搜档网
当前位置:搜档网 › 二次微分方程的通解.

二次微分方程的通解.

二次微分方程的通解.
二次微分方程的通解.

第六节二阶常系数齐次线性微分方程

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性

微分方程的解法

教学重点:二阶常系数齐次线性微分方程的解法教学过程:

一、二阶常系数齐次线性微分方程

二阶常系数齐次线性微分方程:方程

y''+py'+qy=0

称为二阶常系数齐次线性微分方程,其中p、q均为常数.

如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那么y=C1y1+C2y2就是它的通解.

我们看看,能否适当选取r,使y=e rx满足二阶常系数齐次线性微分方程,为此将y=e rx代入方程

y''+py'+qy=0

(r2+pr+q)e rx=0.

由此可见,只要r满足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.

特征方程: 方程r 2

+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式

2

422,1q

p p r -±+-=

求出.

特征方程的根与通解的关系:

(1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 1

1=、

x r e y 22=是方程的两个线性无关的解.

这是因为,

函数x

r e y 11=、x

r e y 22=是方程的解, 又

x r r x r x r e e e y y )(21212

1-==不是常数. 因此方程的通解为 x r x r e C e C y 2

1

21+=.

(2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 1

1=、x

r xe y 1

2=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 1

1=是方程的解, 又

x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 1

1

1

1

1

1

)1()2()()()(1211++++=+'+''

0)()2(12111

1

=++++=q pr r xe p r e x r x r ,

所以x r xe y 1

2=也是方程的解, 且x e

xe y y x

r x

r ==1

11

2不是常数.

因此方程的通解为 x r x r xe C e C y 1

1

21+=.

(3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (

α+i β)x

y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形

式的解.

函数y 1=e (

α+i β)x 和y 2=e (α-i β)x

都是方程的解, 而由欧拉公式,

y 1=e (α+i β)x =e αx (cos βx +i sin βx ),

y 2=e (

α-i β)x =e αx

(cos βx -i sin βx ),

y 1+y 2=2e αx cos βx , )(2

1cos 21y y x e x +=βα,

y 1-y 2=2ie αx

sin βx , )(21sin 21y y i

x e x -=βα.

故e αx

cos βx 、y 2=e αx

sin βx 也是方程解.

可以验证, y 1=e αx

cos βx 、y 2=e αx

sin βx 是方程的线性无关解.

因此方程的通解为

y =e αx

(C 1cos βx +C 2sin βx ).

求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:

第一步 写出微分方程的特征方程 r 2

+pr +q =0

第二步 求出特征方程的两个根r 1、r 2.

第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.

例1 求微分方程y ''-2y '-3y =0的通解.

解所给微分方程的特征方程为

r2-2r-3=0,即(r+1)(r-3)=0.

其根r1=-1,r2=3是两个不相等的实根,因此所求通解为

y=C1e-x+C2e3x.

例2 求方程y''+2y'+y=0满足初始条件y|x=0=4、y'|x=0=-2的特解.

解所给方程的特征方程为

r2+2r+1=0,即(r+1)2=0.

其根r1=r2=-1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e-x.

将条件y|x=0=4代入通解,得C1=4,从而

y=(4+C2x)e-x.

将上式对x求导,得

y'=(C2-4-C2x)e-x.

再把条件y'|x=0=-2代入上式,得C2=2.于是所求特解为

x=(4+2x)e-x.

例 3 求微分方程y''-2y'+5y= 0的通解.

解所给方程的特征方程为

r2-2r+5=0.

特征方程的根为r1=1+2i,r2=1-2i,是一对共轭复根,

因此所求通解为

y=e x(C1cos2x+C2sin2x).

n阶常系数齐次线性微分方程:方程

y(n) +p1y(n-1)+p2 y(n-2) +???+p n-1y'+p n y=0,

称为n阶常系数齐次线性微分方程,其中p1,p2 ,???,p n-1,p n 都是常数.

二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.

引入微分算子D,及微分算子的n次多项式:

L(D)=D n+p1D n-1+p2 D n-2 +???+p n-1D+p n,

则n阶常系数齐次线性微分方程可记作

(D n+p1D n-1+p2 D n-2 +???+p n-1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y', D2y=y'', D3y=y''',???,D n y=y(n).

分析:令y=e rx,则

L(D)y=L(D)e rx=(r n+p1r n-1+p2 r n-2 +???+ p n-1r+p n)e rx=L(r)e rx.

因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.

n阶常系数齐次线性微分方程的特征方程:

L(r)=r n+p1r n-1+p2 r n-2 +???+p n-1r+p n=0

称为微分方程L(D)y=0的特征方程.

特征方程的根与通解中项的对应:

单实根r 对应于一项: Ce rx

; 一对单复根

r 1, 2=α ±i β 对应于两项:

e αx (C 1cos βx +C 2sin βx );

k 重实根r 对应于k 项: e rx (C 1+C 2x + ? ? ? +C k x k -1); 一对k 重复根r 1, 2=α ±i β 对应于2k 项:

e αx

[(C 1+C 2x + ? ? ? +C k x k -1

)cos βx +( D 1+D 2x + ? ? ? +D k

x k -1)sin βx ].

例4 求方程y (4)

-2y '''+5y ''=0 的通解. 解 这里的特征方程为

r 4

-2r 3

+5r 2

=0, 即r 2

(r 2

-2r +5)=0, 它的根是r 1=r 2=0和r 3, 4=1±2i . 因此所给微分方程的通解为

y =C 1+C 2x +e x

(C 3cos2x +C 4sin2x ). 例5 求方程y (4)

+β 4

y =0的通解, 其中β>0. 解 这里的特征方程为 r 4

+β 4

=0. 它的根为)1(2

2,1i r ±=

β

, )1(2

4,3i r ±-

.

因此所给微分方程的通解为 )2

sin

2

cos

(212x C x C e

y x

β

β

β

+=)2

sin

2

cos

(432

x C x C e

x

β

β

β

++-.

二、二阶常系数非齐次线性微分

方程简介

二阶常系数非齐次线性微分方程:方程

y''+py'+qy=f(x)

称为二阶常系数非齐次线性微分方程,其中p、q是常数.

二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y=Y(x)与非齐次方程本身的一个特解y=y*(x)之和:

y=Y(x)+ y*(x).

当f(x)为两种特殊形式时,方程的特解的求法:

一、f(x)=P m(x)eλx型

当f(x)=P m(x)eλx时,可以猜想,方程的特解也应具有这种形式.因此,设特解形式为y*=Q(x)eλx,将其代入方程,得等式 Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).

(1)如果λ不是特征方程r2+pr+q=0 的根,则λ2+pλ+q≠0.要使上式成立,Q(x)应设为m次多项式:

Q m(x)=b0x m+b1x m-1+???+b m-1x+b m,

通过比较等式两边同次项系数,可确定b0,b1,???,b m,并得所求特解

y*=Q m(x)eλx.

(2)如果λ是特征方程r2+pr+q=0 的单根,则λ2+pλ+q=0,但2λ+p≠0,要使等式

Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).

成立,Q(x)应设为m+1 次多项式:

Q(x)=xQ m(x),

Q m(x)=b0x m+b1x m-1+???+b m-1x+b m,

通过比较等式两边同次项系数,可确定b0,b1,???,b m,并得所求特解

y*=xQ m(x)eλx.

(3)如果λ是特征方程r2+pr+q=0的二重根,则λ2+pλ+q=0, 2λ+p=0,要使等式

Q''(x)+(2λ+p)Q'(x)+(λ2+pλ+q)Q(x)=P m(x).

成立,Q(x)应设为m+2次多项式:

Q(x)=x2Q m(x),

Q m(x)=b0x m+b1x m-1+???+b m-1x+b m,

通过比较等式两边同次项系数,可确定b0,b1,???,b m,并得所求特解

y*=x2Q m(x)eλx.

综上所述,我们有如下结论:如果f(x)=P m(x)eλx,则二阶常系数非齐次线性微分方程y''+py'+qy=f(x)有形如

y*=x k Q m(x)eλx

的特解,其中Q m(x)是与P m(x)同次的多项式,而k按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.

例1 求微分方程y''-2y'-3y=3x+1的一个特解.

解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是

P m (x )e λx 型(其中P m (x )=3x +1, λ=0).

与所给方程对应的齐次方程为

y ''-2y '-3y =0,

它的特征方程为

r 2-2r -3=0.

由于这里λ=0不是特征方程的根, 所以应设特解为

y *=b 0x +b 1.

把它代入所给方程, 得 -3b 0x -2b 0-3b 1=3x +1, 比较两端x 同次幂的系数, 得

?

??=--=-1323

31

0b b b , -3b 0=3, -2b 0-3b 1=1.

由此求得b 0=-1, 3

11=b . 于是求得所给方程的一个特解为

3

1*+-=x y .

例2 求微分方程y ''-5y '+6y =xe 2x

的通解.

解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx

型(其中P m (x )=x , λ=2).

与所给方程对应的齐次方程为

y ''-5y '+6y =0,

它的特征方程为

r 2-5r +6=0.

特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为

Y =C 1e 2x +C 2e 3x .

由于λ=2是特征方程的单根, 所以应设方程的特解为

y *=x (b 0x +b 1)e 2x .

把它代入所给方程, 得 -2b 0x +2b 0-b 1=x . 比较两端x 同次幂的系数, 得

?

??=-=-021

21

0b b b , -2b 0=1, 2b 0-b 1=0.

由此求得2

10-=b , b 1=-1. 于是求得所给方程的一个特解为

x e x x y 2)12

1(*--=.

从而所给方程的通解为

x x x e x x e C e C y 223221)2(2

1+-+=.

提示:

y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,

[(b 0x 2

+b 1x )e 2x

]'=[(2b 0x +b 1)+(b 0x 2

+b 1x )?2]e 2x

, [(b 0x 2

+b 1x )e 2x

]''=[2b 0+2(2b 0x +b 1)?2+(b 0x 2

+b 1x )?22

]e 2x

.

y *''-5y *'+6y *=[(b 0x 2+b 1x )e 2x ]''-5[(b 0x 2+b 1x )e 2x ]'+6[(b 0x 2+b 1x )e 2x ]

=[2b 0+2(2b 0x +b 1)?2+(b 0x 2

+b 1x )?22

]e 2x

-5[(2b 0x +b 1)+(b 0x 2

+b 1x )?2

]e 2x +6(b 0x 2+b 1x )e 2x

=[2b 0+4(2b 0x +b 1)-5(2b 0x +b 1)]e 2x

=[-2b 0x +2b 0-b 1]e 2x

.

方程y ''+py '+qy =e λx

[P l (x )cos ωx +P n (x )sin ωx ]的特解形式

应用欧拉公式可得

e λx [P l (x )cos ωx +P n (x )sin ωx ]

]

2)(2)([ i

e e x P e e

x P e x i x i n

x i x

i l x ωωωωλ---++= x i n l x i n l e x iP x P e x iP x P )()()]()([2

1)]()([2

1ωλωλ-+++-=

x i x i e x P e x P )()()()(ωλωλ-++=,

其中)(2

1)(i P P x P n l -=, )(2

1)(i P P x P n l +=. 而m =max{l , n }.

设方程y ''+py '+qy =P (x )e (

λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x

,

则)(1)(*ωλi m k e x Q x y -=必是方程)()(ωλi e x P qy y p y -=+'+''的特解,

其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1.

于是方程y ''+py '+qy =e λx

[P l (x )cos ωx +P n (x )sin ωx ]的特解

x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ-++=

)sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ-++= =x k

e λx

[R

(1)

m

(x )cos ωx +R

(2)

m

(x )sin ωx ].

综上所述, 我们有如下结论:

如果f (x )=e λx

[P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非

齐次线性微分方程

y ''+py '+qy =f (x )

的特解可设为

y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],

其中R

(1)

m

(x )、R

(2)

m

(x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω

(或λ-i ω)不是特征方程的根或是特征方程的单根依次取0或1.

例3 求微分方程y ''+y =x cos2x 的一个特解. 解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx

[P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2,

P l (x )=x , P n (x )=0).

与所给方程对应的齐次方程为

y ''+y =0,

它的特征方程为

r 2+1=0.

由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为

y *=(ax +b )cos2x +(cx +d )sin2x .

把它代入所给方程, 得

(-3ax -3b +4c )cos2x -(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 3

1-=a , b =0, c =0, 9

4=d .

于是求得一个特解为 x x x y 2sin 9

42cos 3

1*+-=.

提示:

y *=(ax +b )cos2x +(cx +d )sin2x .

y *'=a cos2x -2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,

=(2cx +a +2d )cos2x +(-2ax -2b +c )sin2x ,

y *''=2c cos2x -2(2cx +a +2d )sin2x -2a sin2x +2(-2ax -2b +c )cos2x

=(-4ax -4b +4c )cos2x +(-4cx -4a -4d )sin2x .

y *''+ y *=(-3ax -3b +4c )cos2x +(-3cx -4a -3d )sin2x .

由?

????=--=-=+-=-0

340304313d a c c b a , 得31-=a , b =0, c =0, 94=d .

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

二阶常系数齐次线性微分方程的通解证明教学提纲

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02=++q p λλ的特征根为 12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? (1)

(整理)常微分方程(含解答)

第八章 常微分方程 【教学要求】 一、了解微分方程的基本概念:微分方程,微分方程的阶、解、特解、通解、初始条件和初值问题,线性微分方程。 二、熟练掌握一阶可分离变量微分方程的解法。 三、熟练掌握一阶线性非齐次微分方程)()(x q y x p y =+' 的解法——常数变易法和公式法。 四、理解线性微分方程解的性质和解的结构。 五、熟练掌握二阶线性常系数齐次微分方程0=+'+''qy y p y 的解法——特征根法。 会根据特征根的三种情况,熟练地写出方程的通解,并根据定解的条件写出方程特解。 六、熟练掌握二阶线性常系数非齐次微分方程qy y p y +'+'' )(x f =,当自由项f (x )为某些特殊情况时的解法——待定系数法。 所谓f (x )为某些特殊情况是指f (x )为多项式函数,指数函数 或它们的和或乘积形式、三角函数x x x ββαsin cos ,e 。 关键是依据f (x )的形式及特征根的情况,设出特解y *,代入原方程,定出y *的系数。 【教学重点】 一阶可分离变量微分方程、一阶线性微分方程、二阶线性常系数微分方程的解法。 【典型例题】 。的阶数是微分方程例)(e )(12x y y y =-'+'' 2.1.B A 4. 3.D C 解:B 。的特解形式是微分方程例)( e 232x x y y y +=+'-'' x x x b ax B b ax A e )(.e ).(++ x x c b ax D cx b ax C e ).(e ).(++++ 解:C 是一阶线性微分方程。下列方程中例)( ,3 x x y y x B y A y x cos sin 1.e .2=+'='+ y x y D y y x y C ='=+'+''.0 . 解:B ???=='++1)1(0)1(4y y x y y 求解初值问题例 ??-=+x x y y y d )1(d 解:由变量可分离法得 c x y y ln ln 1ln +-=+∴ 代入上式得通解为由21ln ln 1)1(=?=c y x y y 211=+ 的特解。满足求解微分方程例1)0(e 252==-'y x y y x 解:由公式法得 ]d e e 2[e d 12d 1c x x y x x x +???=---?

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

几类三阶常微分方程的通解公式【开题报告】

毕业论文开题报告 数学与应用数学 几类三阶常微分方程的通解公式 一、选题的背景、意义 常微分方程是指包含一个自变量和它的未知函数以及未知函数的微分的等式。微分方程差不多是和微积分同时产生的,它的形成和发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关。20世纪30年代中期法国数学家勒雷和绍尔建立了LeraySchauder度理论[1]。他们的方法用于研究线性微分、积分、泛函数方程时,取得了巨大成功。 常微分方程在很多学科领域内有着重要的作用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等等,这些问题都可以归结为高阶微分方程的模型[1,2],或者化为研究解的性质的问题。很多物理与技术问题都可以化归为微分方程的求解问题。牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,就会有解方程的方法[3-5]。微分方程也就成了最有生命力的数学分支。常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置。 有关三阶常微分方程的求解研究已经取得了较为丰富的结果,下面对研究三阶常微分方程的通解详见文献[6-10]。 二、研究的基本内容与拟解决的主要问题 本文主要是对三阶常微分方程通解的研究,具体研究的基本内容与拟解决的主要问题如下: 问题1 如果已知三阶线性微分方程 ()()()() +++= y P x y Q x y R x y f x ''''''

二次微分方程的通解

二次微分方程的通解 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线 性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 ypyqy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么yC 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使ye rx 满足二阶常系数齐次线性微分方程 为此将ye rx 代入方程 ypyqy 0 得 (r 2prq )e rx 0 由此可见 只要r 满足代数方程r 2prq 0 函数ye rx 就是微分方程的解 特征方程 方程r 2prq 0叫做微分方程ypyqy 0的特征方程 特征方程的两个根r 1、r 2可用公式 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(21212 1-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又

常微分方程习题及解答

常微分方程习题及解答

常微分方程习题及解答 一、问答题: 1. 常微分方程和偏微分方程有什么区别?微分方程的通解是什么含义? 答:微分方程就是联系着自变量,未知函数及其导数的关系式。常微分方程,自变量的个数只有一个。偏微分方程,自变量的个数为两个或两个以上。常微分方程解的表达式中,可能包含一个或几个任意常数,若其所包含的独立的任意常数的个数恰好与该方程的阶数相同,这样的解为该微分方程的通解。 2. 举例阐述常数变易法的基本思想。 答:常数变易法用来求线性非齐次方程的通解,是将线性齐次方程通解中的任意常数变易为待定函数来求线性非齐次方程的通解。 例:求()()dy P x y Q x dx =+的通解。 首先利用变量分离法可求得其对应的线性齐次方程的通解为()P x dx y c ?=l ,然后将常 数c 变易为x 的待定函数()c x ,令()()P x dx y c x ? =l , 微分之,得到 ()()()()()P x dx P x dx dy dc x c x P x dx dx ??=+l l ,将上述两式代入

方程中,得到 ()()()()()()()()() P x dx P x dx P x dx dc x c x P x dx c x P x Q x ??+?=+l l l 即 ()() ()P x dx dc x Q x dx -? =l 积分后得到()()()P x dx c x Q x dx c -? =+?%l 进而得到方程 的通解 ()()(()) P x dx P x dx y Q x dx c -? ?=+?%l l 3.高阶线性微分方程和线性方程组之间的联系如何? 答:n 阶线性微分方程的初值问题 ()(1) 11(1)01020()...()()()(),(),....()n n n n n n x a t x a t x a t x f t x t x t x t ηηη---'?++++=??'===?? 其中1 2 ()(),...(),()n a t a t a t f t ,是区间a t b ≤≤上的已知 连续函数,[]0 ,t a b ∈,1 2 ,,...,n ηηη是已知常数。 它可以化为线性微分方程组的初值问题 12100100 00010000010()()()()()()n n n x x a t a t a t a t f t x t η--????????????????'????=+?????? ???? ? ?????----????? =?? L L M M M M M M L L 但是需要指出的是每一个n 阶线性微分方程可化为n 个一阶线性微分方程构成的方程组,反之却不成立。 4.若常系数线性方程组 Ax x ='和Bx x ='有相同的基本解矩阵, 则A

高阶线性微分方程常用解法简介

高阶线性微分方程常用解法简介 摘要:本文主要介绍高阶线性微分方程求解方法,主要的内容有高阶线性微分方程求解的常 用方法如。 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3, ,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++= 其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++ 其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ 是特征方程111()0n n n n F a a a λλλλ--≡++++= 的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ (5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ= 均为实数,则(5)是方程(3)的n 个线性无关的实值解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++ 其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.

二次微分方程的通解.

第六节二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性 微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程:方程 y''+py'+qy=0 称为二阶常系数齐次线性微分方程,其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那么y=C1y1+C2y2就是它的通解. 我们看看,能否适当选取r,使y=e rx满足二阶常系数齐次线性微分方程,为此将y=e rx代入方程 y''+py'+qy=0 得 (r2+pr+q)e rx=0. 由此可见,只要r满足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.

特征方程: 方程r 2 +pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 1 1=、 x r e y 22=是方程的两个线性无关的解. 这是因为, 函数x r e y 11=、x r e y 22=是方程的解, 又 x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2 1 21+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 1 1=、x r xe y 1 2=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 1 1=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 1 1 1 1 1 1 )1()2()()()(1211++++=+'+'' 0)()2(12111 1 =++++=q pr r xe p r e x r x r , 所以x r xe y 1 2=也是方程的解, 且x e xe y y x r x r ==1 11 2不是常数. 因此方程的通解为 x r x r xe C e C y 1 1 21+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e ( α+i β)x 、

二阶常微分方程的解法及其应用

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

求下列微分方程的通解

第一章 绪 论 例1-1 求下列微分方程2 3x dx dy =的通解,并分别求满足下列条件的特解。 (1)通过点)1,2(; (2)与直线x y =相切; (3)与直线13+-=x y 正交。 解 直接积分得方程的通解为C x y +=3。 (1)将代入通解中1,2==y x 得7-=C ,则通过点)1,2(解为73-=x y 。 (2)与直线x y =相切的解满足在切点处斜率相同,有132=x ,即得3 1± =x ,切 点坐标为)3 1, 3 1( 和)3 1,31(- - 。同(1)的解法,与直线x y =相切的解为 3 323 + =x y 和3 32 3- =x y 。 (3)与直线13+-=x y 正交的解在正交点处斜率满足3 132 =x ,即得3 1± =x ,正交 点坐标为)0,31 (和)2,3 1(- 。同(1)的解法所求方程的解为27 553 +=x y 和27 13 -=x y 。 评注:求方程满足某条件的特解,关键要找到所求积分曲线经过的某一特定点的坐标,代入通解中确定出任意常数即可得特解。 例1-2 求与曲线族x Ce y =正交的曲线族。 解 因为曲线族x Ce y =满足的微分方程为y y =',所以与曲线族x Ce y =正交的曲线族满足的微分方程为y y 1- =',解之得C x y +-=22 ,这就是所求曲线族方程。 评注:首先对已给定的曲线族求得其满足的微分方程,其次借助于正交性得到所求曲线族满足的微分方程,再求解此微分方程。有时直接给出一个微分方程,要求求得与此微分方程的积分曲线族正交(或夹角为某一固定值)的曲线族。 例1-3 求一曲线方程,使曲线上任一点平分过该点的法线在两坐标轴之间的线段。 解 设所求的曲线为)(x y y =,过曲线上任一点),(y x 的法线方程为

(完整版)专题一(二阶常微分方程解法)

二阶微分方程: 时为非齐次 时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法: 2 122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数; 式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤: 为常数; ,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r 二阶常系数非齐次线性微分方程 型 为常数; 型,为常数 ,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+'' 二阶常系数非齐次线性微分方程的一般形式是 ''+'+=y py qy f x () (1) 其中p q ,是常数。 方程(1)的通解为对应的齐次方程 0=+'+''qy y p y (2) 的通解Y 和方程(1)的一个特解*y 之和。即 *y Y y +=.我们已解决了求二阶常系数齐 次线性方程通解的问题,所以,我们只需讨论求二阶常系数非齐次线性微分方程的特解* y 的方法。 下面我们只介绍当方程(1)中的)(x f 为如下两种常见形式时求其特解*y 的方法。 一、 f x e P x x m ()()=?λ型 由于方程(1)右端函数f x ()是指数函数e x λ?与m 次多项式P x m ()的乘积,而指数

函数与多项式的乘积的导数仍是这类函数,因此,我们推测: 方程(1)的特解应为 y e Q x x *?=λ()( Q x ()是某个次数待定的多项式 ) y e Q x e Q x x x *??'=+'λλλ()() y e Q x Q x Q x x *?"=?+'+''λλλ[()()()]22 代入方程(1),得 e Q x p Q x p q Q x e P x x x m λλλλλ???''++'+++≡?[()()()()()]()22 消去e x λ?,得 ''++'+++≡Q x p Q x p q Q x P x m ()()()()()()22λλλ (3) 讨论 01、如果λ不是特征方程 r pr q 20++=的根。 即 02≠++q p λλ 由于P x m ()是一个m 次的多项式,欲使(3)的两端恒等,那未Q x ()必为一个m 次多项式,设为 Q x b x b x b x b m m m m m ()=++++--0111Λ 将之代入(3),比较恒等式两端x 的同次幂的系数,就得到以b b b b m m 01 1,,,,Λ-为未知数的m +1个线性方程的联立方程组,解此方程组可得到这m +1个待定的系数,并得到特解 y e Q x x m *?=λ() 02、如果λ是特征方程 r pr q 20++=的单根。 即 λλ20++=p q ,但 20λ+≠p 欲使(3)式的两端恒等,那么'Q x ()必是一个m 次多项式。 因此,可令 Q x x Q x m ()()=? 并且用同样的方法来确定)(x Q 的系数b b b b m m 0 11,,,,Λ-。 03、如果λ是特征方程 r pr q 20++=的二重根。 即 λλ20++=p q ,且 20λ+=p 。 欲使(3)式的两端恒等,那么''Q x ()必是一个m 次多项式 因此, 可令 Q x x Q x m ()()=?2 并且用同样的方法来确定)(x Q 的系数b b b b m m 011,,,,Λ-。

几类三阶常微分方程的通解公式【文献综述】

毕业论文文献综述 数学与应用数学 几类三阶常微分方程的通解公式 一、前言部分 数学分析中研究了变量的各种函数及函数的微分与积分。如函数未知,但知道变量与函数的代数关系式,便组成代数方程,通过求解代数方程解出未知函数。同样,如果知道自变量、未知函数及函数的导数组成的关系式,得到的便是微分方程。如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程。常微分方程是数学分析或基础数学的一个组成部分,在整个数学大厦中占据着重要位置。 塞蒙斯(Simmons)曾如此评价微分方程在数学中的地位:“300年来分析是数学里首要的分支,而微分方程又是分析的心脏.这是初等微积分的天然后继课,又是为了解物理科学的一门最重要的数学,而且在它所产生的较深的问题中,它又是高等分析里大部分思想和理论的根源.”很多物理与技术问题可以化归为常微分方程的求解问题,如自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,而上述这些问题都可以化为求常微分方程的解,因此,学好微分方程的求解相当重要.微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。又因为许多力学,电学与生物化学的模型都可以归结为高阶微分方程的模型(见文献[1,2]),因此探求高阶微分方程的求解是一项既有实际意义又有理论意义的工作。 二、主题部分 有关三阶常微分方程的求解研究已经取得了较为丰富的结果,许多数学家早已经对这个课题展开过讨论,并做了很多相关的课题研究和论文。现将已有文献的研究结果综述如下:文献[2]中讲述线性微分方程的基本理论和常微分方程的解法,也简单介绍某些高阶微分的降阶方法。关于线性微分方程的解法,作者介绍了五种较常用的方法:(1)求常系数齐次线性微分方程的基本解组的特征根法(欧拉待定指数函数法);(2)求常系数非齐次线性微分方程的特解的待定系数法和拉普拉斯变换法;(3)求一般非齐次线性微分方程特

(完整版)常微分方程习题及答案.

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y +=2ln 21 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9.221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06='-''?y y y 是 阶微分方程。

7.x y 1= 所满足的微分方程是 。 8.x y y 2='的通解为 。 9.0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()32+=x y C .()2C x y += D . ()31x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

相关主题