搜档网
当前位置:搜档网 › AM26LS31驱动资料

AM26LS31驱动资料

AM26LS31驱动资料
AM26LS31驱动资料

步进电机及其驱动系统简介中英文翻译

步进电机及其驱动系统简介中英文翻译Step characteristics for machine for angular displacement for entering the electrical engineering is first kind will give or get an electric shocking the pulse signal conversion cowgirl or line potential moving battery carry outing a piece, having the fast stopping, accurate step entering and directly accepting the arithmetic figure measuring, because of but got the extensive application.Such as in the drafting machine, print the machine and optical instrument inside, and all adopt the inside of a place control system for entering the electrical engineering to positioning to paint the pen print head or optical prinipal, especially indrstry process the type control, and move to spread to feel the to can immediately attain the precision fixed position because of its precision and need not potential, and control the technique along with the calculator of continuously deveolp, applied to would be more and more extensive. Control and can is divided into the simple control sum the complicacy to control to motor two kind.The simple control points to proceeds to start to motor, the system move, positive and negative revolution and sequential https://www.sodocs.net/doc/7916338534.html,plicacy the control point to the motor's revolving speed, screw angle, turning moment, tension, electric current etc. physics quantisty progress control.Control technique that the

伺服驱动器的工作原理

伺服驱动器的工作原理 随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用全数字式交流伺服电机作为执行电动机。在控制方式上用脉冲串和方向信号实现。 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。 速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度

方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V 对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行

主轴驱动系统常见故障及处理

第5章主轴驱动系统常见故障及处理 数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 ——; ——。 ——。 5.1主轴驱动系统概述 主轴驱动系统也叫主传动系统,是在系统中完成主运动的动力装置部分。主轴驱动系统通过该传动机构转变成主轴上安装的刀具或工件的切削力矩和 切削速度,配合进给运动,加工出理想的零件。它是零件加工的成型运动之一,它的精度对零件的加工精度有较大的影响。 5.1.1数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: (1)调速范围宽并实现无极调速 为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。 目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。 主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。

实用的步进电机驱动电路图

实用的步进电机驱动电路(图) 概述 步进电机是一种将电脉冲转化为角位移的执行机构,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 目前,对步进电机的控制主要有由分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。本设计选用第三种方案,用PMM8713三相或四相步进电机的脉冲分配器、SI-7300A 两相或四相功率驱动器,组成四相步进电机功率驱动电路,以提高集成度和可靠性,步进电机控制框图见图1。 图1 步进电机控制系统框图 硬件简介 ● PMM8713原理框图及功能 PMM8713是日本三洋电机公司生产的步进电机脉冲分配器,适用于控制三相或四相步进电机。控制三相或四相步进电机时都可以选择3种励磁方式,每相最小吸入与拉出电流为20mA,它不仅满足后级功率放大器的输入要求,而且在其所有输入端上均内嵌施密特触发电路,抗干扰能力强,其原理框图如图2所示。

图2 PMM8713的原理框图 在PMM8713的内部电路中,时钟选通部分用于设定步进电机的正反转脉冲输入发。PMM8713有两种脉冲输入法:双脉冲输入法和单脉冲输入法。采用双脉冲输入法时,CP、CU两端分别输入步进电机正反转的控制脉冲。当采用单脉冲输入时,步进电机的正反转方向由U/D的高、低电位决定。 激励方式控制电路用来选择采用何种励磁方式。激励方式判断电路用于输出检测;而可逆环形计数器则用于产生步进电机在选定的励磁方式下的各相通断时序信号。 ● SI-7300A的结构及功率驱动原理 SI-7300A是日本三青公司生产的高性能步进电机集成功率放大器,该器件为单极性四相驱动,采用SIP18封装。 步进电机功率驱动级电路可分为电压和电流两种驱动方式。电流驱动方式最常用的是PWM恒流斩波驱动电路,也是最常用的高性能驱动方式,其中一相的等效电路图如图3所示。

课主轴驱动系统故障维修例[

第七章第四课主轴驱动系统故障维修50 例[1] 2009-05-15 05:55 例301.机床剧烈抖动、驱动器显示AL-04 报警 故障现象:一台配套FANUC 6系统地立式加工中心, 在加工过程中, 机床出现剧烈抖动、交流主轴驱动器显示AL-04 报警. 分析与处理过程:FANU(交流主轴驱动系统AL-04报警地含义为“交流输入电路中地P1、F2、F3熔断器熔断”,故障可能地原因有: 1>交流电源输出阻抗过高. 2>逆变晶体管模块不良. 3>整流二极管(或晶闸管>模块不良. 4>浪涌吸收器或电容器不良. 针对上述故障原因, 逐一进行检查. 检查交流输入电源, 在交流主轴驱动器地输入电源,测得R、S相输入电压为220V,但T相地交流输入电压仅为120V,表明驱动器地三相输入电源存在问题. 进一步检查主轴变压器地三相输出, 发现变压器输入、输出, 机床电源输入均同样存在不平衡, 从而说明故障原因不在机床本身. 检查车间开关柜上地三相熔断器,发现有一相阻抗为数百欧姆.将其拆开检查,发现该熔断器接线螺钉松动, 从而造成三相输入电源不平衡;重新连接后, 机床恢复正常. 例302?驱动器出现报警“ A”地故障维修 故障现象:一台配套FANUC 0■地数控车床,开机后,系统处在“急停”状态,显示“ NOTREADY,操作面板上地主轴报警指示灯亮. 分析与处理过程:根据故障现象, 检查机床交流主轴驱动器, 发现驱动器显示为“ A” . 根据驱动器地报警显示, 由本章前述可知, 驱动器报警地含义是“驱动器软件出错” , 这一报警在驱动器受到外部偶然干扰时较容易出现, 解决地方法通常是对驱动器进行初始化处理. 在本机床按如下步骤进行了参数地初始化操作: 1>切断驱动器电源, 将设定端S1 置TEST. 2>接通驱动器电源. 3>同时按住MOD E UP DOWNDATASET个键4>当显示器由全暗变为“ FFFFF后,松

Copley驱动器用户指南

Copley驱动器总结 一、驱动器简介 -S和-R版本可以从模拟正弦/余弦编码器和无刷解析器中模拟出正交编码器的输出信号,我们的驱动器是XTL-230-40,输入标准版本,支持正交编码器。 驱动器可以以以下几种方式进行操作: 1.作为一个传统的电机驱动器,接受外部控制器发出的电流,速度和位置信号。 在电流和速度模式下,可以接受正负10V的模拟信号;占空比50%的PWM波,或者PWM/极性输入。 在位置模式下,输入可以是从步进电机控制器发出的位置增量命令(以脉冲方向格式或者递增递减计数格式)或者是从主编码器输出的A/B正交指令。 2.作为CANopen网络的一个网点。 3.作为DeviceNET网络的一个网点。 4.作为一个独立的控制器运行虚拟机上的程序,或者通过RS232串口运行ASCII码格式的 指令。 另外还需要一个独立的+24V电源给内部控制电路供电,这个电源跟主电源隔离开来。这个设计保证了主电源断开,+24v电源不断开的时候,驱动器能保留位置信息和通信。 CME2 CME2是对驱动器进行配置和调试的软件,通过RS232串口连接电脑和驱动器。所有的配置驱动器的操作都可以通过这个软件完成。电机数据存储为.CCM文件,驱动器数据存储为.CCX 文件。

二、驱动器操作 供电和接地图 电源 交流电压经过整流滤波输出直流驱动PWM逆变器。 +24V电源经过一个DC/DC变换器,产生控制电路所需的电压和一个+5V电源给HALL电路和编码器供电。 操作模式 控制环的嵌套和模式 驱动器可以使用最多三个嵌套的控制环,电流环、速度环、位置环在三种相关联的模式下控制电机

驱动器说明书

公司简介 上海固若金电子科技有限公司是一家从事步进电机驱动器开发、生产、销售为一体的高科技企业,并且 多年从事电机控制系统的开发,致力于机电一体化产品的开发和运动控制系统的优化集成。 公司现主要产品为步进电机驱动器,功能强大,性能可靠,性价比极高。并且可为客户量身定做各种控 制系统。产品广泛应用于数控机床、电脑绣花、包装机械、雕刻机、绕线机、 XYZ 三维工作台、医疗设备 等行业中。 公司拥有一批积累了丰富经验的开发、生产、销售和工程服务人员。可为用户开发多种层次自动化控制 系统,包括产品选型、方案设计。公司坚持 " 质量第一,用户至上 " 的原则,服务于用户,让用户满意, 为用户提供优质产品和服务。 步进电机选型指南 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它 就驱动步进电机按设定的方向转动一个固定的角度(步进角)。您可以通过控制脉冲个数来控制角位移量, 从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速 的目的。 一、 步进电机的种类: 永磁式(PM) :磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度 或15度;多用于空调风摆上。 反应式(VR):国内一般叫BF,常见的有三相反应式,步距角为1.5度;也有五相反应式。噪音大,无 定为转距已大量淘汰。 混合式(HB):常见的有两相混合式,五相混合式,三相混合式,四相混合式,两相跟四相可以通用驱 动器,五相跟三相必须使用各自的驱动器; 两相、四相混合式步距角多是1.8度,具有小体积,大力距,低噪音; 五相混合式步进电机一般为0.72度,电机步距角小,分辨率高,但是驱动电路复杂,接线麻烦,如5相十线制。 三相混合式步进电机步距角为1.2度 1、步进电机的保持转距:指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要 的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断 衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如, 当人们说1N.m的步进电机,在没有特殊说明的情况下是指保持转矩为1N.m的步进电机。 2、步进电机的精度:步进电机的精度为步进角的3-5%,且不累积。 3、空载启动频率:即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机 不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动, 脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到 高速)。 4、步距角:驱动器接收一个脉冲,电机对应转动的角度。 5、定位转距:指步进电机不通电的情况下,定子锁住转子的力矩。 6、运行频率:步进电机在不失步状态下运行最高频率。

步进电机及其驱动电路

第三节步进电动机及其驱动 一、步进电机的特点与种类 1.步进电机的特点 步进电机又称脉冲电机。它是将电脉冲信号转换成机械角位移的执行元件。每当输入一个电脉冲时,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步。只要控制输入电脉冲的数量、频率以及电机绕组通电相序即可获得所需的转角、转速及转向。 步进电动机具有以下特点: ?工作状态不易受各种干扰因素(如电压波动、电流大小与波形变化、温度等)的影响; ?步进电动机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零” ; ?由于可以直接用数字信号控制,与微机接口比较容易; ?控制性能好,在起动、停止、反转时不易“丢步”; ?不需要传感器进行反馈,可以进行开环控制; ?缺点是能量效率较低。 就常用的旋转式步进电动机的转子结构来说,可将其分为以下三种: (1)可变磁阻(VR-Variable Reluctance),也叫反应式步进电动机 (2)永磁(PM-Permanent Magnet)型 (3)混合(HB-Hybrid)型 (1)可变磁阻(VR-Variable Reluctance) 结构原理:该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称作反应式步进电动机。其结构原理如图3.5定子1 上嵌有线圈,转子2朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁阻型。

图3.6 可变式阻步进电机 可变磁阻步进电机的特点: 反应式电动机的定子与转子均不含永久磁铁,故无励磁时没有保持力; 需要将气隙作得尽可能小,例如几个微米; 结构简单,运行频率高,可产生中等转矩,步距角小(0.09~9°) 制造材料费用低; 有些数控机床及工业机器人上使用。 (3)混合(HB-Hybrid)型 结构原理 这类电机是PM式和VR式的复合形式。其定子与VR类似,表面制有小齿,转子由永磁铁和铁心构成,同样切有小齿,为了减小步距角可以在结构上增加转子和定子的齿数。其结构如图3.7所示。 混合式步进电机特点: HB兼有PM和VR式步进电机的特点: 步距角可以做得较小(0.9~3.6°); 无励磁时具有保持力; 可以产生较大转矩,应用较广。

步进电机驱动程序(汇编)

附件: ORG 0000H LJMP MAIN ORG 0003H LJMP Speed_Up ORG 0013H LJMP Speed_Down ORG 0100H MAIN: ;打开外部中断IT0/IT1 SETB EA SETB EX0 SETB EX1 SETB IT0 SETB IT1 ;扫描键盘,无键按下显示0,并继续扫描 MAKEY: MOV DPTR,#TAB MOV A,#0 MOVC A,@A+DPTR MOV P0,A MOV P3,#0FFH MOV A,P3 CPL A JZ MAKEY LCALL D10MS JZ MAKEY ;当有键按下时,启动步行电机转动 Speed EQU 20H Num EQU 21H MOV Speed,#60 ;Speed初始化,Speed控制延时的时间,即脉冲的频率 MOV Num,#1 ;Num初始化,Num存放数码管显示的转速数值 JNB ACC.4,TO_TWO ;默认设置为正向转动,转速为1,当有反向键按下,按反向转动 ;------------------------ 1号程序:控制步行电机正转-------------------------------- TO_ONE:

MOV R7,#4 MOV A,#01H MOV P3,#0FFH LP1: MOV P1,A LCALL DELAY LCALL DISPLAY RL A ; 正向输入脉冲信号 DJNZ R7,LP1 JNB P3.4,TO_TWO ; 有反向键按下,跳转到2号程序 LJMP TO_ONE ;------------------------2号程序:控制步行电机反转---------------------------------- TO_TWO: MOV R7,#4 MOV A,#08H MOV P3,#0FFH LP2: MOV P1,A LCALL DELAY LCALL DISPLAY RR A ; 反向输入脉冲信号 DJNZ R7,LP2 JNB P3.5,TO_ONE ;有正向键按下,跳转到1号程序 LJMP TO_TWO ;----------------------------中断服务程序----------------------------------------------- Speed_Up: ; 外部中断IT0,控制加速 PUSH ACC LCALL D10MS MOV A,Speed CJNE A,#12,L1 ; 最大速度时,速度不再增加 LJMP L2 L1: ; 速度加1(减小脉冲周期) SUBB A,#12 MOV Speed,A INC Num L2: POP ACC RETI Speed_Down: ;外部中断IT1,控制减速 PUSH ACC

主轴驱动系统和主轴电机发展趋势

主轴驱动系统和主轴电机发展趋势 050810133 李阳阳数控机床主轴驱动系统作为机床的最核心的关键部件之一,其输出性能对数控机床的整体水平是至关重要的。主轴驱动远不同于一般工业驱动,它不但要求较高的速度精度,动态刚度,而且要求连续输出的高转矩能力和非常宽的恒功率运行范围。目前,各主要机床生产厂家和研究单位纷纷把目光投向交流主轴驱动系统。随着功率电子,计算机技术,控制理论,新材料和电机设计的进一步发展和完善,矢量控制交流电机主轴驱动系统的性能已经达到甚至超过了直流主轴驱动系统。交流主轴驱动系统正在逐步取代直流系统。 1交流主轴驱动系统发展趋势 交流主轴驱动系统的逆变器一般基于矢量控制原理,采用正弦波宽调制方式,功率器件采用ICBT。根据电机类型可分为感应电机主轴驱动系统,永磁同步电机主轴驱动系统,开头磁阻电机主轴驱动系统。 1.1 感应电机交流主轴驱动系统 感应电机交流主轴驱动系统是当前商用主轴驱动系统的主流,其功率范围为从零点几个千瓦到几百千瓦,广泛应用于各种数控机床上。 感应主轴电机基速以上的放展运动范围可以通过弱磁控制实现。其恒功率运动范围可达1:5.如果采用最新的绕组切换技术,其恒功率运动范围可达1:14.甚至更宽。目前,感应主轴电机最高转速可达100000r/min以上。尽管感应主轴电机结构相对简单,但其变频控制器价格却较高。而采用了磁场定向控制技术的变频器能提供连续的转矩/速度调节能力,较高的精度,运行可行性和较低的运行费用,因而在一定程度上抵消了整个系统的初始高价格。 感应式主轴电机的控制无一例外地采用磁场定向技术。该技术又分为间接磁场定向和直接磁场定向两种实现方式,其中间接转子磁场定向控制技术由于较容易实现而被广为应用。它能提供较高的控制品质,但这种技术过分依赖于电机的参数,当参数变化时,控制性能将严重下降,遗憾的是,在电机运行过程中,转子时间常数可以在400%的范围以内变化,因此现代主轴控制器均采用辨识,估算和自整定技术对参数变化在线补偿。这项技术另一个难题是随着电机速度要求越来越高,在恒功率弱磁运行时,当转子磁场发生变化,而滑查增益无法动态补偿时,将引起磁通和转矩的振荡。近年来,随着自适应观测器和微处理器性能的提高,直接磁场定向控制技术在主轴驱动中有取代间接磁场定向之势。 1.2 永磁交流主轴驱动系统 永磁交流主轴电机分为正弦波驱动主轴电机和方波驱动直流主轴电机。此类主轴电机以转子无功耗,高效率和高功率/转矩密度著称。其低速运行时可获得更大的功率和转矩,因此在同步攻丝时的伺服锁定运行和快速定向方面有较大的优势。一般永磁主轴电机功率在10千瓦以下,速度低于8000r/min。但目前转速在20000-30000r/min之间,功率超过10千瓦的主轴电机已经在制造。永磁主轴电机在转子上不存在发热元件,显著提高了电机效率,同时高效铁硼材料的应用,使得永磁主轴电机在所有形式的交流主轴电机中具有最高的效率和最小的体积。PMSM和BDCM电机均可运行于高速范围。但调磁范围受到一定的限制,使得速度不能很高。在控制策略方面,PMSM电机的定子绕组经特殊绕制后将产生正弦反电势,当绕组通入正弦电流后,便可以获得恒定的转矩。但是磁场定

步进电机驱动器的技术发展

将“电机固有步距角”细分成若干小步的驱动方法,称为细分驱动,细分是通过驱动器精确控制步进电机的相电流实现的,与电机本身无关。其原理是,让定子通电相电流并不一次升到位,而断电相电流并不一次降为0(绕组电流波形不再是近似方波,而是N级近似阶梯波),则定子绕组电流所产生的磁场合力,会使转子有N个新的平衡位置(形成N个步距角)。 最新技术发展: 国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电机的脉冲分辨率,减小或消除了震荡、噪声和转矩波动,使步进电机更具有“类伺服”特性。 采用细分技术与步进电机精度提高的关系:步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。 步电机系统解决方案

细分后电机运转时对每一个脉冲的分辨率提高了,但运转精度能 否达到或接近脉冲分辨率还取决于细分驱动器的细分电流控制精度 等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。 真正的细分对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。国内有一些驱动器采用对电机相电流进行“平滑”处理来取代细分,属于“假细分”,“平滑”并不产生微步,会引起电机力矩的下降。真正的细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。 对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变实际步距角,步进电机的‘相数’对改变实际步距角的作用几乎可以忽略不计。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产 厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有 步电机系统解决方案

步进电机及其驱动

步进电机及其驱动 1.步进电机的特点与种类 (1)步进电机的特点 步进电机又称脉冲电动机。它是将电脉冲信号转换成机械角位移的执行元件。其输入一个电脉冲就转动一步,即每当电动机绕组接受一个电脉冲,转子就转过一个相应的步距角。转子角位移的大小及转速分别与输入的电脉冲数及频率成正比,并在时间上与输入脉冲同步,只要控制输入电脉冲的数量、频率以及电动机绕组通电相序即可获得所需的转角、转速及转向、很容易用微机实现数字控制。步进电机具有如下特点: 1)步进电机的工作状态不易受各种干扰因素(如电源电压的波动、电流的大小与波形的变化、温度等)的影响,只要在它们的大小未引起步进电机产生“丢步”现象之前,就不影响其正常工作; 2)步进电机的步距角有误差,转子转过一定步数以后也会出现累积误差,但转子转过一转以后,其累积误差变为“零”,因此不会长期积累; 3)控制性能好,在启动、停止、反转时不易“丢步”。因此,步进电机被广泛应用于开环控制的机电一体化系统,使系统简化,并可靠地获得较高的位置精度。 (2)步进电机的种类 步进电机的种类很多,有旋转式步进电机,也有直线步进电机;从励磁相数来分有三相、四相、五相、六相等步进电机。就常用的旋转式步进电机的转子结构来说,可将其分为以下三种: 1)可变磁阻(VR-VariableReluctance)型 该类电动机由定子绕组产生的反应电磁力吸引用软磁钢制成的齿形转子作步进驱动,故又称反应式步进电机。其结构原理如下图所示。其定子1与转子2由铁心构成,没有永久磁铁,定子上嵌有线圈,转子朝定子与转子之间磁阻最小方向转动,并由此而得名可变磁型。 此类电动机的转子结构简单、转子直径小,有利于高速响应。由于VR型步进电机的铁心无极性,故不需改变电流极性,因此多为单极性励磁。

迈信驱动器参数表

Maxsine驱动器参数表 PA-0 密码 PA-1 型号代码 PA-2 软件版本 PA-3 初始显示状态 PA-4 控制方式选择 0-位置控制 1-速度控制 2-试运行控制 3-JOG控制方式 4-编码器调零方式 5-开环运行方式(用于测试电机及编码器) 6-转矩控制方式 PA-5 速度比例增益 #值越大增益越高,刚性越大,不震荡值越大越好 PA-6 速度积分时间常数 #值越小积分速度越快,太小容易超调,太大时响应变慢PA-7 转矩滤波器 PA-8 速度检测滤波器 PA-9 位置比例增益 PA-10 位置前馈增益 PA-11 位置前馈滤波器截止频率 PA-12 位置指令脉冲分频分子 PA-13 位置指令脉冲分频分母 PA-14 位置指令脉冲输入方式 PA-15 位置指令脉冲方向取反 PA-16 定位完成范围 PA-17 位置超差检测范围 PA-18 位置超差错误无效 PA-19 位置指令平滑滤波器 PA-20 驱动禁止输入无效

PA-21 JOG运行速度 PA-22 内外速度指令选择 PA-23 最高速度限制 PA-24 内部速度1 PA-25 内部速度2 PA-26 内部速度3 PA-27 内部速度4 PA-28 到达速度 PA-29 模拟量转矩指令输入增益 PA-30 用户转矩过载报警值 PA-31 用户转矩过载报警检测时间 PA-33 模拟量转矩指令输入方向取反PA-34 内部CCW转矩限制 PA-35 内部CW转矩限制 PA-36 外部CCW转矩限制 PA-37 外部CW转矩限制 PA-38 速度试运行,JOG运行转矩限制PA-39 模拟量转矩指令零偏补偿 PA-40 加速时间常数 PA-41 减速时间常数 PA-42 S型加减速时间常数 PA-43 模拟速度指令增益 PA-44 模拟速度指令方向取反 PA-45 模拟速度指令零偏补偿 PA-46 模拟速度指令滤波器 PA-47 电机停止时机械制动器动作设定PA-48 电机运转时机械制动器动作设定PA-49 电机运转时机械制动器动作速度PA-50 转矩控制时速度限制 PA-51 动态电子齿轮有效 PA-52 第2位置指令脉冲分频分子 PA-53 低4位输入端子强制ON控制字

三菱驱动器报警资料

常见的三菱伺服故障代码及故障处理方案在中国使用三菱交流伺服系统主要由三个系列:MR-ES、MR-J2S、MR-J3。 通常故障情况可由伺服驱动器上显示代码来初步判断,以下是几种常见的故障及其排查方法: 1、AL.E6 -表示伺服紧急停止。引起此故障的原因一般有两个,一个是控制回路24V电源没有接入,另一个是CN1口EMG和SG之间没有接通。 2、AL.37-参数异常。内部参数乱,操作人员误设参数或者驱动器受外部干扰导致。一般参数恢复成出厂值即可解决。 3、AL.16-编码器故障。内部参数乱或编码器线故障或电机编码器故障。参数恢复出厂值或者更换线缆或者更换电机编码器,若故障依旧,则驱动器底板损坏。 4、AL.20-编码器故障。电机编码器故障或线缆断线、接头松动等导致。更换编码器线或伺服电机编码器。MR-J3系列发生此故障时,还有一种可能是驱动器CPU接地线烧断导致。 5、AL.30-再生制动异常。若刚通电就出现报警,则驱动器内部制动回路元件损坏。若在运行过程中出现,可检查制动回路接线,必要时外配制动电阻。 6、AL.50、AL.51-过载。检查输出U、V、W三相相序接线是否正确,伺服电机三相线圈烧坏或接地故障。监控伺服电机负载率是否长时间超过100%,伺服响应参数设置过高,产生 共振等原因。 7、AL.E9-主回路断开。检查主回路电源是否接入,若正常则主模块检测回路故障,须更换驱动器或配件。 8、AL.52-误差过大。电机编码器故障或驱动器输出模块回路元件损坏,通常油污较多的使用场合此故障较多。 另外简单判断伺服电机故障方法:去掉电机所有接线后,转动电机轴承,如能感觉到明显的阻力,转动时不顺畅,则机身线圈烧坏,另外装配联轴器不当时很容易把编码器敲坏,可摇动电机编码器部分,若能听到编码器碎片的声音,则编码器被敲坏。 附上三菱伺服MR-J2S系列所有代码 伺服报警的代码: —— AL10 欠压 —— AL12 存储器异常

步进电机驱动器说明书

TB6600升级版 两相步进驱动器 使用说明书 [使用前请仔细阅读本手册,以免损坏驱动器]

目录 一、产品简介 (3) 概述 (3) 特点 (3) 二、接口和接线介绍 (3) 信号输入端 (3) 电机绕组连接 (3) 电源电压连接 (4) 状态指示 (4) 接线方式 (4) 接线要求 (5) 三、电流、细分拨码开关设定 (5) 细分设定 (5) 工作(动态)电流设定 (6) 四、机械和环境指标 (6) 使用环境及参数 (6) 机械安装图 (7) 五、电机适配 (7) 电机适配 (7) 电机接线 (8) 供电电压和输出电流的选择 (8) 五、常见问题 (9) 应用中常见问题和处理方法 (9) 六、保修条款 (10)

一、产品简介 ◆概述 TB6600升级版驱动器是一款专业的两相混合式步进电机驱动器,可适配国内外各种品牌,电流在4.0A及以下,外径39,42,57mm的四线,六线,八线两相混合式步进电机。适合各种小中型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。在用户期望低成本、大电流运行的设备中效果特性。 ◆特点 ※信号输入:单端,脉冲/方向 ※细分可选:1/2/4/8/16/32细分 ※输出电流:0.5A-4.0A ※输入电压:9-42VDC ※静止时电流自动减半 ※可驱动4,6,8线两相、四相步进电机 ※光耦隔离信号输入,抗干扰能力强 ※具有过热、过流、欠压锁定、输入电压防反接保护等功能 ※体积小巧,方便安装 ※外部信号3.3-24V通用,无需串联电阻 二、接口和接线介绍 ◆信号输入端 PUL+ PUL-脉冲输入信号。默认脉冲上升沿有效。为了可靠响应脉冲信号,脉冲宽度应大于1.2us。 DIR+ DIR-方向输入信号,高/低电平信号,为保证电机可靠换向,方向信号应先于脉冲信号至少5us建立。电机的初始运行方向与电机绕组接线有关,互换任一相绕组(如A+、A-交换)可以改变电机初始运行方向。 ENA+ ENA-使能输入信号(脱机信号),用于使能或禁止驱动器输出。使能时,驱动器将切断电机各相的电流使电机处于自由状态,不响应步进脉冲。当不需用此功能时,使能信号端悬空即可。 ◆电机绕组连接 A+,A-电机A相绕组。 B+,B-电机B相绕组。

数控机床的伺服驱动系统

第五章数控机床的伺服驱动系统 §5—1 概述 数控机床伺服驱动系统是指以机床移动部件(如工作台、动力头等,本书仅以工作台为例)的位置和速度作为控制量的自动控制系统,又称拖动系统。在数控机床上,伺服驱动系统接收来自插补装置或插补软件生成的进给脉冲指令,经过一定的信号变换及电压、功率放大,将其转化为机床工作台相对于切削刀具的运动。目前,这主要通过对交、直流伺服电机或步进电机等进给驱动元件的控制来实现。 数控机床的伺服驱动系统作为一种实现切削刀具与工件间运动的进给驱动和执行机构,是数控机床的一个重要组成部分,它在很大程度上决定了数控机床的性能,如数控机床的最高移动速度、跟踪精度、定位精度等一系列重要指标取决于伺服驱动系统性能的优劣。因此,随着数控机床的发展,研究和开发高性能的伺服驱动系统,一直是现代数控机床研究的关键技术之一。 一、伺服驱动系统的性能 对数控机床伺服驱动系统的主要性能要求有下列几点: mm, (1) 进给速度范围要大。不仅要满足低速切削进给的要求,如5min 还要能满足高速进给的要求,如10000mm min。 (2) 位移精度要高。伺服系统的位移精度是指指令脉冲要求机床工作台进给的位移量和该指令脉冲经伺服系统转化为工作台实际位移量之间的符合程度。两者误差愈小,伺服系统的位移精度愈高。目前,高精度的数控机床伺服系统位移精度可 ±m。通常,插补器或计算机的插补软件每发出一个进给脉达到在全程范围内5μ

冲指令,伺服系统将其转化为一个相应的机床工作台位移量,我们称此位移量为机床的脉冲当量。一般机床的脉冲当量为0.01~0.005 mm脉冲,高精度的CNC 机床其脉冲当量可达0.001 mm脉冲。脉冲当量越小,机床的位移精度越高。 (3) 跟随误差要小。即伺服系统的速度响应要快。 (4) 伺服系统的工作稳定性要好。要具有较强的抗干扰能力,保证进给速度均匀、平稳,从而使得能够加工出粗糙度低的零件。 二、数控机床伺服驱动系统的基本组成 数控机床伺服驱动系统的基本组成如图5-1所示。数控机床的伺服驱动系统按有无反馈检测单元分为开环和闭环两种类型(见数控机床伺服驱动系统分类),这两种类型的伺服驱动系统的基本组成不完全相同。但不管是哪种类型,执行元件及其驱动控制单元都必不可少。驱动控制单元的作用是将进给指令转化为驱动执行元件所需要的信号形式,执行元件则将该信号转化为相应的机械位移。 图5-1 数控机床伺服驱动系统的基本组成 开环伺服驱动系统由驱动控制单元、执行元件和机床组成。通常,执行元件选用步进电机。执行元件对系统的特性具有重要影响。 闭环伺服驱动系统由执行元件、驱动控制单元、机床,以及反馈检测单元、比较控制环节组成。反馈检测单元将工作台的实际位置检测后反馈给比较控制环节,比较控制环节将指令信号和反馈信号进行比较,以两者的差值作为伺服系统的跟随误差经驱动控制单元,驱动和控制执行元件带动工作台运动。

伺服驱动器使用说明书

MMT- 直流伺服驱动器使用手册济南科亚电子科技有限公司

直流伺服驱动器使用说明书 一、概述: 该伺服驱动器采用全方位保护设计,具有高效率传动性能:控制精度高、线形度好、运行平稳、可靠、响应时间快、采用全隔离方式控制等特点,尤其在低转速运行下有较高的扭矩及良好的性能,在某些场合下和交流无刷伺服相比更能显示其优异的特性,并广泛应用于各种传动机械设备上。 二、产品特征: ◇PWM控制H桥驱动 ◇四象限工作模式 ◇全隔离方式设计 ◇线形度好、控制精度高 ◇零点漂移极小 ◇转速闭环反馈电压等级可选 ◇标准信号接口输入0--±10V ◇开关量换向功能 ◇零信号时马达锁定功能 ◇上/下限位保护功能 ◇使能控制功能 ◇上/下限速度设定 ◇输出电流设定功能 ◇具有过压、过流、过温、输出短路、马达过温、反馈异常等保护及报警功能

三、主要技术参数 ◇控制电源电压AC: 110系列:AC :110V±10% 220系列:AC :220V±10% ◇主电源电压AC: 110系列:AC 40----110V 220系列:AC50---- 220V ◇输出电压DC: 110系列:0—130V或其它电压可设定 220系列:0—230V或其它电压可设定◇额定输出电流:DC 5A(最大输出电流10A) DC 10A(最大输出电流15A) DC 20A(最大输出电流25A)◇控制精度:0.1% ◇输入给定信号:0—±10V ◇测速反馈电压: 7V/1000R 9.5V/1000R 13.5V/1000R 20V/1000R 可经由PC板内插片选定并可接受其它规格订制四、安装环境要求: ◇环境温度:-5oC ~ +50oC ◇环境湿度:相对湿度≤80RH。(无结露) ◇避免有腐蚀气体及可燃性气体环境下使用

数控机床主轴驱动系统跟维修资料

第五章数控机床主轴驱动系统与维修数控机床的主轴驱动系统也就是主传动系统,它的性能直接决定了加工工件的表面质量,因此,在数控机床的维修和维护中,主轴驱动系统显得很重要。 本章主要内容: ——介绍数控机床主轴驱动系统组成及特点、分类等; ——介绍了通用变频器及典型系统变频主轴的连接线路、相关参数等; ——简介了通用变频主轴、伺服主轴的主要故障及处理方法,并介绍了一些维修实例。 5.1 概述 数控机床主轴驱动系统是数控机床的大功率执行机构,其功能是接受数控系统(CNC)的S码速度指令及M码辅助功能指令,驱动主轴进行切削加工。它包括主轴驱动装置、主轴电动机、主轴位置检测装置、传动机构及主轴。通常主轴驱动被加工工件旋转的是车削加工,所对应的机床是车床类;主轴驱动切削刀具旋转的是铣削加工,所对应的机床是铣床类。 5.1.1 数控机床对主轴驱动系统的要求 机床的主轴驱动和进给驱动有较大的差别。机床主轴的工作运动通常是旋转运动,不像进给驱动需要丝杠或其它直线运动装置作往复运动。数控机床通常通过主轴的回转与进给轴的进给实现刀具与工件的快速的相对切削运动。在20纪60-70年代,数控机床的主轴一般采用三相感应电动机配上多级齿轮变速箱实现有级变速的驱动方式。随着刀具技术、生产技术、加工工艺以及生产效率的不断发展,上述传统的主轴驱动已不能满足生产的需要。现代数控机床对主轴传动提出了更高的要求: 1、调速范围宽并实现无极调速

为保证加工时选用合适的切削用量,以获得最佳的生产率、加工精度和表面质量。特别对于具有自动换刀功能的数控加工中心,为适应各种刀具、工序和各种材料的加工要求,对主轴的调速范围要求更高,要求主轴能在较宽的转速范围内根据数控系统的指令自动实现无级调速,并减少中间传动环节,简化主轴箱。 目前主轴驱动装置的恒转矩调速范围已可达1∶100,恒功率调速范围也可达1∶30,一般过载1.5倍时可持续工作达到30min。 主轴变速分为有级变速、无级变速和分段无级变速三种形式,其中有级变速仅用于经济型数控机床,大多数数控机床均采用无级变速或分段无级变速。在无级变速中,变频调速主轴一般用于普及型数控机床,交流伺服主轴则用于中、高档数控机床。 2、恒功率范围要宽 主轴在全速范围内均能提供切削所需功率,并尽可能在全速范围内提供主轴电动机的最大功率。由于主轴电动机与驱动装置的限制,主轴在低速段均为恒转矩输出。为满足数控机床低速、强力切削的需要,常采用分级无级变速的方法(即在低速段采用机械减速装置),以扩大输出转矩。 3、具有4象限驱动能力 要求主轴在正、反向转动时均可进行自动加、减速控制,并且加、减速时间要短。目前一般伺服主轴可以在1秒内从静止加速到6000r/min。 4、具有位置控制能力 即进给功能(C轴功能)和定向功能(准停功能),以满足加工中心自动换刀、刚性攻丝、螺纹切削以及车削中心的某些加工工艺的需要。 5、具有较高的精度与刚度,传动平稳,噪音低。 数控机床加工精度的提高与主轴系统的精度密切相关。为了提高传动件的制造精度与刚度,采用齿轮传动时齿轮齿面应采用高频感应加热淬火工艺以增加耐磨性。

相关主题