意:中学常见的四面体物质有①CH 4 ②CH Cl 3 ③CH Cl 22 ④CHCl 3 ⑤ CCl 4 ⑥P 4 ⑦NH 4 ⑧SiH 4 ⑨SiF 4等。其中是正四面体的有①、⑤、⑥、⑦、⑧、 ⑨共6种。 四、分子极性判断规律。 ①双原子单质分子都是非极性分子。如H O N Cl Br 22222、、、、等。 ②双原子化合物分子都是极性分子。如HCl 、HBr 、HI 等。 ③多原子分子极性要看空间构型是否对称,对称的是非极性分子,否则是极性分子。如H 2O 、NH HCl H O CH Cl 3223、、、等是极性分子;CO CH CCl BF 2443、、、等是非极性分子。 ④AB n 形分子极性判断:若A 原子的最外层电子全部参与成键,这种分子一般为非极性分子。如CO CH BF 243、、等。若A 原子的最外层电子没有全部参与成键,这种分子一般为极性分子。如H O NH 23、等。

电流互感器极性常见的几个问题

电流互感器极性常见的几个问题 在电力系统中,因为电流互感器极性接线错误导致保护装置误动或拒动的现象时有发生,严重影响供电系统的稳定运行。同样,电流互感器的极性接线在化工厂应用中也显得尤为重要。本文就化工厂常见的一些电流互感器极性问题进行总结,并给出相应整改措施。 标签:电流互感器;极性;保护装置;措施 1 前言 电流互感器(CT)是将一次侧大电流转换成可供计量、测量、保护等二次设备使用的二次侧电流的变流设备,还可以使二次设备与一次高压隔离。它的一次、二次绕组都是由两个端子引出,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置的正确动作,也影响电力系统的在线监测及故障处理,严重时还会引起人身安全。 2 电流互感器极性 为了便于正确接线和理论分析,电流互感器的一次绕组和二次绕组的引出端子都标有极性符号。一次绕组P1为首端,P2为末端;二次绕组S1为首端,S2为末端。通常用“.”“*”等符号标记,表示同极性,即P1、S1(或P2、S2)为同名端。通常电流互感器采用减极性原则(同名端流入,同名端流出)标注,规定当一次侧电流从首端P1流入,由末端P2流出;二次侧电流从首端S1流出,末端S2端流入。 3 电流互感器极性常见的几个问题 结合本化工厂实际,保护1为南瑞RCS-9671CS变压器差动保护装置;保护2、3、4为施耐德MiCOM P140馈线管理保护装置系列下的P143装置,相间/零序过电流保护可自由设置方向;保护5为施耐德MiCOM P640 变压器保护装置系列下的P643装置。 3.1 变压器或线路差动保护CT接线 变压器或线路差动保护保护范围内两侧CT采用180度極性接线,为了满足被保护对象正常运行或区外故障时,二次侧差流近似于零,保护不会动作;区内故障时,二次侧差流近似等于两倍短路电流,保护动作。 3.2 针对35kV IV母进线和馈线(带方向) ①4#主变进线保护2所示CT极性:电流方向指向母线,为反方向动作;②4#热电站升压变高压侧后备保护4所示CT极性:电流方向指向主变,为正方向

反馈极性的判断方法瞬时极性法

反馈极性的判断方法瞬时 极性法 Last revision on 21 December 2020

反馈极性的判断方法——瞬时极性法 反馈在电技术中应用十分广泛。反馈有正,负之分。负反馈主要用于模拟放大电路中,负反馈既能稳定静态工作点,又能改善放大电路的各种性能。放大电路很少用正反馈。在一定条件下放在电路中的负反馈可转化为正反馈,形成自激振荡,使放大器不能正常工作,这是要避免的一面。正反馈还有有利的一面,就是在波形产生的电路中,人为地把电路接成反馈形式,产生所需的波形。在电子技术实践中,要正确组成反馈放大电路和振荡电路。必须清晰准确地判别正负反馈。如何有效判别正负反馈本文介绍瞬时(变化)极性法。 学习反馈电路,掌握反馈的基本概念和判别方法,必须解决以下问题: (1)什么是反馈反馈就是将放大电路的输出信号的一部分,通过一定电路形式送回到输入回路称为反馈。 (2)反馈元件如何判别既与输出回路相连,又与输入回路相连的器件都是反馈元件;虽仅在输出回路或输入回路,但与反馈支路相连,并对反馈信号大小产生影响的元件也是反馈元件。 (3)如何构成反馈放大器引入反馈的放大电路称为反馈放大电路,即反馈放大器。(见图1) 图1 图中A是基本放大电路,F是反馈网络,两部分构成一个闭环。X’i和x’f分别是输入信号和反馈信号,x’d是净输入信号,三者汇交的节点称为混合环节。X’i、x’f、x’d可以是电压信号,也可以是电流信号,x’i与x’f在节点处可以相加也可以相减。如果是串联反馈x’i和x’f都用电压表示,两个电压在此串联相减。如果是并联反馈,x’i和x’f都用电流表示,两个电流在此并联相减。

电流互感器极性的判断

怎样测量电流互感器的极性 电流互感器在交接及大修前后应进行极性试验,以防在接线时将极性弄错,造成在继电保护回路上和计量回路中引起保护装置错误动作和不能够正确的进行测量,所以必须在投运前做极性试验。 测量电流互感器的极性的方法很多,我们在工作时常采用的有以下三种试验方法:①直流法;②交流法;③仪器法。 1直流法 见图1。用1.5~3V干电池将其正极接于互感器的一次线圈L1,L2接负极,互感器的二次侧K1接毫安表正极,负极接K2,接好线后,将K合上毫安表指针正偏,拉开后毫安表指针负偏,说明互感器接在电池正极上的端头与接在毫安表正端的端头为同极性,即L1、K1为同极性即互感器为减极性。如指针摆动与上述相反为加极性。 图1直流法测电流互感器极性 2交流法

见图2,将电流互感器一、二次线圈的L2和二次侧K2用导线连接起来, 在二次侧通以1~5V的交流电压(用小量程),用10V以下的电压表测量U 及U3的数值如U3=U1-U2为减极性;若U3=U1+U2为加极性。 2 图2交流法测电流互感器极性 注意:在试验过程中尽量使通入电压低一些,以免电流太大损坏线圈,为了读数清楚电压表尽量选择小一些,变流比在5以下时采用交流法测量比较简单准确,对变流比超过10的互感器不要采用这种方法进行测量,因为U2的数值较小U3与U1的数值接近,电压表的读数不易区别大小,所以在测量时不好辨别,一般不宜采用此法测量极性。 3仪表法 一般的互感器校验仪都有极性指示器,在测量电流互感器误差之前仪器可预先检查极性,若指示器没有指示则说明被试电流互感器极性正确(减极性)。 高压电流互感器极性的判断

按规定电流互感器在交接及大修前后应进行极性试验,防止接线时将极性弄错,造成继电保护回路上和计量回路中的保护装置错误动作和不能正确地进行计量,因此必须在接线时做极性试验。 判断电流互感器极性的方法有三种,分别为直流法、交流法、仪器法。其中最方便、最实用的是直流法,用一只普通的1号干电池,一根0.5米长的连接线,一只指针式万用表,最好是MF-500型的,上面带有微安挡,指针偏转角度大,显示比较直观。把万用表左侧旋钮调整到A直流电流挡位,右侧旋钮调整到50微安刻度;判断极性时一般两个人一起操作,其中一个人把万用表的正极红表笔接电流互感器二次侧的S1端,负极黑表笔接S2端,另一个人把连接线一端固定在电流互感器一次侧P2端,连接线的另一端和干电池负极锌片端接触,使干电池的正极瞬间碰触电流互感器的一次侧P1端,会发现万用表指针正偏(向右偏)之后,又马上返回,这说明极性正确,为负极。然后红表笔接S2端黑表笔接S3端,或红表笔接S3端黑表笔接S4端,指针偏转情况应与上述相同;如指针

电流互感器极性及方向保护的问题

谈谈对于极性和方向保护的理解 以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢 所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。 为什么一次电流和二次侧电流要相反呢 其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置! 这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!! 因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!! 减极性具体接线接线 具体来

说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。 当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。 对于电压互感器而言 也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。 再说说方向保护 对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性: 当正方向故障时一次侧电压超前电流30°左右 当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°) 既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了! 再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次

侧我们必须遵循一定的规范,这个规范就是减极性接法!! 如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了! 这就再一次印证了我们经常说的 对于方向性保护,一定要注意二次接线,极性不要搞错了 交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。 但是不管电流电压怎么变化方向,但是有一点需要切记,电流和电压之间的相位关系具有一定的规律性,即电流和电压矢量之间的夹角肯定是有规律的! 由此可见掌握方向保护(不管是方向过电流还是零序方向保护或者其他方向保护)的精髓就是要记住 正方向和反方向故障时电流和电压之间的相位关系。

分子极性判断方法.docx

一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是 否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原子形 成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区“由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH3中的“C- C”键、 CH2=CH2中的“ C=C”键、 Na2O2中的“O- O” 键等具有结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象 CH3CH2OH、 CH3COOH等结构不对称的分子中的“C - C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、O2、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非 极性键。但在 O3分子中的“O - O”键却不是非极性键,而是极性键。这是因为O3分子结构呈“V”型(或角型),键长为(该键长正好位于氧原子单键键长148 pm 与双键键长 112 pm 之间),与 SO2结构相似,可模仿 SO2把 O3称作“二氧化氧”,所以 O3分子中的“O - O”键是 极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷分布 是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分子, 各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He、Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键 就是极性分子,如HF、 HI 等;若含非极性键就是非极性分子,如I2 、 O2、 N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如CO2、 BF3、CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H2O、 NH3、 PCl3等。

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电力变压器的电压比、极性和组别试验

电力变压器的电压比、极性和组别试验 一、变压器极性组别和电压比试验的目的和意义 变压器线圈的一次侧和二次侧之间存在着极性关系,若有几个线圈或几个变压器进行组合,都需要知道其极性,才可以正确运用。对于两线圈的变压器来说,若在任意瞬间在其内感应的电势都具有同方向,则称它为同极性或减极性,否则为加极性。变压器联结组是变压器的重要参数之一,是变压器并联运行的重要条件,在很多情况下都需要进行测量。 在变压器空载运行的条件下,高压绕组的电压1U 和低压绕组的电压2U 之比称为变压器的变压比: 2 1 U U K (5-3) 电压比一般按线电压计算,它是变压器的一个重要的性能指标,测量变压器变压比的目的是: (1)保证绕组各个分接的电压比在技术允许的范围之内; (2)检查绕组匝数的正确性; (3)判定绕组各分接的引线和分接开关连接是否正确。 二、变压器极性组别和电压比试验方法 1、直流法确定变压器的极性 测量变压器绕组极性的方法有直流法和交流法,这里介绍简单适用的直流法:用一节干电池接在变压器的高压端子上,在变压器的二次侧接上一毫安表或微安表,实验时观察当电池开关合上时表针的摆动方向,即可确定极性。 ++V C C B B E A A μA E K + +x a A X 图5-8 用直流法测量极性 图5-9 用直流法确定接线组别 如图5-8所示,将干电池的正极接在变压器一次侧A 端子上,负极接到X 上,电流表的正端接在二次侧a 端子上,负极接到x 上,当合上电源的瞬间,若电流表的指针向零刻度的右方摆动,而拉开的瞬间指针向左方摆动,说明变压器是减极性的。 若同样按照上面接线,但当电源合上或拉开的瞬间,电流表的指针的摆动方向与上面相

CT极性判别方法

判断电压电流互感器极性的新方法 发布日期:2009-5-27 10:53:43 (阅2378次) 关键词: 变压器互感器继电保护 [摘要]应用克希霍夫定律(Kirchhoff''s Current Law)及二次回路接线原理,推导出一种判断电压和电流互感器极性的新方法,经与传统的检测方法进行对比,证明了其优越性和实用性,可供继保专业人员参考和运用。 [关键词]互感器继电保护克希霍夫定律(KCL)极性 引言 变压器和电流互感器在继电保护二次回路中起一、二次回路的电压和电流隔离作用,它们的一、二次侧都有两个及以上的引出端子,任何一侧的引出端子用错,都会使二次侧的相位变化180度,既影响继电保护装置正确动作,又影响电力系统的运行监控和事故处理,严重时还会危及设备及人身安全。因此,正确判断变压器(电压互感器)和电流互感器的极性正确与否是一项十分重要的工作。 1 传统的极性检测方法 1.1直流法 电压和电流互感器的传统极性检测直流法可按图1接好线,使用干电池和高灵敏度的磁电式仪表进行测定。检测极性时,将电池的正极接在一次线圈的K端上,而将磁电式仪表(如指针式电流表或毫伏表)的正极端接在二次线圈的K端上。当开关S瞬间闭合时,仪表指针偏向右转(正方向),而开关S瞬间断开时,仪表指针则偏向左转(反方向),则表明所接互感器一、二次侧端子为同极性。反之,为异极性。

1.2、交流法 按图2所示接线,将互感器一、二次线圈的尾端L2、K2接在一起,在二次线圈上通入1~5V的交流电压,再用10V以下小量程交流电压表分别测量U2、U3,若U3=U1-U2,则L1、K1为同极性,若U3=U1+U2,L1、K1为异极性。 2 新极性检测方法 该方法以KCL和二次接线原理为基本依据,强调注入电流作为引导检测过程的基本手段,将交流安培计的读数作为检测结果,来判断互感器的极性。 2.1原理 根据KCL的描述: 在任何电路中的任意节点上流入该节点的电流总和等于流出该节点的电流总和,即Σi入=Σi出。当某一节点趋于无穷大的极限情况时,KCL可以推广至任意用一闭合面(图3虚线表示与纸平面的相交线)所包围的电路部分。该闭合面S包围了部分电路,并与支路1、2、3相交,应用KCL定律可得i1-i3-i2=0。 下面讨论一种特殊状态,当初始时刻电路中无电流通过时,如果强制性地使某一闭合面包围的部分电路中流入一定量的相对于初始状态额外的电流,由于离开包围部分电路的任一闭合面的各支路的电流的代数和为零,所以必有同量的电流流出那部分电路,则可在流出的闭合面的另一支路上串联一只交流安培计测量。那么,当被包围的部分电路为电压和电流互感器的内部电路时,则其中任两相的同极性或异极性将影响流出包围的互感器内部电路电流的大小,然后结果将体现在交流安培计的读数上。下面以电流互感器的星形和三角形两种连接情况来具体说明。 2.2星形回路检测 在检测之前,须断开一次隔离刀闸,确保电流互感器内部电路处于无电流状态。任选电流互感器的两相(图4所选的是A、B两相)在一次侧线圈的L端同时接地,K端串接一升流装置。在二次侧的中性线n上串接一只交流安培计。用升流装置向其中注入定量的交流电流,电流大小及安培计的量程可由电流互感器的变比确定。数量级约在10-1A至1A之间。同时观察安培计的变化和读数。由于另一单相未注流的原方开路,在二次星形回路中电流继电器线圈阻抗相对很高,所以二次回路的电流I3很小,近似为零。此时若安培计的指针不动或微偏(读数IA也约为零),则说明此两相的二次电路在闭合面包围下其电流近似

互感器接线安全及其极性(正式版)

文件编号:TP-AR-L7282 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 互感器接线安全及其极 性(正式版)

互感器接线安全及其极性(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、防范措施 (1) 在实验报告中也应明确写明电流互感器同名端的测试方法、测试结果、接线方式。 (2)保护整定计算人员,可在定值单上对特殊线路的电流互感器极性作明确要求,如以母线为基准,故障电流由母线流向线路为正,装置应可靠动作;故障电流由线路流向母线为负,装置应不动作。 (3)在生产实践中,由于电流互感器极性及接线不正确,造成保护装置误动和拒动,由此而引起的停电事故时有发生,实验人员应注意理论知识的学习,熟悉各种保护的动作原理,充分认识电流互感器极性

及接线的重要性,严格按设计图施工。 (4)按照质量管理要求,设备验收时使用的设备验收表格中应增加那些通常容易被忽视却很重要的项目,如电流互感器同名端的测试方法、测试结果、接线方式是否正确等。 二、极性的判断及二次线的联接 以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。 2.1 正确的电流互感器的二次接线方式

电流互感器电压互感器常见故障处理

电流互感器、电压互感器故障现象及处理 互感器是将电网高电压变为低电压或将大电流变为小电流的一种特殊变压器,主要用于测量仪表和继电保护装置。互感器运行和维护的好坏,直接影响电力系统计量的准确性和保护装置动作的可靠性以及电网、设备和人身的安全。 一、电压互感器常见故障及处理: 电压互感器异常运行时有预告警音响信号、“电压回路断线”光字牌亮、表计指示异常、互感器过热冒烟等多种现象。主要包括以下几方面故障: 1、发生下列情况时需要紧急停运电压互感器(电流互感器)(1)严重发热、冒烟、冒油时。 (2)电压互感器高压侧熔断器连续熔断两次。 (3)外壳破裂、严重漏油。 (4)内部有放电声或异常声音。 (5)设备着火。 电压互感器冒烟、着火时的处理方法:如果在冒烟前一次侧熔断器从未熔断,而二次侧熔丝多次熔断,且冒烟不严重无绝缘损伤特征,在冒烟时一次侧熔断器也未熔断,则应判断为二次绕组相(匝)间短路引起冒烟。在二次绕组冒烟而没有影响到一次绝缘损坏之前,立即退出有关保护、自动装置,取下二次侧熔断器,拉开一次侧重隔离开关,停用电压互感器。对充油式电压互感器,如果在冒烟时,又伴随

较浓臭味,电压互感器内部有不正常噪声、绕组与外壳或引线与外壳之间有火花放电、冒烟前一次侧熔断器熔断2~3次等现象之一时,应判断为一次侧绝缘损伤而冒烟,如是母线电压互感器则用停母线方法停用电压互感器,此时决不能用拉开隔离开关的方法停用电压互感器,因隔离开关没有灭弧能力,若用隔离开关切断故障,还可能会引起母线短路,使设备损坏或造成人身事故。电压互感器本体着火时,应立即断开有关电源,将故障电压互感器隔离,再汇报值班长,选用干式灭火器或砂子灭火。 2、电压互感器二次回路断线 现象: (1)三相电压不平衡,故障相相电压指示为零,电度表指示失常(2)相应的有功表、无功表指示降低或到零。 (3)发“电压回路断线”信号发出,故障录波器可能动作处理: (1)在电压互感器二次侧熔丝下端,用万用表分别测量两相之间电压是否都为100伏。如果上端是100伏,下端没达到100伏,则是二次侧熔丝熔断,并且进行更换。如果测量熔丝上端电压没有100伏,有可能是电压互感器隔离开关动静触头接触不良(或没有到工作位置)或一次侧熔丝熔断。如果是电压互感器一次侧熔丝熔断,则拉开电压互感器隔离开关进行更换,如果是电压互感器隔离开关动静触头接触不良(或没有到工作位置)应将电压互感器重新送一次。 (2)对异常的电压互感器二次回路进行检查,有无短路、松动、断

变压器变比及极性测试

变压器变比试验 一、工作目的 检查各绕组的匝数、引线装配、分接开关指示位置是否符合要求;提供变压器能否与其他变压器并列运行的依据。 二、工作对象 变压器的一、二次侧绕组。 三、知识准备 变压器的电压比(简称变比),是变压器空载时高压绕组电压U1与低压绕组电压U2的比值,即变比k= U1/ U2。变压器的变比试验是验证变压器能否达到规定的电压变换效果,变比是否符合变压器技术条件或铭牌所规定的数值的一项试验。四、工作器材准备 BBC6638变比测试仪1套;包括变比测试仪专用导线若干、放电棒等。 五、工作危险点分析 (1)注意与加压部分保持足够的安全距离。 (2)防止加压部分从高出脱落造成人身伤害。 (3)注意与相邻试验班组的谐调。 六、工作接线图 七、工作步骤 (1)将变比测试仪接地(先接接地端,后接仪器端) (2)将变比测试仪的ABC,abc通过专用导线和变压器的ABC,abc相连接。 (3)在变比测试仪上分别输入“变压器组别”,“总分接数”,“级差”和“额定变比”。 八、工作标准 根据《电力设备预防性试验规程DL/T 596-1996》规定;试验周期:1)分接开关引线拆装后,2)更换绕组后,3)必要时。要求:1)各相应接头的电压比与铭牌

值相比,不应有显著差别,且符合规律,2)电压35kV以下,电压比小于3的变压器电压比允许偏差为±1%;其它所有变压器:额定分接电压比允许偏差±0.5%,其它分接的电压比应在变压器阻抗电压值(%)的1/10以内,但不得超过±1. 九、综合分析方法及注意事项 1.注意事项 (1)变压器的相序为,面对高压侧从左往右依次是(中性点)、A、B、C相。接线时不能将其接反。 (2)注意在变比测试仪上输入变压器组别,防止出现错误。 2.常见问题 (1)检查仪器设置档位与变压器的实际档位是否一致。 (2)考虑分接开关接头位置是否错误。 (3)考虑线圈匝数是否错误。 变压器的极性测试 (一)直流法确定变压器的极性 测量变压器绕组极性的方法有直流法和交流法,这里介绍简单适用的直流法:用一节干电池接在变压器的高压端子上,在变压器的二次侧接上一毫安表或微安表,实验时观察当电池开关合上时表针的摆动方向,即可确定极性。 图1 用直流法测量极性图2 用直流法确定接线组别 如图1所示,将干电池的正极接在变压器一次侧A端子上,负极接到X上,电流表的正端接在二次侧a端子上,负极接到x上,当合上电源的瞬间,若电流表的指针向零刻度的右方摆动,而拉开的瞬间指针向左方摆动,说明变压器是减极性的。 若同样按照上面接线,但当电源合上或拉开的瞬间,电流表的指针的摆动方向与上面相反,则说明变压器是加极性的。 (二)直流法确定变压器的组别 直流法是最为简单适用的测量变压器绕组接线组别的方法,如图2所示是对一Y Y/接法的三绕组变压器用直流法确定组别的接线,对于其他形式的变压器接线相同。用一低压直流电源如干电池加入变压器高压侧AB、BC、AC,轮流确定接在低压侧ab、bc、 ac上的电压表指针的偏转方向,从而可得到9个测量结果。这9个测量结果的表示方法为:用正号“+”表示当高压侧电源合上的瞬间,低压侧表针摆动的某一个方向,而用负号“-”表示与其相反的方向。如果用断开电源的瞬间来作为结果,则正好相反。另外还有一种情况,就是当测量Y/ Y接法的变压器时,会出现表针为零,我们用“0”来作为结果。 / ?或? 将所测得的结果与表一所列对照,即可知道该变压器的接线组别。

电流互感器极性、接线方式及其应用

电流互感器极性、接线方式及其应用 引言 在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。 2 电流互感器的极性 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线 图1 电流互感器的三种极性标注

图2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I e ,由向量差得其电流值为Ia 的 3 倍,相位滞后I a 300 角,如果三只继电器整定值是一样的,3KA 会提前动作,造成保护误动。

电机拖动---三相变压器极性及联结组的测定实验报告Word版

北京XX大学 实验报告 课程(项目)名称 :三相变压器极性及联结组的测定学院:专业: 班级:学号: 姓名:成绩: 2013年 12月 10 日 三相变压器极性及联结组的测定

一、实验目的 1、熟悉三相变压器的联接方法和极性检查法。 2、掌握确定三相变压器联结组标号的方法。 二、实验项目 1、三相变压器的极性测定。 2、连接并确定三相变压器联结组标号。 三、实验设备仪器 实验设备仪器可据实验要求及具体内容进行选择,本实验主要仪器设备名称及规格数量可参照选用如下: 三相变压器 SG-4/0.38 4KVA 380/220V 1台 接触调压器 TSGC2型 9KVA 0-430V 12A 1台 万用表 MF-47 1个 导线若干 四、实验内容 1、测定三相变压器的极性 (1)确定三相变压器的高、低压绕组 用万用表电阻挡测量12个出线端通断情况及阻值的大小,并记录于表2-1。 (2)验证高、低压绕组的对应关系(即找中心柱及同柱关系) 找中心柱:AX(U1、U2)相施加50%U N ,(注意:按相电压考虑U Nφ =220V) 测量各相电压并记录于表2-2。 同柱关系:确定哪两个绕组属于绕在同一铁心柱上的同相绕组, 与AX相同柱的绕组感应电势为最大。想一想,为什么? (3)验证高压绕组相间极性(首末端) 按实验图2-1接线,将Y、Z(V2、W2)两点用导线相连,步骤如下:

①AX相施加50%U N (注意:按相电压考虑 U Nφ =220V)。 ②测量U BY 、U CZ 、U BC ,并记录于表2-3。 ③若满足U BC =U BY -U CZ 则BC为同名端。 ④同理,施压于BY端,判别式满足相减关系,AC为同名端。 U AX U BY U CZ U BC U BY-U CZ=53.5 10981.327.753.7 U BY U AX U CZ U AC U AX-U CZ =0.7 109.355.054.3 1.7 (4)测定一次、二次(原、副边)绕组极性(同名端) ①一次、二次绕组极性测定线路,按实验图2-2接线; ②调TT输出为50%U N ( U N =380V); 注意:TT的使用左端—输入、右端—输出或下端—输入、上端—输出; ③接线牢固、安全可靠;注意实验设备的布局; ④测如下数据,并记录于表2-4; ⑤用相应的判别式,计算并判断低压绕组各相首末端。 U AX U BY U CZ U ax U by U cz U Aa U Bb U Cc 109109110313232109110110 图2-1 相间极性测定线路图2-2 一次、二次绕组极性测定线路2、校验联结组标号

分子极性判断方法

分子极性判断方法 一、共价键的极性判断 化学键有无极性,是相对于共价键而言的。从本质上讲,共价键有无极性取决于共用电子对是否发生偏移,有电子对偏移的共价键即为极性键,无电子对偏移的共价键即为非极性键。 从形式上讲,一般来说,由同种元素的原子形成的共价键即为非极性键,由不同种元素的原 子形成的共价键即为极性键。 在学习共价键的极性判断时,一定要走出这样一种误区由同种元素的原子形成的共价键一 定为非极性键”。 对于化合物来说,象H3C-CH中的C-C”键、CH2=CH中的C=C键、Na20冲的O-0”键等具有 结构对称的分子中同种元素原子间形成的共价键的确是非极性键。但象CH3CH2OHCH3C00H 等结构不对称的分子中的C-C”键却不是非极性键,而是极性键。 对于单质来说,象在H2、02、N2、P4、C60、金刚石、石墨等共价单质中的共价键的确是非极性键。但在03分子中的0-0”键却不是非极性键,而是极性键。这是因为03分子结构呈V' 型(或角型),键长为127.8pm (该键长正好位于氧原子单键键长148 pm与双键键长112 pm 之间),与S02吉构相似,可模仿S0把03称作二氧化氧”,所以03分子中的0-0”键是极性键,其分子是极性分子。 二、分子的极性判断 分子是否存在极性,不能简单的只看分子中的共价键是否有极性,而要看整个分子中的电荷 分布是否均匀、对称。 根据组成分子的原子种类和数目的多少,可将分子分为单原子分子、双原子分子和多原子分 子,各类分子极性判断依据是: 1、单原子分子:分子中不存在化学键,故无极性分子或非极性分子之说,如He Ne等稀有气体分子。 2、双原子分子:对于双原子分子来说,分子的极性与共价键的极性是一致的。若含极性键就是极性分子,如HF HI等;若含非极性键就是非极性分子,如I2、02、N2等。 3、多原子分子: ⑴以非极性键结合的多原子单质分子,都是非极性分子,如P4等。 ⑵以极性键结合的多原子化合物分子,其分子的极性判断比较复杂,可能是极性分子,也可 能是非极性分子,这主要由分子中各键在空间的排列位置来决定。若分子中的电荷分布均匀, 排列位置对称,则为非极性分子,如C02 BF3 CH4等;若分子中的电荷分布不均匀,排列 位置不对称,则为极性分子,如H20 NH3 PCI3等。 三、共价键的极性和分子的极性的关系 空间不对称 极性键极性分子

电流互感器(加极性、减极性)相关知识

极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。时,二次电流自K1端流出经外部回路到K2。L1和K1,L2和K2分别为同极性端。 反之,就是加极性。 低压电流互感器实用技术问答30例(之一) 刘国宏马晓文河北省康保供电分公司(076650) 1.电流互感器铭牌上额定电流比的含义是什么? 答:额定电流比系指一次额定电流与二次额定电流之比。通常用不约分的分数表示。所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。 2.何为电流互感器的准确等级? 答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。 3.电流互感器的极性标志是怎样规定的? 答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当 使一次电流自L 1端流向L 2 。时,二次电流自K 1 端流出经外部回路到K 2 。L 1 和K 1 , L 2和K 2 分别为同极性端。 4.电流互感器额定容量的含义是什么? 答:电流互感器的额定容量就是额定二次电流I 2e 通过额定负载Z 2e 时所消耗 的视在功率,即S2e=。

一般I 2e =5A,因此S 2e =25Z 2e 。在电流互感器的使用中,二次连接及仪表电流 线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。 5.什么是电流互感器误差? 答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流í ,使其产生误差。 从电流互感器一次电流í 1和折算后的二次电流í 2 ’的向量图来看(如图 2 所示),折算后的二次电流旋转180?后一í 2’,与一次电流í 1 相比较,不但大 小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。 6.电流互感器铭牌上标有10%倍数的含义是什么? 答:按规定继电保护装置所用的电流互感器数值误差不允许超过10%,两角度误差不应超过7?。 10%倍数就是在指定的二次负载和任意功率因数下,电流互感器的电流误差为10%时,一次电流对其额定值的倍数。10%倍数一般只与继电保护装置有关。 7.影响电流互感器误差的主要因素是什么? 答:(1)一次电流的影响。当电流互感器一次电流很小时,引起的误差增大;当一次电流长期大于额定电流运行时,也会引起误差增大,因此,一般一次测电流应大于互感器额定电流的25%,小于120%。 (2)二次负载的影响.当电流互感器二次负载增大时,误差(、比差和角差)也随着增大.故在使用中不应使二次负载超过其额定值(伏安数或欧姆数)。 此外电源频率和铁芯剩磁也影响互感器误差。 8.为什么电流互感器二次不可开路? 答:因为当电流互感器二次线圈闭合时,一次、二次绕组的磁势相互抵消,铁芯中的磁通很小,两边的感应电势很低,因此不会影响负载的工作。若二次绕

相关主题