搜档网
当前位置:搜档网 › 一三丙二醇和二三丁二醇进展

一三丙二醇和二三丁二醇进展

一三丙二醇和二三丁二醇进展
一三丙二醇和二三丁二醇进展

MINI-REVIEW

Present state and perspective of downstream processing

of biologically produced1,3-propanediol and2,3-butanediol Zhi-Long Xiu&An-Ping Zeng

Received:4December2007/Revised:24January2008/Accepted:25January2008/Published online:5March2008

#Springer-Verlag2008

Abstract1,3-Propanediol and2,3-butanediol are two prom-ising chemicals which have a wide range of applications and can be biologically produced.The separation of these diols from fermentation broth makes more than50%of the total costs in their microbial production.This review summarizes the present state of methods studied for the recovery and purification of biologically produced diols,with particular emphasis on1,3-propoanediol.Previous studies on the separation of1,3-propanediol primarily include evaporation, distillation,membrane filtration,pervaporation,ion exchange chromatography,liquid–liquid extraction,and reactive ex-traction.Main methods for the recovery of2,3-butanediol include steam stripping,pervaporation,and solvent extrac-tion.No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity,and energy consumption.Perspectives for an im-proved downstream processing of biologically produced diols,especially1,3-propanediol are discussed based on our own experience and recent work.It is argued that separation technologies such as aqueous two-phase extraction with short chain alcohols,pervaporation,reverse osmosis,and in situ extractive or pervaporative fermentations deserve more attention in the future.Keywords1,3-Propanediol.2,3-Butanediol.Separation. Recovery.Fermentation

Introduction

During the last few years,considerable efforts and progresses have been made in the production of bio-based bulk chemicals from renewable resources as the price of petrochemical feedstocks continuously increases and their availability diminishes(Hermann and Patel2007).Among the promising bulk chemicals,1,3-propanediol(1,3-PD) and2,3-butanediol(2,3-BD)are two bio-based diols which have a wide range of applications in cosmetics,foods, transport fuels(e.g.,as antifreezes,lubricants,or fuel additives),and medicines as well as in the production of polymers.Because of their different structures and special properties,the application of1,3-PD is mainly in the production of polymers,such as polyesters,polyethers,and polyurethanes,while2,3-BD is especially in asymmetric syntheses and fuel additives.For example,a1,3-PD-based new polyester,poly(trimethylene terephthalate)(PTT)has received much attention because of several unique proper-ties for the production of fibers(Kurian2005).2,3-BD has been shown to have potential applications in the manufac-ture of printing inks,perfumes,fumigants,moistening and softening agents,explosives and plasticizers,and as a carrier for pharmaceuticals(Syu2001).It can be readily dehydrated to methylethyl ketone(an excellent organic solvent for resins and lacquers),and to butadiene for the manufacture of synthetic rubber.It can also be easily dehydrogenated into acetoin and diacetyl which are flavoring agents used in dairy products,margarines,and cosmetics(Garg and Jain1995).

Appl Microbiol Biotechnol(2008)78:917–926

DOI10.1007/s00253-008-1387-4

Z.-L.Xiu(*)

Department of Bioscience and Biotechnology,

School of Environmental and Biological Science and Technology, Dalian University of Technology,

Dalian116024,People’s Republic of China

e-mail:zhlxiu@https://www.sodocs.net/doc/7d15855558.html,

A.-P.Zeng(*)

Institute of Bioprocess and Biosystem Engineering,

Hamburg University of Technology,

Denickestr.15,

Hamburg21071,Germany

e-mail:AZE@TU-Harburg.de

So far1,3-PD is mainly manufactured by chemical synthesis,which requires expensive catalyzers,high temper-ature,high pressure,and high level of safety measurement. Considering the yield and recovery of product,environmen-tal protection,and sustainable development of1,3-PD,much attention has been paid to its microbial production,either based on glycerol or on glucose(Deckwer1995;Biebl et al. 1999;Hartlep et al.2002;Zeng and Biebl2002;Nakamura and Whitedy2003;Cheng et al.2007;Mu et al.2006;Liu et al.2007;Yang et al.2007;Xiu et al.2007a;Laffend et al. 2007;Yazdani and Gonzalez2007).The chemical synthesis of2,3-BD is unambiguously more costly than the microbial route and therefore commercial production of this compound would be limited to fermentation.The microbial production of2,3-BD was developed to a commercial scale during the World War II(Othmer et al.1945;Wheat et al.1948).It is receiving renewed interest again in the new wave of white

biotechnology because of its wide range of potential uses as a platform chemical and as biofuel or additive as briefly mentioned above(Zeng et al.1994;Byun et al.1994;Ghosh and Swaminathan2003;Saha2003).In this context,it is also interesting to note that2,3-BD is a by-product in glycerol-based production of1,3-PD by some organisms(Biebl et al. 1998).Under certain conditions,both1,3-PD and2,3-BD can be produced in quite high concentrations in the glycerol-based fermentation.For instance,the1,3-PD and2,3-BD concentrations are83.56and60.11g/l,respectively,in fed-batch glycerol-based fermentation with sucrose as cosub-strate by a lactate-deficient mutant of Klebsiella oxytoca under microaerobic conditions(Yang et al.2007).

Glycerol is a renewable resource,especially formed as a by-product of alcoholic fermentation,fat saponification, and biodiesel production.Owing to the increased produc-tion of biodiesel and oleo-chemicals,there is an increasing surplus of glycerol on the world market.During the manufacture of biodiesel via transesterification of plant oils (such as rape,soya,and palm oils)and animal fats,glycerol is co-produced in a weight ratio of about10%of the biodiesel.The production of glycerol in Europe has tripled within the last10years to ca.600thousand tons per year, and its production in the United States already averages more than100thousand tons per year(Yazdani and Gonzalez2007).The surplus of glycerol will increase further as many nations are moving to substitute fossil fuels with more sustainable alternatives.The price of crude glycerol(80%)decreases from55cents/kg in2004to as low as4.4cents/kg in2006(Yazdani and Gonzalez2007). Glycerol can be utilized by chemical and biological routes as shown in Fig.1.Producing value-added products from glycerol would improve the economic viability of biodiesel manufacture and the biofuel supply chain.Bioconversion of glycerol to value-added products such as1,3-PD has therefore attracted much attention.

The separation of1,3-PD plays an important role in its microbial production.Previously,the production cost of 1,3-PD depends much on the cost of substrate(Deckwer 1995;Hermann and Patel2007).However,with the availability of cheap and abundant substrates(glycerol or sugar),the cost of downstream processing can make a very high portion in the total production cost,mounting up to about50–70%.Although the by-products of the fermenta-tion,such as ethanol or acetic acid can be easily separated from1,3-PD,the concentration of the target product(1,3-PD)is usually not very high in the fermentation broth,i.e., about5–15%in glycerol-based and glucose-based fermen-tations.On the other hand,1,3-PD is very hydrophilic and has a high boiling point.The boiling points of2,3-BD,1,3-PD,and glycerol are184°C,214°C,and290°C under normal pressure,respectively.2,3-BD is a main by-product in1,3-PD microbial production from glycerol-based fer-mentation under certain conditions.In fact,it is a challenge to efficiently separate1,3-PD from a mixture of multiple components,such as1,3-PD,water,residual glycerol,or glucose,some by-products(e.g.,2,3-BD,ethanol,acetate, lactate,succinate,etc.),macromolecules(e.g.,proteins, nucleic acids,polysaccharides),and salts.A similar situation is also encountered with the separation of2,3-BD from fermentation broths.

This review first summarizes the present state of recovery and purification of biologically produced1,3-PD and2,3-BD. The separation methods studied for1,3-PD mainly include evaporation,distillation,membrane filtration,pervaporation, ion exchange chromatography,liquid–liquid extraction,and reactive extraction.Major methods for the recovery of2,3-BD are steam stripping,pervaporation,and solvent extraction.The methods for1,3-PD recovery are then evaluated in terms of yield and energy consumption.Finally,perspectives for an improved downstream processing of biologically produced 1,3-propanediol are discussed based on our recent work.

Biological route Chemical route

Fig.1Examples of potential products produced from glycerol by chemical and biological routes

Present state of recovery and purification of biologically produced1,3-propoanediol

The downstream processing of biologically produced1,3-PD usually includes three main steps as shown in Fig.2. The first step is the removal of microbial cells,mostly by using membrane filtration or high-speed centrifugation, including pretreatment such as adjusting pH by base or adding a flocculant(e.g.,chitose or synthetic cationic flocculants based on polyacryamide)into the broth.The second step is the removal of impurities and primary separation of1,3-PD from the fermentative broth, e.g., using evaporation for removal of water,ethanol and acetic acid,electrodialysis for desalination,alcohol precipitation and dilution crystallization for removal of proteins and salts,solvent extraction and reactive extraction,ion ex-change chromatography,adsorption with active charcoal or molecular sieve,and pervaporation with zeolite membrane. The last step is final purification of1,3-PD by vacuum distillation and/or preparative liquid chromatography. Pretreatment and solid–liquid separation

Solid–liquid separation techniques,e.g.,microfiltration,cen-trifugation,and decanting,are usually used for the removal of cells from fermentation liquors.Flocculation precipitation attracts attention in industrial scale due to its simplicity,if cheap and effective flocculants are available.Chitosan and polyacrylamide have been tested for this purpose(Grothe 2000;Hao et al.2006).Before centrifugation,the fermenta-tion suspension was adjusted to pH4by phosphatic acid (Grothe2000).The concentration of protein in the superna-tant decreased from0.6g/l(pH=7)to0.4g/l(pH=4) (Grothe2000).In another case,it is emphasized that adding base into the fermentation broth to raise the pH to a suitable level before distillation can reduce not only the reaction between acid and alcohol and thus the formation of ester,but also impurity formation during isolation of1,3-PD,especial-ly pigments in the broth(Kelsey1996;Ames2002). Evaporation/distillation

The conventional evaporation and distillation techniques normally used in the removal of water and purification of 1,3-PD suffer from the problem of high energy consumption, leading to a high cost of the target product purified in this way. Compared with single-stage evaporation,multi-stage evapo-ration and down film vacuum evaporator can save much energy(Hermann and Patel2007;Grothe2000).After dewatering in a falling film evaporator,two vacuum rectification columns are used for the removal of water and acids and recovery of1,3-PD,respectively(Grothe2000). Isobaric vapor–liquid equilibrium data for the binary system (water1,3-PD)and for the ternary system(water1,3-PD glycerol)were determined(Grothe2000;Sanz et al.2001). The distillation point of1,3-PD is in fact214°C in the binary system under normal pressure.Vacuum distillation would save energy due to the decline of boiling points.For instance,the boiling points of1,3-PD and glycerol were calculated to be139.0°C and202.5°C,respectively,in the ternary system at a vacuity of0.095MPa according to the Antoine equation(Sanz et al.2001).Before distillation, desalination and deproteinization are required.Otherwise, the soluble macromolecules would be salting out after evaporation.The viscous slurry leads to low efficiency of evaporation/distillation and low yield of the target product. Electrodialysis can be used for desalination before evapora-tion(Gong et al.2004;Hao and Liu2005).The soluble proteins as well as salts have been precipitated by adding alcohol into the concentrated broth after evaporation due to alcohol precipitation and dilution crystallization(Gao et al. 2007).A flow sheet for this process is shown as Fig.3. Membrane separation

Membrane filtration,zeolite membrane pervaporation,and electrodialysis have been tested for the separation and purification of1,3-PD(Adkesson et al.2005;Li et al. 2001a,b,c,2002;Gong et al.2004;Hao and Liu2005).

The fermentation broth of a recombinant E.coli culture that has been bioengineered to synthesize1,3-PD from sugar was subjected successively to microfiltration,ultrafiltration, and nanofiltration,removing molecules or particles having a size greater than0.2μm,a molecule weight greater than about5,000Daltons,and about200to400Daltons, respectively(Adkesson et al.2005).The final filtrate was then treated by ion exchange and distillation.The specific

Flocculation, membrane filtration, centrifugation

Evaporation, electrodialysis, extraction,

ion exchange chromatography

Vacuum distillation, preparative chromatography Fig.2General scheme and major methods studied for the recovery and purification of1,3-propanediol from fermentation broth

energy consumptions of different membrane filtrations are very distinct,e.g.,2,5,7,and 9kWh power per m 3permeate for use of microfiltration,ultrafiltration,nanofiltration,and reverse osmosis,respectively (Hermann and Patel 2007).A Na-ZSM-5zeolite (Si/Al =25)membrane was used in the separation of 1,3-PD from glycerol and glucose in water by pervaporation (Li et al.2001a ,b ).Binary,ternary,and quaternary (1,3-PD/glycerol/glucose/water)solutions were used as feed mixtures.The separation of 1,3-PD is attributed to adsorption and diffusion.1,3-PD/glycerol selectivity decreased from 54to 21over the temperature range 308–328K,whereas for the same temperature range 1,3-PD/glucose selectivity increased from 330to 2,100.The selectivity of 1,3-PD/glycerol was controlled by both pref-erential adsorption and differences in diffusion rates.The selectivity of 1,3-PD/glucose was considered to be mainly controlled by the differences in diffusion rates,with the larger glucose molecules diffusing through non-zeolite pores.X-type zeolite membranes were prepared and used to separate 1,3-PD from glycerol in aqueous mixtures by pervaporation (Li et al.2001c ,2002).The selectivity of 1,3-PD /glycerol was 41at 300K and increased with temperature.The high 1,3-PD/glycerol selectivity was due to preferential adsorption of 1,3-PD.

Electrodialysis membrane has been used for desalination before evaporation (Gong et al.2004;Hao and Liu 2005).The salts could be effectively removed by electrodialysis.However,a low product yield was obtained due to loss of 1,3-PD during electrodialysis.Membrane pollution was observed during electrodialysis.

Chromatography

Ion exchange resin,molecular sieve adsorption,and preparative liquid chromatography have been recently

reported in some patents (Roturier et al.2002;Hilaly and Binder 2002;Corbin and Norton 2003;Wilkins and Lowe 2004;Adkesson et al.2005)and a journal publication (Cho et al.2006)for the purification of 1,3-PD.

In the patent applied by Roturier et al.(2002),a solution clarified by the removal of proteins and desalination was passed through a strongly acidic cation exchange resin of the polystyrenesulfonic acid type,on which cation is advantageously selected from the group consisting of lanthanum,lead,zinc,iron,and aluminum,and then a weakly and/or strongly basic anionic resin of the acrylic type.A fermentation medium containing 90.5g/l of 1,3-PD and 28.7g/l of glycerol was applied to the column.The chromatography was eluted by using water and gave a first fraction of 39ml containing 2.0g/l of 1,3-PD.The sample was diluted 45times by water,leading to a high energy demand for the dewatering afterwards.

A strong cation exchange resin of polystyrene sulfonate in the Na form was employed to separate 1,3-PD from other impurities (Hilaly and Binder 2002).This process was conducted using a simulated moving bed apparatus.Water was added to elute the feed material.The effluent from 35to 140ml (a net volume of 105ml)was obtained if 10ml of the feed solution was applied.The original feed solution was thus diluted by ten times.The experiments resulted in a product with purity higher than 87%.The yield of 1,3-PD was more than 95%(Hilaly and Binder 2002).

Besides purification of 1,3-PD,ion exchange comprising a strong acidic cation exchange resin followed by exposing to a weak basic anion exchange resin was also used in the removal of anionic and cationic molecules (Adkesson et al.2005).Ion exchange resin must be regenerated more frequently due to a large amount of anionic and cationic molecules in fermentative broths.

Adsorption techniques,especially adsorption on hydro-phobic zeolites such as silicalite-1or non-aluminous

NaY

Biomass + proteins

Fig.3Flow sheet of down-stream processing of 1,3-propanediol from fermentation broth by alcohol precipitation and dilution crystallization (Gao et al.2007).1Fermentator,2ultrafiltration module,3evapo-rator,4alcohol precipitation chamber,5ethanol recovery column,6rectifying column,7ethanol storage tank

zeolites,or even active charcoal,were employed in the separation of1,3-PD(Günzel et al.1990;Günzel1991; Schlieker et al.1992;Schoellner et al.1994;Corbin and Norton2003;Wilkins and Lowe2004).However,the capacity is quite low.Furthermore,a column of charcoal was also used to remove the proteins(Roturier et al.2002) as well as pigments.

A preparative liquid chromatography column packed with silica resin was studied to separate1,3-PD from a mixture containing1,3-PD and1,2-PD after phase separa-tion using ethyl acetate(Cho et al.2006).A mobile phase comprised of98%ethyl acetate and2%methanol was chosen to elute the two components.The overall purity and yield of1,3-PD were98%and82%in the purification process,respectively.

Process chromatography was tested for removing the target molecule(e.g.,1,3-PD)in situ with the aim to prevent feedback inhibition of cell growth and product formation in the fermentation process(Wilkins and Lowe2004).The chromatographic media or adsorbents include activated carbon,zeolites,polymeric neutral resins,chitosan beads, ion-exchange resins,and immobilized complexation mate-rials.The eluent comprises a mixture of water and a non-aqueous eluent,e.g.,a short chain alcohol or acetone. Extraction

Compared with distillation,solvent or reactive extraction is considered to possess several advantages,such as large throughput and low energy consumption.Solvent extraction and reactive extraction have been paid much attention in the last10years.Liquid–liquid extraction with organic solvents can be directly applied to the recovery of the target product from dilute solutions,if a suitable solvent can be found. Many efforts have been made to separate1,3-PD from fermentation broths by extraction.Malinowski(1999) evaluated the application of liquid–liquid extraction for the separation of1,3-PD from dilute aqueous solutions. Solvent screening was performed by using an extraction screening program(ESP).According to the results of ESP, aliphatic alcohols and aldehydes were selected for experi-mental testing.Experimental results showed fairly large discrepancies between the predicted and experimental values.The distribution of1,3-PD into extraction solvents appeared to be not good enough for developing a simple and efficient extraction process.An attempt to separate1,3-PD from a dilute solution by normal physical or complex extraction was also not successful(Xiang et al.2001). Although many solvent extractants were listed in a patent (Baniel et al.2004),including pentanol,propanol,hexanol, oleyl alcohol,4-methyl-2-pentanone,isopropyl acetate, tributyl phosphate,oleic acid,soya oil,and castor oil,the hydrophilic1,3-PD in dilute broths is not apt to enter into hydrophobic solvents,except for adding a large amount of solvent into a concentrated broth.Similarly,a hydrophobic solvent,ethyl acetate,was also used in phase separation of 1,3-PD from a mixture containing1,3-PD,1,2-PD,glycer-ol,and glucose(Cho et al.2006).Most of the glycerol and glucose moved down to the bottom aqueous phase.The top phase(ethyl acetate)contained1,3-PD and1,2-PD was used for subsequent chromatographic purification.The maximum solubility of1,3-PD in ethyl acetate is only 40g/l.Conventional liquid–liquid extraction process requires the handling of large quantities of solvents and, in particular,its1,3-PD extraction and separation efficiency is too low.Therefore,other more promising downstream separation processing strategies should be applied to tackle the problem of separating1,3-PD from a dilute aqueous system.

One such a possible way to tackle the problem is first to convert1,3-PD into a substance without hydroxyl groups and then to recover it by means of liquid–liquid extraction. This is the so-called reactive extraction.Broekhuis et al. (1994)used chemicals of formaldehyde or acetaldehyde to form a dioxolane derivative of1,3-PD.Likewise,recovery of propylene glycol(1,2-PD)from aqueous solution was studied in batch experiments using extractants consisting of ion pairs of Aliquat336and phenylboronate in2-ethyl-hexanol,toluene,o-xylene,or diisobutyl ketone(Broekhuis et al.1996).Up to80%of the extracted1,2-PD was back extracted into water after acidification with CO2.The regeneration of extractant could cause its degradation at temperatures exceeding110°C.Malinowski(2000)studied a reactive extraction process in which1,3-PD was con-verted into2-methyl-1,3-dioxane(2-MD)through a revers-ible reaction between1,3-PD and acetaldehyde catalyzed by a Dowex or Amberlite ion-exchange resin,then2-MD was extracted using an organic solvent such as o-xylene, toluene,or ethylbenzene.1,3-PD was finally obtained by hydrolyzing2-MD.This method seems to be very promising for a simulative artificial fermentation broth.It was reported that the yield of2-MD was91~92%,the overall conversion of1,3-PD was98%,and the recovery of dioxane into the organic extractant was75%.However,the impurities in real fermentation broths are apt to cause inactivation of the catalyst for reaction between1,3-PD and acetaldehyde,e.g.,a strongly acidic cation-exchange resin. Furthermore,many substances in the broth can react with aldehyde,such as ethanol,2,3-BD,glycerol as well as soluble proteins(Hao et al.2005).Moreover,the utilization of extractant(o-xylene,toluene,or ethylbenzene)will be limited at a large scale due to their toxicity.Hao et al. (2005,2006)found that butyraldehyde could act both as reactant and as extractant in reactive extraction.Proteins, cell debris must be removed and ethanol is best removed

before the reactive extraction.1,3-PD,2,3-BD,and glycerol react with butyraldehyde to form1,3-PD acetal(2-propyl-1,3-dioxane),2,3-BD acetal(2-propyl-4,5-dimethyl-1,3-dioxolane),and glycerol acetal.The acetals produced were hydrolyzed in a reactive distillation column using a strongly acidic cation-exchange resin as catalyst.The bottom product obtained was a mixture of1,3-PD(407g/l),2,3-BD(252g/l),glycerol(277g/l),and glycerol acetals (146g/l).The flow sheet of the reactive extraction process reported by Hao et al.(2006)is shown in Fig.4.Because of the additional need to regenerate1,3-PD from its dioxolane derivative,the complexity and the cost of the chemicals used make the extraction and purification process prohib-itive(Fig.4).

Recovery of biologically produced2,3-butanediol

The biological production of2,3-BD has been reviewed by Garg and Jain(1995)and Syu(2001),including recovery of 2,https://www.sodocs.net/doc/7d15855558.html,pared with the recovery and purification of 1,3-PD,few reports about separation of2,3-BD have been published in the last decade.The reported separation techniques mainly include steam stripping(Wheat et al. 1948),solvent extraction(Othmer et al.1945;Tsao1978; Eiteman and Gainer1989),reverse osmosis(Sridhar1989), and pervaporation(Qureshi et al.1994).

A countercurrent steam stripping was previously devel-oped for recovery of2,3-BD from whole fermentation broths at pilot plant(Wheat et al.1948).Obviously,a large amount of energy is required for this process and prevents its application today.

Compared with single distillation,an integrated process of reverse osmosis and distillation can slightly decrease the processing cost(Sridhar1989).The integrated process is much more economical than distillation combined with extraction using tributylphosphate as extractant.The costs for the recovery of2,3-BD from a model medium on a production scale of500tons per year by using single distillation,reverse osmosis followed by distillation and combination of distillation and extraction were estimated to be0.73,0.69and1.09DM/kg2,3-BD respectively(Sridhar 1989).

Liquid–liquid extraction has been attracting much attention,including solvent extraction of2,3-BD(Othmer et al.1945;Tsao1978;Eiteman and Gainer1989)and aqueous two-phase extraction of2,3-BD in PEG/dextran system(Ghosh and Swaminathan2003).Alcohols or esters were chosen as solvent extractants, e.g.,ethyl acetate, tributylphosphate,diethyl ether,n-butanol,dodecanol,and oleyl alcohol.A yield of75%was obtained using diethyl ether as extractant to extract2,3-BD from the fermentation slurry(Tsao1978).Prior to exposure to solvent,the fermentation broth had to be dewatered by evaporation (Othmer et al.1945)or both microfiltration and reverse osmosis(Sridhar1989)because of the low partition coefficient and the low selectivity of2,3-butanediol. Repulsive extraction or salting out using potassium chloride (KCl)or dehydrated K2CO3was also investigated on the recovery of2,3-BD(Syu2001)like the salting-out effect of K2CO3on extraction of butanol in acetone–butanol–ethanol fermentation(Xu2001;Hu et al.2003).The removal of water from the fermentation broth was also necessary before salting out because the concentration of2,3-butanediol in the broth was too low to be salted out even if at a saturated KCl or K2CO3solution.

As the reactive extraction of1,3-propanediol,2,3-butanediol can react with formaldehyde to form a formal under catalysis of acid(Senkus1946).The2,3-butanediol formal is collected in the top oil phase and allowed to react with acid methanol to form2,3-butanediol and methylal. Methylal can be hydrolyzed to methanol and formaldehyde. Three-step reactions need acids as catalyst.Anticorrosion of devices due to acidity is a main problem in a large scale.

Pervaporation or vacuum membrane distillation used previously in ethanol and butanol fermentations was developed for the concentration of2,3-BD(Qureshi et al. 1994).Using an integrated process for fed-batch fermenta-tion and recovery of2,3-BD by vacuum membrane distillation,2,3-BD is concentrated to over430g/l from a fermentation broth.A microporous polytetrafluoroethylene (PTFE)membrane was used in the integrated process,while silicone membrane was usually used in pervaporative ethanol or butanol fermentations.No report about the concentration of2,3-BD or1,3-PD using pervaporation through the above organic membranes has been found up to date.However,inorganic zeolite membranes have

been

developed to separate1,3-PD from model solutions using pervaporation(Li et al.2001a,b,c,2002).

Challenges and perspectives

The difficulties in developing an efficient process to separate 1,3-PD from fermentation broths are associated with the hydrophilicity of the target product,its high boiling point,and the complexity of the fermentation broth.The abovemen-tioned separation methods and techniques so far studied have some drawbacks or limitations as summarized in Table1.The conventional evaporation and distillation require not only a high input of energy,but also desalination or deproteiniza-tion as pretreatment step(s).The desalination of broth by electrolysis gives a low product yield due to loss of1,3-PD in the saline effluent.Additionally,the lifetime of electrolysis membrane can be relatively short because of membrane pollution of biomacromolecules,e.g.,proteins,polysacchar-ides,and nucleic acids.A similar situation also occurs in ultrafiltration,nanofiltration,and zeolite membrane pervapo-ration.The performance(e.g.,selectivity)of zeolite mem-

Table1Comparison of different separation techniques for1,3-propanediol

Separation

methods or unit

operation

Application/investigation Drawbacks or problems References

Evaporation/ distillation Evaporation was used in the removal

of water from the fermentation liquors

Evaporation and distillation suffer from

a large amount of energy consumption.

In addition,desalination and

deproteinization are required before

evaporation

Ames2002;Sanz

et al.2001 Distillation was used for the final

purification of1,3-PD

Electrodialysis Electrodialysis has been used for

desalination before evaporation Low product yield due to loss of1,3-PD

during electrodialysis.Membrane

pollution can be very serious

Gong et al.2004;Hao and

Liu2005

Pervaporation Na-ZSM-5and X-type zeolite

membranes were used to separate1,3-PD

from an aqueous mixture by

pervaporation.The high1,3-PD/glycerol

selectivity was due to preferential

adsorption of1,3-PD The performance of pervaporation needs

to be verified by using real fermentative

broth in the presence of impurities,e.g.,

proteins and salts

Li et al.2001a,b,c,2002

Chromatography Combined strongly acidic cationic and

weakly basic anionic resins were used to

desalinate in the fermentation broth Although high overall purity and yield

of1,3-PD could be obtained,the1,3-PD

solution was not concentrated but diluted

because of the low selectivity and

capacity of resin or adsorbent.This

method consumed more energy than the

simple evaporation and distillation

Roturier et al.2002;

Hilaly and Binder2002;

Corbin and Norton2003;

Wilkins and Lowe2004;

Adkesson et al.2005;Cho

et al.2006

A cationic exchange resin was used for recovery of1,3-PD

Adsorption of1,3-PD on hydrophobic zeolites or active charcoal was investigated for separation of1,3-PD In addition,the chromatographic matrix had to be regenerated frequently if the feed was not desalinated or deproteinized. This situation also occurred for ion-exchange resins used to desalinate due to high salt concentrations

A preparative silica gel liquid chromatography was used to separate1,3-PD after phase separation

Solvent extraction/ liquid–liquid extraction Many extractants have been investigated

for the recovery of1,3-PD from dilute

broth.It is partly partitioned into the

solvent phase only when adding a large

amount of solvent into a concentrated

broth

No effective extractant has been so far

found for liquid–liquid extraction of1,3-

PD.Major problem is because

1,3-PD is hydrophilic

Malinowski1999;Xiang

et al.2001;Baniel et al.2004;

Cho et al.2006

Reactive extraction Reactive extraction includes three key

steps:reaction,extraction,and hydrolysis.

A reversible reaction between1,3-PD and

aldehyde was used to form a dioxolane

derivative(e.g.,2-MD).2-MD is then

extracted into an organic solvent and

finally hydrolyzed into1,3-PD

This process is quite complicated.The

removal of proteins and ethanol as well as

salts is necessary before reaction

Broekhuis et al.1994,1996;

Malinowski2000;Hao

et al.2005,2006

Additionally,the trace amount of

aldehyde in1,3-PD is prohibitive for

polymerization of PTT

brane pervaporation needs to be verified using real fermen-tation broth instead of model solutions.Because of the low selectivity and capacity of resin,1,3-PD solution is normally not concentrated but diluted using ion exchange chromatog-raphy or zeolite adsorption.Moreover,the chromatographic medium or matrix(resin,zeolite,charcoal)has to be regenerated frequently if the feed is not desalinated or deproteinized.The chromatography method seems to be economically less suitable for the recovery of1,3-PD. Liquid–liquid extraction of1,3-PD may represent a simple and efficient process.Unfortunately,no effective extractants has been so far found for this purpose,though many endeavors have been made.Reactive extraction needs complicated pretreatment(removal of proteins and ethanol as well as salts)and post-treatment(back extraction, hydrolysis,or reactive distillation).Additionally,the trace amount of aldehyde in1,3-PD is prohibitive for polymeri-zation in the production of PTT.

From the above comparison,it is therefore apparent that there is a need for further research to develop a process which should ideally be simple to carry out and allow the purification of1,3-PD directly from the fermentation broth.

A key challenge to successful separation of1,3-PD from fermentation broths is how to apply separation technology to large-scale industrial processes in a cost-and time-effective manner that increases productivity and yield.It is worthy of mentioning that no reports about separation of 1,3-PD from its mixture with2,3-BD has been found up to date.It will be a difficult task because2,3-BD is similar to 1,3-PD in many aspects.Innovation in separation technol-ogy is needed to solve the problems or drawbacks.In this context,we would particularly mention a novel aqueous two-phase extraction based on our recent studies on the recovery of1,3-PD from whole fermentation broth.

Repulsive extraction or salting out using potassium chloride or dehydrated K2CO3has been used to separate 2,3-BD and butanol from the fermentation broths.The salting-out effect of inorganic salts(e.g.,ammonium sulfate)is usually used to remove proteins from an aqueous mixture such as the concentrated fermentation broth(Xiu et al.2007b).Organic solvent precipitation is also a usual means for removal of proteins,e.g.,using alcohol precip-itation(Gao et al.2007).An aqueous two-phase system is formed if adding ethanol and ammonium sulfate together into the glycerol-based fermentation broth,leading to a novel and promising separation process for1,3-PD(Xiu et al.2007c).Based on our previous studies of separation of 1,3-PD from broths by using alcohol precipitation and ammonium sulfate salting out,we demonstrated that1,3-PD can be recovered from fermentation broths by using aqueous two-phase extraction(Xiu et al.2007c;Fig.5).

Aqueous two-phase extraction(ATPE)has been widely applied in the separation of biomacromolecules,such as proteins and nucleic acids(Albertsson1986;Kula et al.1982) because of its mild conditions and high capacity.Up to now, most aqueous two-phase systems(ATPS)used for purifica-tion were based on either a polyethylene glycol(PEG)/salt system or a polymer/polymer(e.g.,PEG/dextran)system.It should be mentioned that traditional ATPE has been rarely used in a large scale,especially for production of cheap and bulk chemicals,primarily due to the high cost of the poly-mers and the difficulty in isolating the extracted molecules from the polymer phase by back extraction.Although some efforts have been made,e.g.,extractive fermentation of2,3-BD in PEG/dextran aqueous two-phase system(Ghosh and Swaminathan2003),the application of traditional ATPS on bio-based bulk chemicals is less promising.

In fact,short chain alcohols or hydrophilic organic solvents and salts are able to form aqueous two-phase systems(Greve and Kula1990).This type of aqueous two-phase system has some advantages over the traditional one, such as low cost of extractant,easy recovery of hydrophilic organic solvent by evaporation and obviating the back https://www.sodocs.net/doc/7d15855558.html,pared with the traditional solvent extrac-

4

Fig.5Flow scheme of aqueous two-phase extraction of1,3-propanediol from fermentation broth(Xiu et al.2007c).1 Fermentator,2aqueous two-phase extractor,3ammonium sulfate recovery chamber,4 falling-film evaporator,5recti-fying column,6methanol recovery column,7methanol storage tank,8ethanol storage tank,9ammonium sulfate storage tank

tions and reactive extractions,hydrophilic organic solvents and salts are green in terms of carcinogenic and toxic effects.Such a novel aqueous two-phase extraction was used for the separation of model proteins(Louwrier1998). Recently,it has been applied to the recovery of natural products from crude extracts, e.g.,glycyrrhizin from Glycyrrhiza uralensis Fisch(Tan et al.2002)and salvia-nolic acid B from Salvia miltiorrhiza(Zhi and Deng2006). However,there has been no reports on using this system to separate bulk chemicals from the fermentation broths.Our experiments showed that the novel ATPSs could be used to extract1,3-PD from fermentative broth(unpublished results).The highest partition coefficient(4.77%)and recovery of1,3-PD(93.7%)were obtained in single step extraction by an ATPS composed of46%(v/v)ethanol and saturated ammonium sulfate.At the same time,the by-products,e.g.,2,3-BD and acetoin,were also extracted at high efficacy.The maximum selective coefficient of1,3-PD to glycerol was6.0in the experimental range.Additionally, cells and proteins could be simultaneously removed from the fermentation broths.The removal ratio of cells and proteins reached99.7%and79.0%,respectively. Conclusions

Recovery and purification of1,3-PD and2,3-BD represent a technological challenge and an economical obstacle for an efficient microbial production of these two promising bulk chemicals in a large scale.Methods and technologies studied so far have their limitations or drawbacks in terms of yield and energy consumption.For further development, classic separation techniques need to be improved or combined with other new technologies.For instance, evaporation may be improved by adopting multi-stage evaporation instead of single-stage evaporation.In situ extractive and pervaporative fermentations could be prom-ising.Furthermore,the novel aqueous two-phase extraction method with short chain alcohols or hydrophilic organic solvents deserves attention in the future. Acknowledgments This work was partially supported by the Major State Basic Research Development Program of China(973Program; No.2007CB714306)and the Teaching and Research Award Program for Outstanding Young Teachers(to Z.-L.Xiu)in High Education Institutions of Ministry of Education of the People’s Republic of China. References

Adkesson DM,Alsop AW,Ames TT,Chu LA,Disney JM,Dravis BC,Fitzgibbon P,Gaddy JM,Gallagher FG,Lehnhardt WF, Lievense JC,Luyben ML,Seapan M,Trotter RE,Wenndt GM,

Yu EK(2005)Purification of biologically-produced1,3-propane-diol,United States Patent20050069997

Albertsson PA(1986)Partition of cell particles and macromolecules, 3rd edn.Wiley,New York

Ames TT(2002)Process for the isolation of1,3-propanediol from fermentation https://www.sodocs.net/doc/7d15855558.html, Patent6.361.983B1

Baniel AM,Jansen RP,Vitner A,Baiada A(2004)Process for producing1,3-propanediol.United States Patent20040222153 Biebl H,Zeng A-P,Menzel K,Deckwer W-D(1998)Glycerol fermentation to1,3-propanediol and2,3-butanediol by Klebsiella pneumoniae.Appl Microbiol Biotechnol50:24–29

Biebl H,Menzel K,Zeng AP,Deckwer WD(1999)Microbial production of1,3-propanediol.Appl Microbiol Biotechnol52:289–297 Broekhuis RR,Lynn S,King CJ(1994)Recovery of propylene glycol from dilute aqueous solutions via reversible reaction with aldehydes.Ind Eng Chem Res33:3230–3237

Broekhuis RR,Lynn S,King CJ(1996)Recovery of propylene glycol from dilute aqueous solutions by complexation with organoboro-nates in ion-pair extractants.Ind Eng Chem Res35:1206–1214 Byun T-G,Zeng A-P,Deckwer W-D(1994)Reactor comparison and scale-up for the microaerobic production of2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate.Bio-process Eng11:167–175

Chen X,Zhang D-J,Qi W-T,Gao S-J,Xiu Z-L,Xu P(2003) Microbial fed-batch production of1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions.Appl Microbiol Biotechnol63:143–146

Cheng K-K,Zhang J-A,Liu D-H,Sun Y,Liu H-J,Yang M-D,Xu J-M (2007)Pilot-scale production of1,3-propanediol using Klebsiella pneumoniae.Process Biochem42:740–744

Cho M-H,Joen SI,Pyo S-H,Mun S,Kim J-H(2006)A novel separation and purification process for1,3-propanediol.Process Biochem41(3):739–744

Corbin DR,Norton T(2003)Process to separate1,3-propanediol or glycerol,or a mixture thereof from a biological mixture.United States Patent6603048

Deckwer WD(1995)Microbial conversion of glycerol production to 1,3-propanediol.FEMS Microbiol Rev16:143–149

Eiteman MA,Gainer JL(1989)In situ extraction versus the use of an external column in fermentation.Appl Microbiol Biotechnol 30:614–618

Gao S,Zhang D,Sun Y,Xiu Z(2007)Separation of1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol dilution crystallization.Front Chem Eng China1(2):202–207 Garg SK,Jain A(1995)Fermentative production of2,3-butanediol:a review.Bioresour Technol51:103–109

Ghosh S,Swaminathan T(2003)Optimization of process variables for the extractive fermentation of2,3-butanediol by Klebsiella oxytoca in aqueous two-phase system using response surface methodology.Chem Biochem Eng Q17(4):319–325

Gong Y,Tong Y,Wang XL,Liu DH(2004)The possibility of the desalination of actual1,3-propanediol fermentation broth by electrodialysis.Desalination161:169–178

Greve A,Kula MR(1990)Cost structure and estimation for the recycling of salt in a protein extraction process system.

Bioprocess Eng6:173–177

Grothe E(2000)Konzeption und Wirtschaftlichkeit der industriellen Glycerinverg?rung zu1,3-Propandiol.Dissertation,VDI Verlag GmbH,Düsseldorf2000

Günzel B(1991)Mikrobielle Herstellung von1,3-Propandiol durch Clostridium butyricum und adsorptive Aufarbeitung von diolen.

Dissertation,Technischen Universit?t Braunschweig

Günzel B,Berke CH,Ernst S(1990)Adsorption von Diolen aus Fermentationsmedien an hydrophobe Zeolithe.Chem Ing Tech 62(9):7482750

Hao J,Liu DH(2005)Desalination of fermented broth containing1,3-propanediol by electrodialysis.Chinese J Proc Eng5:36–39 Hao J,Liu HJ,Liu DH(2005)Novel route of reactive extraction to recover1,3-propanediol from a dilute aqueous solution.Ind Eng Chem Res44:4380–4385

Hao J,Xu F,Liu H,Liu D(2006)Downstream processing of1,3-propanediol fermentation broth.J Chem Technol Biotechnol 81:102–108

Hartlep M,Hussmann W,Prayitno N,Meynial-Salles I,Zeng AP(2002) Study of two-stage processes for the microbial production of1,3-propanediol from glucose.Appl Microbiol Biotechnol60:60–66 Hermann BG,Patel M(2007)Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology:a techno-economic analy-sis.Appl Biochem Biotechnol136:361–388

Hilaly AK,Binder TP(2002)Method of recovering1,3-propanediol from fermentation broth.United States Patent6479716

Hu B-L,Qiu X-Q,Yang D-J(2003)Separation of butanol–acetone–water system using repulsive extraction.Journal of South China University of Technology(Natural Science Edition)31(12):58–62 Kelsey DR(1996)Purification of1,https://www.sodocs.net/doc/7d15855558.html, Patent5.527.973 Kula MR,Krone KH,Hustedt H(1982)Purification of enzymes by liquid–liquid extraction.In:Fiechter A(ed)Advances in biochemical engineering,vol24.Springer,Berlin,pp73–118 Kurian JV(2005)A new polymer platform for the future—Sorona from corn derived1,3-propanediol.J Polym Environ13(2):159–167 Laffend LA,Nagarajan V,Nakamura CE(2007)Bioconversion of a fermentable carbon source to1,3-propanediol by a single microor-ganism,United States Patent Application,20070048849A1

Li S,Tuan V A,Falconer JL,Noble RD(2001a)Separation of1,3-propanediol from glycerol and glucose using a ZSM-5zeolite membrane.J Membr Sci191:53–59

Li S,Tuan V A,Falconer JL,Noble RD(2001b)Separation of1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane.Ind Eng Chem Res40(8):1952–1959

Li S,Tuan V A,Falconer JL,Noble RD(2001c)Effects of zeolite membrane structure on the separation of1,3-propanediol from glycerol and glucose by pervaporation.Chem Mater13(5):1865–1873 Li S,Tuan V A,Falconer JL,Noble RD(2002)X-type zeolite membranes:preparation,characterization,and pervaporation performance.Microporous Mesoporous Mater53(1–3):59–70 Liu H-J,Zhang D-J,Xu Y-H,Mu Y,Sun Y-Q,Xiu Z-L(2007) Microbial production of1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale.Biotechnol Lett29(8):1281–1285

Louwrier A(1998)Model phase separations of proteins using aqueous/ethanol components.Biotechnol Tech12(5):363–365 Malinowski JJ(1999)Evaluation of liquid extraction potentials for downstream separation of1,3-propanediol.Biotechnol Tech 13:127–130

Malinowski JJ(2000)Reactive extraction for downstream separation of1,3-propanediol.Biotechnol Prog16:76–79

Menzel K,Zeng AP,Deckwer WD(1997)High concentration and productivity of1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae.Enzyme Microb Technol 20:82–86

Mu Y,Zhang D,Teng H,Wang W,Xiu Z(2006)Microbial production of1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparation.Biotechnol Lett28:1755–1759

Nakamura CE,Whitedy GM(2003)Metabolic engineering for the microbial production of1,3-propanediol.Curr Opin Biotechnol 14:454–459

Othmer DF,Bergen WS,Shlechter N,Bruins PF(1945)Liquid–liquid extraction data:systems used in butadiene manufacture from butylenes glycol.Ind Eng Chem37(9):890–894Qureshi N,Meagher MM,Hutjins RW(1994)Recovery of2,3-butanediol by vacuum membrane distillation.Sep Sci Technol29

(13):1733–1748

Roturier JM,Fouache C,Berghmans E(2002)Process for the purification of1,3-propanediol from a fermentation medium.United States Patent6428992

Saha BC(2003)Hemocellulose bioconversion.J Ind Microbiol Biotech30:279–291

Sanz MT,Blanco B,Beltran S,Cabezas JI(2001)Vapor liquid equilibria of binary and ternary systems with water,1,3-propane-diol,and glycerol.J Chem Eng Data46:635–639

Schlieker H,Günzel B,Deckwer WD(1992)Einsatz der Adsorption zur Produtsabtrennung bei der Glycerinvergarung zu1,3-Propanediol.Chem Ing Tech64(8):7272728

Schoellner R,EInicke WD,Unverricht S(1994)Investigations of adsorptive separation of glycerol/propane-1,3-diol in aqueous solution on zeolites by liquid phase adsorption.J Prakt Chem336(5):404–407 Senkus M(1946)Recovery of2,3-butanediol produced by fermenta-tion.Ind Eng Chem38:913–916

Sridhar S(1989)Zur Abtrennung von Butandiol-2,3aus Fermenter-Brühen mit Hife der Umkehrosmose.Chem Ing Tech61(3):252–253 Syu M-J(2001)Biological production of2,3-butanediol.Appl Microbiol Biotechnol55:10–18

Tan T,Huo Q,Ling Q(2002)Purification of glycyrrhizin from Glycyrrhiza uralensis Fisch with ethanol/phosphate aqueous two phase system.Biotechnol Lett24:1417–1420

Tsao GT(1978)Conversion of biomass from agriculture into useful products.Final Report,USDDE Contact No.EG-77-S-02-4298 Wheat JA,Leslie JD,Tomkins RV,Mitton HE,Scott DS,Ledingham GA (1948)Production and properties of2,3-butanediol.XXVIII.Pilot plant recovery of levo-2,3-butanediol from whole wheat mashes fermented by Aerobacillus polymyxa.Can J Res26F:469–496 Wilkins AE,Lowe DJ(2004)Product removal process for use in a biofermentation system,United States Patent6,812,000

Xiang BT,Chen SF,Liu DH(2001)Extraction of1,3-propanediol from in dilute fermentation broth.Journal of Tsinghua University (Science and Technology)41(12):53–55

Xiu ZL,Chen X,Sun YQ,Zhang DJ(2007a)Stoichiometric analysis and experimental investigation of glycerol–glucose cofermenta-tion in Klebsiella pneumoniae under microaerobic conditions.

Biochem Eng J33:42–52

Xiu ZL,Zhang D,Li X(2007b)Recovery of1,3-propanediol from fermentation broths by using ammonium sulfate salting out, Chinese Patent,2006101346958

Xiu ZL,Li Z,Jianng B,Sun Y,Zhang D(2007c)Aqueous two-phase extraction of1,3-propanediol from fermentation broth,Chinese Patent,200710010201.X

Xu W-Y(2001)Separation of ethanol–acetone–butanol–water system using potassium carbonate.Chinese J Proc Eng1(3):318–320 Yang G,Tian J,Li J(2007)Fermentation of1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions.Appl Microbiol Biotechnol73:1017–1024 Yazdani SS,Gonzalez R(2007)Anaerobic fermentation of glycerol:a path to economic viability for the biofuels industry.Curr Opin Biotechnol18:213–219

Zeng AP,Biebl H(2002)Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends.Adv Biochem Eng 74:239–59

Zeng A-P,Byun T-G,Posten C,Deckwer W-D(1994)Use of the respiratory quotient as a control parameter for optimum oxygen supply and scale-up of2,3-butanediol production under micro-aerobic conditions.Biotechnol Bioeng44:1107–1114

Zhi W,Deng Q(2006)Purification of salvianolic acid B from the crude extract of Salvia miltiorrhiza with hydrophilic organic/ salt-containing aqueous two-phase system by counter-current chromatography.J Chromatogr A1116:149–152

乙二醇与丙二醇比较

乙二醇 1. 物质的理化常数 国标编号—— CAS号107-21-1 中文名称乙二醇 英文名称Ethylene glycol 别名甘醇 分子式C2H6O2;HOCH2CH20H外观与性状无色、无臭、有甜味、粘稠液体 分子量62.07蒸汽压 6.21kPa/20 C闪点:110C -13 .2 C 沸点: 197.5 C溶解性与水混熔点 八、、 溶,可混溶于乙醇、醚等 密度相对密度(水=1)1.11 ;相对密度(空气=1)2.14 稳定性稳定 危险标记主要用途用于制造树脂、增塑剂,合成纤维、化妆品和炸药,并用作溶剂、配制发动机的抗冻剂 2. 对环境的影响 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入中毒表现为反复发作性昏厥,并可有眼球震颤,淋巴细胞增多。口服后急性中毒分三个阶段:第一阶段主要为中枢神经系统症状,轻者似乙醇中毒表现,重者迅速产生昏迷抽搐,最后死亡;第二阶段,心肺症状明显,严重病例可有肺水肿,支气管肺炎,心力衰竭;第三阶段主要表现为不同程度肾功能衰竭。人的本品一次口服致死量估计为1.4ml/kg(1.56g/kg)。 二、毒理学资料及环境行为 毒性:属低毒类。 急性毒性:LD508.0 ?15.3g/kg(小鼠经口); 5.9 ?13.4g/kg(大鼠经口); 1.4ml/kg(人经口,致死) 亚急性和慢性毒性:大鼠吸入12mg/m3(连续多次)八天后2/15只动物眼角膜混浊、失 明;人吸入40%乙二醇混合物9/28人出现短暂昏厥;人吸入40%乙二醇混合物加热至105C 反复吸入14/38 人眼球震颤,5/38 人淋巴细胞增多。 危险特性:遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。若遇高热,容器内压增大,有开裂和爆炸的危险。 燃烧(分解)产物:一氧化碳、二氧化碳。 3. 实验室监测方法 品红亚硫酸法《化工企业空气中有害物质测定方法》,化学工业出版社变色酸法《化工企业空气中有害物质测定方法》,化学工业出版社

丙二醇甲醚MSDS

第一部分:化学品名称 化学品中文名称:丙二醇甲醚 产品名称:丙二醇甲醚(PM) 产品英文名:Propylene Glycol Methyl Ether CAS No:107-98-2 分子式:CH2OCH2CHOHCH2 分子量: 第二部分:危险性概述 危险性类别: 侵入途径: 健康危害:动物实验显示本品有轻度麻醉性及刺激性。未见职业性危害。环境危害: 燃爆危险:本品可燃。 第三部分:急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第四部分:消防措施 危险特性:遇明火、高热可燃。

有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中 产生声音,必须马上撤离。 灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第五部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自吸过滤式防毒面具(全面罩),穿一般作业工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第六部分:操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应

二丙二醇甲醚

化学品安全技术说明书 第一部分化学品及企业标识 化学品中文名:二丙二醇甲醚 化学品英文名:dipropylene glycol monomethyl ether;dipropylene glycol methyl ether 企业名称: 生产企业地址: 邮编: 传真: 企业应急电话: 电子邮件地址: 技术说明书编码: 第二部分成分/组成信息 √纯品混合物 有害物成分浓度CAS No. 二丙二醇甲醚34590-94-8 第三部分危险性概述 危险性类别: 侵入途径:吸入、食入、经皮吸收 健康危害:动物实验显示本品有轻度麻醉性及刺激性。未见职业性危害。 环境危害:对环境有害。 燃爆危险:可燃,其蒸气与空气混合,能形成爆炸性混合物。 第四部分急救措施

皮肤接触:立即脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮足量温水,催吐。就医。 第五部分消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳。 灭火方法:用雾状水、泡沫、干粉、二氧化碳、砂土灭火。 灭火注意事项及措施:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。 尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结 束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上 撤离。 第六部分泄漏应急处理 应急行动:根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。消除所有点火源。建议应急处理人员戴防毒面具,穿防 毒服。穿上适当的防护服前严禁接触破裂的容器和泄漏物。尽可能切断泄 漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏: 用干燥的砂土或其它不燃材料吸收或覆盖,收集于容器中。大量泄漏:构 筑围堤或挖坑收容。用泵转移至槽车或专用收集器内。 第七部分操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼 镜,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型 的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸

丙二醇

丙二醇 丙二醇(PG)主要用来生产涂料和不饱和聚酯树脂(UPR),此外用作防冻剂,替代乙二醇用于防冻飞行器及在食品中作冷却剂等。另外还有大量丙二醇用于生产增塑剂和液压制动液,它还可用于非离子洗涤剂及在药物、化妆品、动物食品、烟草工业中作为保湿剂,丙二醇还是良好的溶剂可用于油墨和环氧树脂等方面 用于制造不饱和聚酯树脂(用于涂料和玻璃纤维增强树脂)占27%;制造功能流体(防冻液、化冰剂、传热液)占20%;食品、药品和化妆品用途占20%;液体洗涤剂用途占17%;油漆和涂料领域占5%;烟草保湿剂中领域2%;其他用途,包括增塑剂,约占9%。其中丙二醇在化妆品和液体洗涤剂方面的应用增长仍很快,年增长率分别超过3%和315%,化妆品生产商将它用作个人保健品的润肤成分,包括止汗剂、除臭剂、防晒油、剃须膏和美容膏等。在液体洗涤剂中,丙二醇起到酶稳定剂和溶剂的作用。 2005年全球丙二醇需求量为150万t/a,不饱和聚酯树脂(UPR)依然是丙二醇的最大终端需求,在国外,不饱和聚酯树脂中添加的醇类物质基本采用丙二醇。美国丙二醇市场需求为:1999年3817万t;2000年3915万t;2004-2005年需求量约为4218万t和4312万t。丙二醇年增长率:1995-2002年超过214%;2005年后降至1%左右 据统计,不饱和聚酯树酯产品的产量正以年10~20%的速度增长,这将会带动丙二醇的需求同比增长,所有投资项目集中在亚洲,尤其在中国,目前国内主要生产商主要集中在山东、河北、辽宁、安徽等地区。 丙二醇硬脂酸酯主要用途:在日化工业中用于制造膏霜类化妆品,以使膏霜剂增加润滑性、细腻性和稳定性,并有保湿作用,如用于唇膏中。在制药工业用于制造乳剂、油膏剂、栓剂等药剂。 丙二醇甲醚醋酸酯是性能优良的低毒高级工业溶剂,对极性和非极性的物质均有很强的溶解能力,适用于高档涂料、油墨各种聚合物的溶剂,包括氨基甲基酸酯、乙烯基、聚酯、纤维素醋酸酯、醇酸树脂、丙烯酸树脂、环氧树脂及硝化纤维素等。其中。丙二醇甲醚丙酸酯是涂料、油墨中最好的溶剂,适用于不饱和聚酯、聚氨酯类树脂、丙烯酸树脂、环氧树脂(树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。)等 丙二醇醚与乙二醇醚同属二元醇醚类溶剂,丙二醇醚对人体的毒害性能低于乙二醇醚类产品,可视为无毒或低微毒性产品,由于其分子结构中既有醚官能基又有羟基,因而它的溶解性能十分优异,又有合适的挥发性以及反应活性等特点而获得

丙二醇

EINECS号: 200-338-0

图为丙二醇分子结构式。 丙二醇为二元醇,具有一般醇的性质。与有机酸及无机酸反应,可生成单酯或双酯。与环氧丙烷反应,生成醚。与卤化氢反应,生成卤代醇。与乙醛反应,生成甲基二氧戊环。

min。用任何合适的方法求出所有各峰的面积,再算出丙二醇面积的 百分率,并换算成质量百分含量。 毒性FAO/WHO(2000):ADI 0~25mg/kg。 LD5022~23.9mg/kg(小鼠,经口)。 GRAS(FDA,§184.1666,2000)。 使用限量FAO/WHO(1984):酪农干酪,其稀奶油混合物量的5g/kg(单用或与 其他载体和稳定剂合用)。 日本(1998):生面条、生馅、墨鱼熏制品≤2%;饺子、烧麦、春卷、 馄饨等的皮子≤1.2%;其他食品≤0.6%。 GB 2760~96:糕点3.0g/kg,胶姆糖胶 FDA,§184.1666(2000):含醇饮料5%;糖果和糖霜24%;冷冻乳 品2.5%;调味剂、增香剂,97%;果仁和果仁制品5%;其他食品2. 0%。 食品添加剂最大允许使用量最 大允许残留量标准添加 剂中 文名 称允许使 用该种 添加剂 的食品 中文名 称 添加 剂功 能 最大允许使用量(g/k g) 最大允许残留量(g/kg) 1,2- 丙二醇食品 食品 用香 料 用于配制香精的各香 料成分不得超过在G B 2760中的最大允 许使用量和最大允许 残留量 丙二醇胶基糖 果 胶基 糖果 中基 础剂 物质 按生产需要适量使用 (有特别规定的除 外) 1,2- 丙二醇食品 食品 工业 用加 工助 剂 / 食品工业用加工助剂一 般应在制成最后成品之 前出去,有规定食品中 残留量的除外 丙二醇生湿面 制品 稳定 剂和 凝固 剂 1.5 化学性质无色粘稠稳定的吸水性液体,几乎无味无臭。与水、乙醇及多种有 机溶剂混溶。 用途用作树脂、增塑剂、表面活性剂、乳化剂和破乳剂的原料,也可用作 防冻剂和热载体 用途用作气相色谱固定液、溶剂、抗冻剂、增塑剂及脱水剂

盐水和乙二醇的特点

盐水和乙二醇的特点 随着制冷行业的不断发展,市面上载冷剂种类五花八门,种类繁多,那么常用的载冷剂有什么呢?为大家逐个分析。目前市场上载冷剂可分为两大类,为传统载冷剂和新型载冷剂。所谓传统载冷剂是什么呢?传统载冷剂指的是目前市场较为常见的如:水、盐水、乙二醇或丙二醇溶液、二氯甲烷和三氯乙烯等这类载冷剂,这类载冷剂往往价格比较低廉,对设备要求不高。接下来我们就研究下传统载冷剂的特性。 乙二醇(ethyleneglycol)又名"甘醇"、"1,2-亚乙基二醇",简称EG。化学式为(CH2OH)2,是最简单的二元醇。乙二醇是无色无臭、有甜味液体,对动物有毒性,人类致死剂量约为1.6g/kg。乙二醇能与水、丙酮互溶,但在醚类中溶解度较小。用作溶剂、防冻剂以及合成涤纶的原料。乙二醇的高聚物聚乙二醇(PEG)是一种相转移催化剂,也用于细胞融合;其硝酸酯是一种炸药。盐水,常指海水或普通盐(NaCl)溶液。通常情况下海水中溶解的盐含量为35000mg/L(3.5%),其中包括20000mg/L的氯化物,主要是普通盐类,另外也存在其他种盐水,其中一些含溶解盐300000mg/L。那么这两者作为载冷剂在制冷行业表现如何呢?其实作为传统载冷剂都有一个通病那就是腐蚀性,盐水和乙二醇对管路及设备都具有腐蚀性,很多企业在长期使用盐水或者乙二醇之后,管路锈蚀情况非常严重,不得不清洗更换管路,腐蚀是一大难题。还有一方面便是温域狭窄,在一些特定条件下不能满足其温度需要。所以针对这些情况新型载冷剂应运而生,无腐蚀、无毒害、温域宽广,解决了传统载冷剂不能解决的问题。 针对载冷剂还是推荐无腐蚀、无毒害、温域宽广的新型载冷剂冰河冷媒。

(新)丙二醇乙醚理化性质及危险特性

丙二醇乙醚理化性质及危险特性 标识中文名:丙二醇乙醚;1-乙氧基-2-丙醇危险化学品目录序号:114 英文名:propylene glycol monoethyl ether UN编号:/ 分子式:C5H12O2分子量:104.09 CAS号:1569-02-4 理化性质外观与性状无色液体。 熔点(℃)-90 相对密度(水=1) 0.90 相对密度(空气=1) / 沸点(℃)132.2 饱和蒸气压(kPa)0.960/25℃溶解性与水混溶。 毒性及健康危害侵入途径吸入、食入、经皮吸收。 毒性 LD50:7000~7110 mg/kg(大鼠经口) [50%水溶液];8100 mg/kg(兔经皮) LC50: 健康危害 动物中毒表现以中枢神经系统抑制为主,可致眼、呼吸道刺激和肾损害。 用本品溶液滴兔眼,可引起结膜刺激和暂时性角膜混浊。 急救方法 皮肤接触:脱去污染的衣着,用流动清水冲洗。眼睛接触:立即提起眼睑, 用流动清水冲洗。吸入:迅速脱离现场至空气新鲜处。必要时进行人工呼 吸。就医。食入:误服者给饮大量温水,催吐,就医。 燃烧爆炸危险性 燃烧性易燃燃烧分解物一氧化碳、二氧化碳。 闪点(℃) 43 爆炸上限(v%)/ 引燃温度(℃) / 爆炸下限(v%)/ 危险特性 其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧 化剂可发生反应。若遇高热,容器内压增大,有开裂和爆炸的危险。 储运条件 与泄漏处理 储运条件:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过 30℃。包装要求密封,不可与空气接触。应与氧化剂、酸类分开存放,切 忌混储。运输时要按规定路线行驶,勿在居民区和人口稠密区停留。泄 漏处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出 入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。 尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏: 用大量水冲洗,洗水稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收 容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。灭火方法 尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤 离。用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防 人员。灭火剂:水、雾状水、抗溶性泡沫、干粉、二氧化碳、砂土。

丙二醇醚国内市场现状及发展趋势

(1)生产情况 我国二元醇醚的生产始于20世纪70年代中期,当时生产的品种主要是乙二醇醚类产品,主要生产企业是天津石化公司的第三石油化工厂和江阴市怡达化学品有限公司。由于当时存在原材料供应不足、市场容量有限以及技术比较落后等方面问题,结果造成生产规模都比较小、消耗高、成本高,产品质量差。 20世纪80年代随着相关行业的发展,如汽车涂料(阴极电泳涂料和面漆)、水性涂料、乳胶建筑涂料、高固体份涂料、船舶涂料和集装箱涂料、硝基涂料、油墨、防冻液、刹车液和清洗剂等领域,二元醇醚的需求量不断扩大,对产品品种和质量提出了更高的要求。在此背景下,大连理工大学、辽宁省化工研究院、华东理工大学、上海石油化工研究院、抚顺石油化工研究院、天津石化公司等大专院校和研究院所纷纷对二元醇醚产品进行开发研究。 20世纪90年代中期,江苏扬州华伦化工有限公司采用上海石油化工研究院技术建设了3000吨/年装置,于1994年投产。2003年规模扩大到5000吨/年,当年产量约4000吨;2004年生产规模扩至1万吨/年,产量达到5000吨。 上海高桥石化也采用上海石油化工研究院的技术建设了3000吨/年丙二醇醚装置,于1998年投产。2003年产量500吨,2004年1月份生产了150吨,之后由于环氧丙烷价格过高,丙二醇醚装置停产。 另外,江苏天音化工股份有限公司和江阴市怡达化工有限公司分别采用自己开发的技术建设了生产装置;江苏银燕化工股份有限公司采用浙江大学的技术建设了一套1万吨的丙二醇醚生产装置;天津亚华溶剂厂由于资金回收困难,2003、2004年丙二醇醚装置一直处于停产状态;吉化公司辽源有机化工厂由于原料贵、成本高,2004年未开工。 2004年,我国丙二醇醚总生产能力达到5.65万吨/年(其中2万吨/年为乙二醇醚和丙二醇醚兼产),丙二醇醚的产量约1.9万吨。正常生产的丙二醇醚生产企业有5家,我国丙二醇醚生产企业均采用环氧丙烷与相应的脂肪醇(甲醇、乙醇和丁醇)反应制得。国内主要丙二元醇醚生产厂家能力及产量如下表: 2004年国内主要丙二元醇醚生产企业(单位:吨/年) 序号企业名称生产能力产量技术来源 1上海高桥石化公司化工三厂3000150上海石油化工研究院 2扬州华伦化工有限公司100005000上海石油化工研究院 3江苏天音化工有限公司100008000自己开发 4江阴市怡达化工有限公司20000*1000自己开发 5天津亚华溶剂厂3000停产 6吉化公司辽源有机化工厂500停产 7江苏银燕化工股份有限公司100005000浙江大学 合计19150 *乙二醇醚和丙二醇醚能力,以乙二醇醚为主 除现有丙二醇醚生产厂外,由于目前我国丙二醇醚市场较好,华伦化工有限公司计划将丙二醇醚生产规模到2006年扩大至3万吨/年;江阴市怡达化工有限公司计划新建1套年产5万吨二元醇醚生产装置(兼产乙二醇醚和丙二醇醚);抚顺化工四厂2005年建设了1套年产3000吨丙二醇醚生产装置,但因流动资金等原因,装置一直未开车。另外,国内一些化工区有丙二醇醚招商项目。

二丙二醇MSDS

标 识 中文名: 二丙二醇 英文名:Dipropylene glycol 分子式: C6H14O3 分子量: 134.17 C A S 号: 110-98-5 ? RTECS 号 : UB8765000 ? U N 编号: 2810 ? 理 化 性 质 外观与性状:无色、无臭、略呈粘胶状的液体,有吸湿性。 主要用途:用于聚酯树脂的制造, 凝固点(℃): -40 相对密度(水=1):1.03 沸点(℃):232 相对蒸汽密度(空气=1):4.63 饱和蒸汽压(kpa ):0.13(74℃) 溶解性:与水混溶,可混溶于甲醇、乙醚 临界温度(℃):不适用 临界压力(Mpa ):不适用 燃 烧 爆 炸 危 险 性 燃烧性:可燃 建规火险等级:无相关资料 闪点(℃):118 爆炸下限%(v/v ): 2.9 引燃温度(℃):320 爆炸上限%(v/v ):12.7 危险特性:皮肤刺激性小。对人无不良作用。 燃烧(分解)产物:一氧化碳、二氧化碳 稳定性:正常环境温度下储存和使用,稳定 避免接触条件:静电放电、热、潮湿等 聚合危害:不能出现 禁忌物:强氧化物,强酸,强碱。 灭火方法:遇到大火,消防人员须在有防爆掩蔽处操作。喷水保持火场容器冷却,直至灭火结束。消防人员必须穿全身防火防毒服,防止皮肤和眼睛接触,佩戴正压式空气呼吸器,在上风向灭火。防止与热分解产物接触。 灭火剂:采用雾状水、泡沫、干粉、二氧化碳、砂土灭火。 包 装 与 存 储 危险性类别:无危害类别 危险货物包装标志: 无 包装类别: Z01 储运注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。

乙二醇、丙二醇、1,3-丙二醇、1,4-丁二醇发展状况

全国玉米深加工产业交流展示会-论文集 菌1,3嚣二薅产量369/L, 质量转化率70%。通过了江 苏省科技厅鉴定。 本研究起始原料淀粉, 经糖化、甘油发酵、发酵液 除蘸体酵母、含甘油发酵液 配料灭菌。最p进入1,3丙 二醇发酵,比用提取甘油后 发酵,畿节约粮耗和成本, 扣合发酵液中甘油每吨耗粮 2.5吨。 四、1。4丁二醇 (buryleneglyc01) 2003年全球1,4一丁二 醇生产能力超过150万吨/年。主要用于工程塑料、合成纤维、制药等。1,4丁二醇的生产方法,几经发展,从过去炔醛法、苯法.一直到DaryMckee公司开发的顺酐酯化加氢法,因采用廉价的顺酐为原料,是国际公认投资费用低,最有竞争力的方法。其工艺第一步是顺酐与乙醇进行酯化反应生成马来酸单乙酯;第二步单乙酯在离了交换树脂催化剂作用下得到双醮;第三步是马来酸二乙酯加氢,先是成丁二酸二乙酯,然后再氢解成1,4一丁二醇。 我国目前用合成法生产1,4丁二醇原有装置并不少,但规模较小,采用以乙炔和甲醛为原料的Reppe法工艺,缺乏竞争力。山东东营东港化工股份有限公闭,引进DaryMckee公司的顺酐酯化加氢技术,建成1万吨/年工业装置,并于透期投产。随着下游产晶的快速发展,1,4丁二醇缺明日益扩大,建设大型的1,4丁二醇企业是国内的发展趋向。2003年出酉三维集团引进美国ISP技术,建成年产25000吨1,4丁二醇装置。2004年10月中国蓝星集团决定采用英国戴维公司技术,将在天津建设年产l,4丁二醇5.5万吨项目。图前1,4丁二醇价格(纯度99.5%)。进口产品每吨18000—18200元(墨本产)、20500元(德国产)。 未来5年全球1,4一丁二醇需求的年均增长率为45%。 2000年我国1,4一T二簿BDO需求量为4.1万吨.其中对苯二甲酸丁二醇酯(PB∞为1.5万吨,聚氨酯0.6万吨、卜丁内酯0。6万吨、圜氢呋喃0。75万吨、其他用途0.65万吨。2004年中国BDO消费量就达到12.3万t,其中进口9万多t。 2005年国内BDO市场将有lO万吨左右的缺口;2005。2009年,我国BDO需求年均增长率高达15%,到2009年BDO需求量将达到25万吨以上。届时我国将超过日本成为豫洲最大的BDO消费圈。 预计到2009年我国1,4一丁二醇生产能力将达到27。6万吨,以开工率90%计,产量可基本满足国内市场需求。 ?265?

二丙二醇单丁醚

二丙二醇单丁醚化学品安全 技术说明书 第一部分:化学品名称化学品中文名称:二丙二醇单丁醚 化学品英文名称:dipropylene glycol mono-n-butyl ether 技术说明书编码:2205CAS No.:29911-28-2 分子式:C 10H 22O 3 分子量:190.32第二部分:成分/组成信息有害物成分含量CAS No.第三部分:危险性概述健康危害:对眼及皮肤刺激性小。未见有中毒病例。浓度高时可引起麻醉作用。 环境危害:对环境有危害,对水体可造成污染。燃爆危险:本品可燃,具刺激性。第四部分:急救措施皮肤接触:脱去污染的衣着,用流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。第五部分:消防措施危险特性:遇明火、高热可燃。与氧化剂可发生反应。若遇高热,容器内压增大,有开裂和爆炸的危险。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。第六部分:泄漏应急处理应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给式呼吸器,穿一般作业工作服。不要直接接触泄漏物。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土吸收。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。第七部分:操作处置与储存 有害物成分 含量 CAS No.:二丙二醇单丁醚 29911-28-2

丙二醇甲醚

化学品中文名称:丙二醇甲醚 产品名称:丙二醇甲醚(PM) 产品英文名:Propylene Glycol Methyl Ether CAS No:107-98-2 分子式:CH2OCH2CHOHCH2 分子量: 第二部分:危险性概述 危险性类别: 侵入途径: 健康危害:动物实验显示本品有轻度麻醉性及刺激性。未见职业性危害。 环境危害: 燃爆危险:本品可燃。 第三部分:急救措施 皮肤接触:脱去污染的衣着,用流动清水冲洗。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第四部分:消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 灭火剂:雾状水、泡沫、干粉、二氧化碳、砂土。 第五部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自吸过滤式防毒面具(全面罩),穿一般作业工作服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第六部分:操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴化学安全防护眼镜,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、酸类分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第七部分:接触控制/个体防护

二丙二醇项目可行性研究报告

二丙二醇项目 可行性研究报告 xxx实业发展公司

二丙二醇项目可行性研究报告目录 第一章总论 第二章项目建设背景及必要性分析第三章产业分析预测 第四章建设规划分析 第五章选址可行性分析 第六章土建工程分析 第七章项目工艺分析 第八章环保和清洁生产说明 第九章安全管理 第十章风险评价分析 第十一章项目节能方案 第十二章项目实施安排方案 第十三章投资规划 第十四章项目盈利能力分析 第十五章招标方案 第十六章综合评价说明

第一章总论 一、项目承办单位基本情况 (一)公司名称 xxx实业发展公司 (二)公司简介 公司在发展中始终坚持以创新为源动力,不断投入巨资引入先进研发设备,更新思想观念,依托优秀的人才、完善的信息、现代科技技术等优势,不断加大新产品的研发力度,以实现公司的永续经营和品牌发展。 公司致力于创新求发展,近年来不断加大研发投入,建立企业技术研发中心,并与国内多所大专院校、科研院所长期合作,产学研相结合,不断提高公司产品的技术水平,同时,为客户提供可靠的技术后盾和保障,在新产品开发能力、生产技术水平方面,已处于国内同行业领先水平。 公司坚守企业契约精神,专业为客户提供优质产品,致力成为行业领先企业,创造价值,履行社会责任。 (三)公司经济效益分析 上一年度,xxx科技发展公司实现营业收入34288.31万元,同比增长17.26%(5047.68万元)。其中,主营业业务二丙二醇生产及销售收入为30765.00万元,占营业总收入的89.72%。

根据初步统计测算,公司实现利润总额10062.90万元,较去年同期相比增长2397.25万元,增长率31.27%;实现净利润7547.17万元,较去年同期相比增长1606.69万元,增长率27.05%。 上年度主要经济指标 二、项目概况

“二甘醇”和“丙二醇”

“二甘醇”和“丙二醇” 谢炜(甘肃岷县一中甘肃岷县748400) 关键词:二甘醇丙二醇物理化学性质中毒探讨 摘要:本文就曾广泛引起关注的“亮菌甲素”中毒事件中用“二甘醇”代替“丙二醇”制造假“亮菌甲素”所涉及的二甘醇和丙二醇作了简要的介绍,并就中毒原因作了探讨。 齐齐哈尔第二制药厂用“二甘醇”代替“丙二醇”制造假“亮菌甲素”注射液导 致病人死亡的事件曾引起社会的广泛关注,那么,作为药用辅料的丙二醇究竟有何功效,二甘醇是何物,又是怎样危害人体健康的呢?本文就此问题作以简要的介绍,不妥之处敬请专家批评。 一、二甘醇 二甘醇(Diethylene glycol)(Diglycol)系统命名为二(2-羟基乙基)醚、又称一缩二乙二醇、乙二醇醚、二乙二醇醚等。 ⒈结构:分子式为C4H10O3,结构简式为HO-CH2-CH2-O-CH2-CH2-OH,从结构式可以看出,既具有羟基,又具有醚键,属双官能团物质。 ⒉物理性质:具有无色、无臭、透明、吸湿性的粘稠液体,有着辛辣的甜味,无腐蚀性,低毒。沸点245℃,凝固点-6.5℃,相对密度1.1184,粘度0.30泊,易溶于水、醇、丙酮、乙醚、乙二醇等其它极性溶剂,不溶于苯、甲苯、四氯化碳。 ⒊化学性质:二甘醇分子结构中含有醚键和羟基两种官能团,使它具有独特的化学性质。 ⑴与酸酐反应

⑵与浓氢碘酸发生醚键断裂反应 ⑶与卤代烃作用生成醚,如合成冠醚 ⒋制法:以乙烯为原料制取,也是环氧乙烷制乙二醇的副产品。 ⒌用途:二甘醇是一种重要的化工原料,主要用作气体的脱水剂和萃取剂,也可用作纺织品的润滑剂、软化剂和整理剂,硝酸纤维素、树脂和油脂的溶剂,

丙二醇乙醚

丙二醇乙醚化学品安全技术 说明书 第一部分:化学品名称化学品中文名称:丙二醇乙醚 化学品英文名称:propylene glycol monoethyl ether 中文名称2:1-乙氧基-2-丙醇 英文名称2:1-ethoxy-2-propanol 技术说明书编码:1444CAS No.: 1569-02-4 分子式: C 5H 12O 2分子量:104.15第二部分:成分/组成信息 有害物成分含量CAS No.第三部分:危险性概述健康危害:动物中毒表现以中枢神经系统抑制为主,可致眼、呼吸道刺激和肾损害。用本品溶液滴兔眼,可引起结膜刺激和暂时性角膜混浊。 燃爆危险:本品易燃,具刺激性。第四部分:急救措施皮肤接触:脱去污染的衣着,用流动清水冲洗。眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。食入:饮足量温水,催吐。就医。第五部分:消防措施危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂可发生反应。若遇高热,容器内压增大,有开裂和爆炸的危险。有害燃烧产物:一氧化碳、二氧化碳。灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。用水喷射逸出液体,使其稀释成不燃性混合物,并用雾状水保护消防人员。灭火剂:水、雾状水、抗溶性泡沫、干粉、二氧化碳、砂第六部分:泄漏应急处理 有害物成分 含量 CAS No.: 丙二醇乙醚 1569-02-4

丙二醇的特性

1.丙二醇冰点和沸点 丙二醇水溶液因为其无毒、无腐蚀等性质,在诸多领域作为载冷剂应用。其物理性质对设备和系统的设计都十分重要,下面是二醇水溶液的冰点和沸点与其浓度的关系。(数据来源ASHRAE手册2005) 丙二醇浓度冰点沸点丙二醇浓度冰点沸点 质量浓度体积浓度℃100.7KPa 质量浓度体积浓度℃100.7KPa 0.0 0.0 0.0 100.0 50.0 49.9 -36.6 105.6 5.0 4.8 -1.6 100.0 51.0 50.9 -38.2 105.6 10.0 9.6 -3.3 100.0 52.0 51.9 -39.8 105.6 15.0 14.5 -5.1 100.0 53.0 53.0 -41.6 106.1 20.0 19.4 -7.1 100.6 54.0 54.0 -43.3 106.1 21.0 20.4 -7.6 100.6 55.0 55.0 -45.2 106.1 22.0 21.4 -8.0 100.6 56.0 56.0 -47.1 106.1 23.0 22.4 -8.6 100.6 57.0 57.0 -49.0 106.7 24.0 23.4 -9.1 100.6 58.0 58.0 -51.1 106.7 25.0 24.4 -9.6 101.1 59.0 59.0 59.0 106.7 26.0 25.3 -10.2 101.1 60.0 60.0 107.2 27.0 26.4 -10.8 101.1 65.0 65.0 108.3 28.0 27.4 -11.4 101.7 70.0 70.0 110.0 29.0 28.4 -12.0 101.7 75.0 75.0 113.9 30.0 29.4 -12.7 102.2 80.0 80.0 118.3 31.0 30.4 -13.4 102.2 85.0 85.0 125.0 32.0 31.4 -14.1 102.2 90.0 90.0 132.2 33.0 32.4 -15.6 102.2 95.0 95.0 154.4 34.0 33.5 -16.4 102.2 35.0 34.4 -17.3 102.8 36.0 35.5 -18.2 102.8 37.0 36.5 -19.1 102.8 38.0 37.5 -20.1 103.3 39.0 38.5 -21.1 103.3 40.0 39.5 -22.1 103.9 41.0 40.5 -23.2 103.9 42.0 41.5 -24.3 103.9 43.0 42.5 -25.5 103.9 44.0 43.7 -26.7 103.9 45.0 44.7 -27.9 104.4 46.0 45.7 -29.3 104.4 47.0 46.8 -30.6 104.4 48.0 47.8 -32.1 105.0 49.0 48.9 -33.5 105.0

丙二醇MSDS

1,2-丙二醇安全技术说明书 第一部分:化学品名称 化学品中文名称:1,2-丙二醇化学品俗名: 化学品英文名称:methylglycol 英文名称: 技术说明书编码:1673 CAS No.:57-55-6 生产企业名称: 地址: 生效日期: 第二部分:成分/组成信息 有害物成分含量CAS No. 1,2-丙二醇57-55-6 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:对皮肤有原发性刺激作用;对眼无刺激和损害,未见生产性中毒报道。 环境危害: 燃爆危险:本品可燃,具刺激性。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。

眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。 吸入:脱离现场至空气新鲜处。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:遇明火、高热可燃。 有害燃烧产物:一氧化碳、二氧化碳。 灭火方法: 第六部分:泄漏应急处理 应急处理: 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理 人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制 性空间。小量泄漏:用砂土、蛭石或其它惰性材料吸收。也可以用大量水冲洗,洗水稀释后 放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或专用收集器内,回收或 运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项: 密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴 自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。 远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作 场所空气中。避免与氧化剂、还原剂接触。搬运时要轻装轻卸,防止包装及容器损坏。配备 相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事项: 储存于阴凉、通风的库房。远离火种、热源。应与氧化剂、还原剂等分开存放,切忌混储。 配备相应品种和数量的消防器材。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 中国MAC(mg/m3):未制定标准

丙二醇

丙二醇 检验项目规格 序号项目规格再试验项目 1 性状本品为无色澄清的黏稠液体;无臭,味稍甜;有引湿性* 2 溶解度本品与水、乙醇或三氯甲烷能任意混溶 3 相对密度在25℃时应为1.035~1.037 4 鉴别(1)供试品溶液主峰的保留时间应与对照品主峰的保留时间一致 (2)本品的红外光吸收图谱应与对照的图谱(光谱集图706图)一致 5 酸度用氢氧化钠滴定液(0.01mol/L)滴定至溶液显蓝色,消耗氢氧化钠滴定液(0.01mol/L)体积不得过0.5ml 6 氯化物与标准氯化钠溶液7.0ml制成的对照液比较,不得更浓(0.007%) 7 硫酸盐应不得更浓(0.006%) 8 有关物质含一缩二乙二醇(二甘醇)不得过0.001%;一缩二丙二 醇不得过0.1%;二缩三丙二醇不得过0.03%;环氧丙烷 不得过0.001% * 9 氧化性物质消耗硫代硫酸钠滴定液(0.005mol/L)的体积不得过0.2ml 10 还原性物质溶液应无变化 11 水分不得过0.2%* 12 炽灼残渣遗留残渣不得过3.5mg 13 重金属不得过百万分之五 14 砷盐应符合规定(0.0002%) 15 含量含C 3H 8 O 2 不得少于99.5% * 16 微生物限度细菌应不得过100cfu/g * 霉菌和酵母菌数应不得过100cfu/g 大肠埃希菌应不得检出 注:打*号项目为复检项目 一般规定 抽样方法依抽样的标准操作程序进行(SOP-20-007) 取样量检验量:250g;留样量:100g 复验期至有效期前6个月 有效期同生产厂家的有效期限 储存条件密封,在干燥处保存 供应商见药品合格供应商目录汇总表 检验方法 1 性状 本品为无色澄清的黏稠液体;无臭,味稍甜;有引湿性。 2.溶解度 本品与水、乙醇或三氯甲烷能任意混溶。

丙二醇调研报告

1,2‐丙二醇市场调研报告 第一章 1,2-丙二醇概述 1.1 1,2-丙二醇的基本概况 产品名称: 1,2-丙二醇;α-丙二醇;甲基乙二醇 产品英文名: 1,2-Propylene glycol , 1,2-propanediol 分子式: HOCH2CH(OH)CH3;C3H8O2 分子量:76.1 CAS号: 57-55-6 图1.1 1,2-丙二醇的结构图 1,2-丙二醇无无色粘稠稳定的吸水性液体,几乎无味无臭,易燃,低毒。吸湿性强。可燃。与水、乙醇及多种有机溶剂混溶。 产品用途:丙二醇是不饱和聚酯、环氧树脂、聚氨酯树脂的的重要原料,这方面的用量约占丙二醇总消费量的25%以上,这种不饱和聚酯大量用于表面涂料和增强塑料。 丙二醇的粘性和吸湿性好,并且无毒,因而在食品、医药和化妆品工业中广泛用作吸湿剂、抗冻剂、润滑剂和溶剂。 在食品工业中,丙二醇和脂肪酸反应生成丙二醇脂肪酸酯,主要用作食品乳化剂;丙二醇是调味品和色素的优良溶剂。 丙二醇在医药工业中常用作制造各类软膏、油膏的溶剂、软化剂和赋形剂等,由于丙二醇与各类香料具有较好互溶性,因而也用作化妆品的溶剂和软化剂等等。 丙二醇还用作烟草增湿剂、防霉剂,食品加工设备润滑油和食品标记油墨的

溶剂。 丙二醇的水溶液是有效的抗冻剂。 1.21,2-丙二醇的理化性质 物理性质:沸点187.3℃。熔点-60℃。相对密度1.0381(20/20℃)。折射率nD(20℃)1.4326。表面张力(20℃)38mN/m。粘度(20℃)60.5mPa·s。比热容(20℃)2.49kJ/(kg·℃)。汽化热(101.3kPa)711kJ/kg。燃烧热(25℃)1824.0kJ/mol。闪点(开杯)99℃。自燃点415.5℃。临界温度352℃。临界压力6.1MPa。 表1.2 1,2-丙二醇理化性质表 产品名 1,2-丙二醇 熔点 -59℃ 沸点 187.2℃ ,能与水共沸,沸点按参杂比例在100~187.3℃之间. 相对密度(水=1) 1.0381 (25℃) 相对密度(空气=1) 2.62 饱和蒸汽压 0.02(25℃) 辛酸/水分配系数的对数值 无资料 溶解性 与水混溶,可混溶于乙醇、乙醚、多数有机溶剂。 闪点 99℃ 折射率 1.4326 溶解性 与水、醇、丙酮、醚及氯仿互溶,与芳烃部分互溶。 1.31,2-丙二醇的毒性、包装、贮存及运输等 健康危害:对皮肤有原发性刺激作用;对眼无刺激和损害,未见生产性中毒报道。

丙二醇甲醚醋酸酯、丙二醇甲醚丙酸酯、二丙二醇甲醚醋酸酯

PMA: Propylene Glycol Monomethyl Ether Acetate (PMA) Propylene Glycol Monomethyl Ether Propionate (PMP) Dipropylene glycol methyl ether acetate(DPMA) CAS:108-65-6 Chemical Formula: CH3COOCH(CH3)CH2OCH3 Synonym/Trade Name: 1-methoxy-2-acetoxypropane PMP: CAS:15764-24-6 Chemical Formula: CH3CH2COOCH(CH3)CH2OCH3 DPMA: CAS: 88917-22-0 Chemical Formula: CH 3(OCH 2 CHCH 3 ) 2 OOCCH3 Technical Index They are excellent industrial solvents with low toxicity, and have strong solubility for polar and unpolar materials, which can be used for advanced paints, printing inks as well as some other polymers, including amido, methyl ester, ethyl, polyester, cellulose acetate, glycol acid resin, crylic acid resin, epoxy resin and nitrocellulose ect. And PMP is the best solvent for paints and printing inks, which is suitable for unsaturated polyester, polyurethane, crylic acid resin and epoxy resin etc. Package: 200KGS/Iron Drum Storage and Transportation: Store in cool, dry well-ventilated location, transport as hazard chemicals.

相关主题