搜档网
当前位置:搜档网 › 生物可降解性高分子载药微球研究进展

生物可降解性高分子载药微球研究进展

生物可降解性高分子载药微球研究进展
生物可降解性高分子载药微球研究进展

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

(完整版)可降解高分子材料

可降解高分子材料 1 可生物降解高分子材料的定义 可生物降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。 2 生物降解高分子材料降解机理 生物降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物(有机酸、酯等);然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。降解除有以上生物化学作用外,还有生物物理作用,即微生物侵蚀聚合物后,由于细胞的增大,致使高分子材料发生机械性破坏。因此,生物降解并非单一机理,而是一个复杂的生物物理、生物化学协同同作用,相互促进的物理化学过程。到目前为止,有关生物降解的机理尚未完全阐述清楚:除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 人们深入研究了不同的生物可降解高分子材料的生物降解性,发现与其结构有很大关系,包括化学结构、物理结构、表面结构等。高分子材料的化学结构直接影响着生物可降解能力的强弱,一般情况下:脂肪族酯键、肽键>氨基甲酸酯>脂肪族醚键> 亚甲基。当同种材料固态结构不同时,不同聚集态的降解速度有如下顺序:橡胶态>玻璃态>结晶态。一般极性大的高分子材料才能与酶相粘附并很好地亲和,微生物粘附表面的方式受塑料表面张力、表面结构、多孑L性、环境的搅动程度以及可侵占表面的影响。生物可降解高分子材料的降解除与材料

生物降解高分子材料

生物降解高分子材料 肖群 (东北林业大学材料科学与工程学院,黑龙江哈尔滨 150040) 摘要:高分子材料在日常生活中的使用量越来越大.然而高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量塑料废弃物也与日俱增。给人类赖以生存的环境造成了不可忽视的负面影响。本文简要介绍生物降解高分子材料的定义、降解机理及影响因素的基础上,较为全面的阐述了当前生物降解高分子材料的应用领域。 关键词:生物降解,医用生物材料, 1 前言 聚合物工业蓬勃发展的同时也导致了环境污染的加剧,引起了人们对聚合物废料处理的关注。目前全世界每年生产塑料约1.2亿吨.用后废弃的大约占生产量的50%~60%。废塑料的处理以掩埋和焚烧为主,但这两种处理方法会产生新的有害物质。对此,一些国家实行了3R工程,即减少使用、重复使用和回收循环。但对一些回收困难、不宜回收或需要追加很大能量才能回收的领域(如食品包装、卫生用品),实施3R工程很困难,而如果使用生物降解材料则十分有利[1]。 2生物降解高分子材料定义降解机理 2.1生物降解高分子定义 根据美国ASTM定义生物降解高分子材料是指在一定的条件下.一定的时间内能被细菌、霉菌、藻类等微生物降解的高分子材料[2,3,4]。真正的生物降解高分子在有水存在的环境下,能被酶或微生物水解降解,从而高分子主链断裂,分子量 逐渐变小,以致最终成为单体或代谢成CO 2和H 2 O[5]。 2.2生物降解高分子材料的降解机理 生物降解机理和光一生物降解机理.完全生物降解机理大致有三种途径:①生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏.分裂成低聚物碎片:②生物化学作用:微生物对聚合物作用而产生新 物质(CH 4、C0 2 和H 2 0):③酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩 裂。而光一生物降解机理则是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成含氧化物,并氧化断裂.分子量下降到能被微生物消化的水平。进一步研究发现.不同的生物降解高分子材料的生物降解性与其结构有很大关系,包括化学结构、物理结构、表面结构等。 对不同种类的生物降解材料而言.它们降解机理的不同决定了它们具有不同的性质。天然降解高分子材料.其本身来源于生物体,能保证足够的细胞及组织亲和性.降解周期一般较短.最终降解产物为多糖或氨基酸.容易被机体吸收.但是这种材料力学性能差。难于满足组织构建的速度要求,应用时需要进行改性。化学合成的生物降解材料的组成、结构和降解行为更易于控制。比如降解速度和强度可调.易构建高孔隙率三维支架.但材料本身对细胞亲和力弱.往往需要引入适量能促进细胞黏附和增值的活性基团、生长因子或黏附因子等。[6] 3生物降解高分子材料的种类及降解过程

生物可降解高分子材料的发展现状与前景综述

生物可降解高分子材料的发展现状与前景综述Present Development and Prospects of Biodegradable Polymer 张璐,浙江大学工科试验班1128班,jangru@https://www.sodocs.net/doc/7d17066145.html, 摘要:本文介绍了生物可降解高分子材料的定义和降解原理,并概述了生物可降解材料的种类,例如天然高分子材料,合成高分子材料和掺混型高分子材料,同时介绍了可降解高分子材料在环境保护、医疗保健、食品包装等领域的应用,并对其未来发展作了展望。 关键字:可降解高分子材料,分类,应用,发展前景 Abstract: This paper introduces the definition and degradation mechanism of biodegradable polymer, and summarizes the types of biodegradable materials, such as naturally occurring polymers, synthetic polymers and mixing type. Besides, the application of biodegradable polymer in environment protecting, medical science and other areas and the development prospect of this material are also include. Keywords:degradable polymer, classification, application, development prospect 当前社会,在经济快速发展和科学技术突飞猛进的同时,谋求绿色发展已经越来越成为时代的重要趋势。这种发展理念不仅体现在经济活动上,也体现在生物、化学等基础学科领域。就高分子材料方面而言,我国目前的高分子材料生产和使用已位居世界前列,每年产生数百万吨的废弃物,既造成了环境破坏,又极大地制约了学科本身的发展。为了解决这种矛盾,生物可降解高分子材料应运而生。作为一种新型的环境材料,生物可降解高分子材料很好平衡了经济与环境之间的需求,同时也为医疗保健等领域作出了长足的贡献。它的研究和迅速发展,已经受到人们越来越多的关注。 1 生物可降解高分子材料的定义及降解原理 可降解高分子材料,是一种环保高分子材料,它是在一定条件下,能在微生物分泌酶的作用下由大分子分解为小分子的材料[1]。 高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。高分子水合

中国可降解高分子材料行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国可降解高分子材料行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.sodocs.net/doc/7d17066145.html, 1

目录 中国可降解高分子材料行业上下游产业链分析 (3) 第一节可降解高分子材料行业上下游产业链概述 (3) 第二节可降解高分子材料上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 二、上游原材料供应情况分析 (4) 三、上游原材料价格走势分析 (4) 四、上游原材料行业前景分析 (4) 第三节可降解高分子材料下游行业需求市场分析 (4) 一、下游行业发展现状分析 (4) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

3 中国可降解高分子材料行业上下游产业链分析 第一节 可降解高分子材料行业上下游产业链概述 图表- 1:可降解高分子材料产业链 以PLA 为例,聚乳酸全名为PolyLacticAcid(PLA),又名玉米淀粉树酯,学名为Polylactide ,是一种丙交酯聚酯。聚乳酸为一多用途可堆肥的高分子聚合物,完全由植物中萃取出淀粉→经过发酵→去水→聚合等过程制造而成,无毒性。 其上游为淀粉、纤维素等原材料行业,下游行业应用范围较为广泛,主要包含医疗、食品包装、日用品等多个行业。 第二节 可降解高分子材料上游行业发展状况分析 一、上游原材料市场发展现状 作为生物塑料家族中的当家品种,聚乳酸(PLA)目前是产业化最成熟、产量最大、应用最广泛、价格最低的生物基塑料,是未来最有希望撼动石油基塑料传统地位的降解材料,也将成为生物塑料的主力军。 由于我国农业基础较为发达,淀粉酶以及纤维素等相关产品的数量较多,供给较为充足。

降解高分子材料

III降解高分子材料 1简述 降解性高分子(又称生物可降解塑胶),在日本又称为绿色塑胶,是可以在自然界降解的塑胶材质。在有足够的湿度、氧气与适当微生物存在的自然掩埋或堆肥环境中,可被微生物所代谢分解产生水和二氧化碳或甲烷,对环境危害较小。由降解性高分子构成。基本上,生物塑胶并不是什麼新概念。由木材和棉花制成的赛璐珞,早在1850年代就被发明出来作为象牙撞球的替代品。但就像其他早期发明的可循环塑胶一样,赛璐珞缺乏合成塑胶的可变性和发展性,因此现在多半只能拿来做领口衬料和桌球。 我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广, 可用于地膜、包装袋、医药等领域。 2生物降解高分子材料降解机理 按美国ASTM定义:生物降解高分子材料是指在细菌、真菌、藻类等自然界存在的微生物作用下能发生化学、生物或物理作用而降解或分解的高分子材料。般高分子材料的生物降解可分为完全生物降解和光一生物降解b。完全生物降解 大致有三种途径: (1) 生物化学作用:微生物对聚合物作用而产生新物质(C,C02和H 0)。 (2) 生物物理作用:由于生物细胞增长而使聚合物组分水解、电离质子化而发生机械性的毁坏,分裂成低聚物碎片。 (3) 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。而光一生物降解则是材料中淀粉等生物降解剂首先被生物降解,增大表面积/体积比,同时, 日光、热、氧引发光敏剂等使聚合物生成含氧化物,并氧化断裂,分子量下降到 能被微生物消化的水平, 因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、

生物可降解高分子材料的研究现状及发展前景

生物可降解高分子材料的研究现状及发展前景 张鹏 高材1102 摘要:本文论述了生物可降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业和其他领域的应用前景进行了探讨。 关键词:生物可降解高分子材料、降解机理、影响因素、应用前景、研究现状 1.前言 随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。 2.高分子生物降解机理 理想的生物降解高分子材料是一种具有优良的使用性能、废弃后可被环境微生物完 全分解、最终被无机化而成为自然界中碳元素循环的一个组成部分的高分子材料。跟据高分子的性质和所处的环境条件,高分子生物降解有两种不同的机理。第一种是生物或非生物水解而后发生生物同化吸收,称为水解-生物降解。这是杂链高分子如纤维素、淀粉及脂肪族聚酯生物降解的主要过程。通常过氧化反应对这类高分子降解发挥辅助作用,光氧化反应可加速水解-生物降解。水解-生物降解高分子适用于生物医用材料、化妆品及个人卫生用品的处理而不适用于农用薄膜或包装薄膜的降解。第二种机理是过氧化反应而后伴随小分子产物的生物同化吸收,称为氧化-生物降解,这种机理尤其适用于碳链高分子。非生物过氧化反应及随后的生物降解反应可通过所用的合适抗氧剂得到严格控制。 3.影响生物降解的因素 1)单体的组成、结构和化学性质,即化学键的稳定性; 2)物理性质,如亲水性、结晶度,可以通过单体的化学组成和加工条件控制; 3)聚合物的分子量; 4)聚合物器件的几何因素,如大小、形状、表面积; 5)添加剂及环境因素,如PH条件、离子强度。 聚合物器件或药物递送系统的生物降解通常经历四个步骤:水合、力学强度损失、形态变化、质量损失。其中水合是最为关键的一步,由材料的亲水、疏水特性及结晶度大小决定。 显然,亲水性高分子容易发生水合。水合后,高分子链可能成为水溶性,或者水分子渗透到高分子骨架。高分子材料的力学强度降低的原因是由于主链的断裂、交联键或高分子侧

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

浅析可降解生物医用高分子材料

生物制药与研究 2018·11 177 Chenmical Intermediate 当代化工研究 浅析可降解生物医用高分子材料 *赵芯路 (太原市第二外国语学校 山西 030001) 摘要:医疗废弃物的处理问题,一直困扰着医护人员,虽然国务院于2003年6月发布了《医疗废物管理条例》,但仅限于单纯的处理医 疗废弃物的问题。高分子材料科技的发展,已经将其应用到生活的方方面面,随着医疗废弃物处理的各种问题凸现,势必会形成可降解生物医用高分子材料并大面积应用在医用材料包装、医疗用品废弃物、一次性医疗用品上。本文从作者的角度出发,结合已有的知识结构,大胆探索可降解生物高分子材料在医疗行业的应用及其前景。关键词:可降解;生物材料;高分子材料;医用材料;医疗废物 中图分类号:T 文献标识码:A Brief Analysis of Biodegradable Biomedical Polymer Materials Zhao Xinlu (Taiyuan No.2 Foreign Language School, Shanxi, 030001) Abstract :Medical waste disposal has been bothering medical staff. Although the State Council issued the "Regulations on Medical Waste Management" in June 2003, it is limited to the simple disposal of medical waste. With the development of polymer materials technology, it has been applied to all aspects of life. With various problems in medical waste disposal, degradable biomedical polymer materials will be inevitably and widely used in medical material packaging, medical waste and disposable medical supplies. From the author's point of view, combined with the existing knowledge structure, this paper boldly explores the application and prospect of biodegradable biopolymer materials in the medical industry. Key words :degradable ;biological materials ;polymer materials ;medical materials ;medical waste 医疗废弃物的处理问题,一直困扰着医学界。这些废弃物不同于普通的生产或生活垃圾,也不同于一般的医疗产品,处理起来非常麻烦。随着科学技术的发展,各种高科技产品逐步引入医疗行业,缓解医疗行业中的各种难题——可降解高分 苯甲酸和苯甲酸钠的过敏反应和风疹样反应,羟苯甲酯、羟苯丙酯的刺激性和过敏反应,通过对辅料的用量的控制,将由辅料引入的毒性或者刺激性控制在可以接受的范围内。其次,处方中所使用的辅料均具有各自的作用,如防腐作用、抗氧作用、助溶作用等,有些辅料会因为发挥作用而使得含量发生变化,如抗氧剂就是通过与制剂中存在的氧化性物质发生氧化还原反应而起到抗氧剂的作用,其含量会随着反应的发生不断降低,药品研究者需要对抗氧剂的含量进行研究和控制,以保证在整个有效期内其含量始终保持在可以正常发挥作用的范围内。第三,辅料本身在制剂制备或者贮藏过程中由于稳定性等原因含量也会发生变化,比如苯甲醇在贮藏过程中会降解产生苯甲醛,也提示需要对这些辅料的含量进行控制。 成分名称变更前处方变更后处方变化量磷酸吡哆醛丁咯地尔 200g 200g -微晶纤维素100g 86g -4.2%交联酸甲基纤维素钠30g 0-9.0%单硬脂酸甘油酯15g 0-4.5%交联聚维酮015g +4.5%二氧化硅018g +5.4%滑石粉018g +5.4%硬脂酸镁08g +2.4%总和 345g 345g - 表1 制剂处方变更结果 3.案例分析 安乃近注射液的研究结论分析,由于在市面上引起多种类型的不良反应,在国内外都引起了重大关注,瑞典,美国等相继将其撤离市场,大量文献显示,安乃近会引发多种不良反应,卫生部将其中的复方安乃近片淘汰出药品市场,但留下了安乃近片剂以及滴剂及注射剂还在使用,因为其符合药品变更的安全性与稳定性。药品变更要权衡风险与收益成正比,解决临床安全性问题。安乃近注射液中因为存在亚硫酸氢钠含量及苯甲醛,缺乏安全性与稳定性的考察效果,所以,在安乃近注射液的变更研究中不符合药品工艺变更的质量与稳定性的要求。 4.结论 在化学药品注册工作中,申报量在不断增加,其中制剂处方变更以及制剂生产工艺变更的申报量是较多的,所占比例较重,涉及提高药品质量,必须要达到药品安全性、有效性、药剂型的合理性以及规格合理性的技术要求,才能将其批准上市,完成药品的申请注册。 ?【参考文献】 [1]简晓娜,胡明,蒋学华.已上市化学药口服固体制剂处方工艺变更管理探讨[C].中国药学会,2009:765-769. [2]羡冀,罗显锋.盐酸左氧氟沙星注射剂制剂处方工艺及质量评价[C].中华中医药学会,2009:74-78. [3]马逊娜,陈榕,陈美清.贝诺酯片的处方工艺研究[C].中国药学会,2000:270-271. ?【作者简介】 黄波(1983-),男,南京天朗制药有限公司研发部;研究方向:药物制剂相关科研。 上接第176页 下转第178页

生物可降解高分子材料——聚乳酸

生物可降解高分子材料——聚乳酸 摘要:论述了聚乳酸的基本性质、性能、应用及展望,指出了聚乳酸是一种新型绿色环保可生物降解的高分子材料. 关键词:绿色高分子;聚乳酸;生物可降解高分子材料 人类在21世纪的最大课题之一是保护环境。橡胶、塑料和合成纤维虽然与人类的生活密切相关,但大多不能自然分解,其废弃物会造成白色污染。20世纪90年代末刚刚实现工业化的聚乳酸(Poly Lactic Acid,PLA)是其中最有发展前景的一种,它是一种真正的新型绿色高分子材料,也是目前综合性能最出色的环保材料【1】。 1聚乳酸的基本性质 聚乳酸(PLA)是以微生物的发酵产物L—乳酸为单体聚合成的一类聚合物,具体性能【2】见表1.由于具有独特的可生物降解性能、生物相容性能和降解后不会遗留任何环保问题等特点,将成为未来应用发展前景广阔的生态环保材料。 聚乳酸的分子量对降解性能有重要的影响.在相同降解时间和降解环境下,分子量高的降解速率比分子量低的慢.这是因为随着聚合物分子量的提高,聚合物分子间的作用力增大、结晶度增高,且分子量低的聚合物末端羧基的数目较多,更容易发生水解.PDLLA的降解速率比PLLA的快.就是由于PLLA为结晶性聚合物,而PDLLA为无定型聚合物.无定型聚合物的结构疏松,水的渗透快,可以由外到里同时水解【3】。 表1聚乳酸的基本性能

2聚乳酸的合成方法 目前合成聚乳酸(PLA)的方法主要分为直接缩聚法和间接法(即丙交酯开环聚合、扩链反应等)【2】。 2.1直接缩聚 乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡,不易得到高分子量的聚合物。但是乳酸的来源充足,价格便宜,所以直接法合成聚乳酸比较经济合算。研究表明,延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物分子量,在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物,加人催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸.它主要有溶液缩聚法、熔融缩聚(本体聚合)法、熔融一固相缩聚法和反应挤出聚合法等. 2.1.1溶液缩聚法 采用一种高沸点的溶剂和乳酸、水进行共沸,高沸点溶剂脱水后再回流到溶液中,将反应中的水带出反应体系,促进反应正向进行,合成聚乳酸.该方法虽然可以合成高分子量的聚乳酸,但是高沸点溶剂的引人使产物的最后纯化比较困难,成本仍然较高. 2.1.2熔融缩聚法 该方法工艺路线简单,操作简单,要求高真空或者氮气保护.但是产物的分子量不高,主要是因为反应后期体系的粘度较大,小分子水难以除去,因此有待于进一步完善.2000年日本学者合成M。超过10万的PLLA熔融聚合比溶液聚合操作简单,免去了高沸点溶剂的提纯,是减少辅助剂使用的最佳方法.它有利于降低成本、提高安全性、提高产率、缩短反应时间,是绿色化学的重要研究方向之—【4】. 2.1.3熔融固相缩聚 在聚合温度低于预聚物的熔点,而高于其玻璃化转变温度下进行的一种聚合方法.当熔融聚合产物继续进行固相缩聚时,随结晶度的不断提高,这些低分子

生物可降解高分子

中山大学研究生学刊(自然科学、医学版) 第33卷第1期JOURNAL OF THE GRADUATES VOL.33?1 2012SUN YAT-SEN UNIVERSITY(NATURAL SCIENCES、MEDICINE)2012 生物可降解高分子材料研究综述* 封硕 (中山大学化学与化学工程学院高分子研究所,广州510275) 【内容提要】简要说明了生物可降解材料的含义、降解原理,介绍了目前较 为成功的生物可降解材料的种类、结构、性能及制备方法。阐述了高分子材料 生物降解性的影响因素。对生物降解高分子材料的未来进行简单展望。 【关键词】生物降解;高分子材料;环境保护 引言 化学家与化学工程师们渴望认识地球。作为一个社会群体,我们希望能够确信我们所使用的产品对我们自身和我们生活的环境是无害的———并且确定这些产品的生产不会对我们的后代以及我们的环境产生有害性的影响。绿色化学作为一个重要的提议最先在美国发起,目的是从根源上减少污染。在我国,绿色化学的概念同样被政府和化学家们重视。环境保护是我国的一项基本国策。生物降解高分子材料作为一种新型环境材料,能够有效地解决塑料制品对人类生存环境的污染。在我国环境保护的系统工程中,开发新型环境材料是从根本上治理环境污染的一种有效的技术途径。 近年来随着社会经济的高速发展,传统高分子塑料和纤维制品得到了极大地发展。但同时大量高分子材料废弃物也给地球带来了十分严重的污染,到处可见的一次性PE 快餐盒随风飘舞所造成的“白色污染”只是其中一个浅显的事例而已。随着人们的环保意识的进一步增强,认识到环境污染将威胁人类的生存,生物可降解高分子材料的开发和应用日益受到重视。 1生物可降解高分子含义 生物降解高分子是指高分子塑料使用性能优良,废弃时在自然界中被微生物作用而降解,最终变成水和二氧化碳等无害的分子物质,从而进入自然界良性循环的塑料及其制品。 *收稿日期:2012-03-04 作者简介:封硕,博士研究生,目前就读于中山大学化学与化学工程学院高分子研究生。

生物降解高分子材料的研究现状及应用前景_吴卫霞

?40? 2005年3月 油气田环境保护 综 述   生物降解高分子材料  的研究现状及应用前景  吴卫霞1 涂阿朋2 肖俊霞1 段明锋1  (1.江汉石油学院化学工程系;2.土哈油田钻井公司)  摘 要 目前,处理高分子材料的一些传统方法,如焚烧法、掩埋法、熔融共混挤出法、回收利用等都存在一定的缺陷和局限性,给环境保护带来严重的困难。因此,开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程。论述了生物降解高分子材料的研究现状,并对生物降解高分子材料的降解机理、影响因素及其在医学、农业、包装业和其他领域的潜在应用前景进行了探讨。  关键词 生物降解高分子材料 降解机理 影响因素 研究现状 应用前景    0 引 言  随着大量高分子材料在各个领域的使用,废弃高分子材料对环境的污染有着日益加剧的趋势。塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废塑料所造成的白色污染已成为世界性的公害[1]。目前,处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。生物降解高分子是指通过自然界或添加的微生物的化学作用,将高分子物质分解成小分子化合物,再进入自然的循环过程,这种方法简洁有效,而且对环境的保护有积极的作用[2]。同时,随着高新技术的发展,生物降解高分子材料也满足了医学和农业及其他方面的需求,成为近年来研究的热点。  1 高分子生物降解机理  理想的生物降解高分子材料是一种具有优良的使用性能,废弃后可被环境微生物完全分解,最终被无机化而成为自然界中碳元素循环的一个组成部分的高分子材料[3]。生物降解高分子材料的生物降解通常是指以化学方式进行的,即在微生物活性(有酶参与)的作用下,酶进入聚合物的活性位置并渗透至聚合物的作用点后,使聚合物发生水解反应从而使聚合物的大分子骨架结构发生断裂成为小的链段,并最终断裂成稳定的小分子产物,完成降解过程[4]。  一般高分子材料的生物降解可分为完全生物降解机理和光-生物降解机理[5]。完全生物降解机理大致有三种途径:① 生物物理作用:由于生物细胞增长而使聚合物组分水解,电离质子化而发生机械性的毁坏,分裂成低聚物碎片;② 生物化学作用:微生物对聚合物作用而产生新物质(CH4,CO2和H2O);③ 酶直接作用:被微生物侵蚀部分导致材料分裂或氧化崩裂。光-生物降解机理是材料中的淀粉等生物降解剂首先被生物降解,增大表面/体积比,同时,日光、热、氧引发光敏剂等使高聚物生成氧化物,并氧化断裂,分子量下降到能被微生物消化的水平。  2 影响生物降解的因素  生物降解高分子在制造和使用过程中应保持稳定,并要求在废弃后及时进行生物降解,因此影响生物降解性的因素成为人们关注的焦点之一。  环境因素[4,6]是指水、温度、pH值和氧的浓度。水是微生物生成的基本条件,因此聚合物能保持一定的湿度是其可生物降解的首要条件。每一种微生物都有其适合生长的最佳温度,通常真菌的适宜温度为20℃~28℃,细菌则为28℃~37℃。一般来说,真菌适宜长在酸性环境中,而细菌适宜长在微碱性条件下。真菌为好氧型的,细菌则可在有氧或无氧条件下生长。

高分子微球应用

高分子微球的应用 随着各种高分子微球合成技术的迅猛发展,不同形状、不同结构和不同粒径大小的高分子聚合物微球已被广泛应用于临床医学、材料科学、色谱分离学、药物学和微电子科学等领域。主要应用情况如下: 1、高分子微球在医学领域中应用 高分子微球可用于临床检验、药物释放、细胞的标记分离和培养、人工血液、放射免疫固定相载体等方面。高分子微球常被应用于包埋药物的载体,通过合理分子设计,制备具有特定粒径、结构、表面性质、缓释能力和响应性等高分子微球,用来包覆或者负载药物分子,在合适的时间、合适的地点,以一定速度释放药物的作用,从而达到药物的控制释放和靶向释药。Shi等在壳聚糖微球表面包覆乙基纤维素,形成一种肠溶性膜,该膜保护药物在胃部不释放药物,到达肠内后,保护膜溶解从而缓慢将药物释放,达到靶向释药的效果。聚合物微球还可以做为癌症治疗用药物载体使用。吴远等制备了丝裂霉素-聚碳酸酯磁性载药微球,这种微球在外磁场作用下的肿瘤抑制率远高出无磁性的载药微球和游离药物。高分子微球还可用于临床诊断,如将抗体固定在高分子微球,制备成检验试剂,将该检验试剂加入诊断液,如果诊断液中存在抗原就会发生凝聚反应,从而可定性或者定量的检验诊断液中是否含有抗原。而采用高分子微球作用载体可以利用高分子微球的高比表面积,提高检验灵敏度。 2、高分子微球在生物技术中的应用 高分子微球由于比表面积大、固定化方式多等优势,成为固定化酶或细胞首选的载体。高分子微球可以将生物酶包覆在微球内部,制成生物酶胶囊,小分子底物通过渗透或者扩散的方式进入微球内部,在生物酶的催化作用下发生反应。生物酶也可以吸附在高分子微球表面或者与高分子微球表面功能团发生反应以共价键形式连接在微球上,高分子微球还可以用于动物细胞培养,市场已有用于细胞培养的微球载体,分别是带有阴离子交换基团DEAE 的葡萄糖微球载体、由纤维素制备的大孔微球载体和聚乙烯-硅胶复合微球载体商品。 3、高分子微球在分子测试中的应用 高分子微球可以作高效液相色谱填料,表面具有功能性基团的单分散微球可大大提高分离效果从而提高检测精确度,并可改善流动相在色谱柱中流动性。高分子微球还可以制备成分子印迹微球用于特定物质的固相萃取和分子识别,如张立永等采用悬浮聚合法制备了分子印迹微球用作固相萃取剂,对西咪替丁具有很好的选择性。赖家平等在水溶液中制得的分子印迹微球对吲哚美辛具有良好的识别作用。

可生物降解功能高分子材料

目录................................................................................................................................ 目录 (1) 1 绪论 (2) 1.1 定义 (2) 1.2 分类 (2) 1.2.1 微生物生产型 (2) 1.2.2 合成高分子型 (2) 1.2.3 天然高分子型 (2) 1.2.4 掺合型 (2) 1.3 机理 (3) 1.4 基本理论 (3) 1.5 制备方法 (4) 1.5.1 生物可降解高分子材料开发的传统 (4) 1.5.1.1 天然高分子的改造法 (4) 1.5.1.2 化学合成法 (4) 1.5.1.3 微生物发酵法 (4) 1.5.2 生物可降解高分子材料开发的新方法-酶促合成 (4) 1.5.3 酶促合成法与化学合成法结合使用 (4) 2 国内外研究现状 (5) 2.1 天然高分子材料 (5) 2.2 合成高分子材料 (5) 2.3 掺混型高分子材料 (6) 3 市场与应用 (6) 4 研究发展趋势与展望 (7) 5参考文献 (7)

1绪论 1.1定义 生物降解高分子材料是指在生物或生物化学的作用过程中或生物环境中可以发生降解的高分子[1]。生物降解的高分子材料具有以下特点:易吸附水、还有敏感的化学基团、结晶度低、低分子量、分子链线性化程度高和较大的比表面积等[3]。 1.2分类 按来源,生物可降解高分子材料可分为天然高分子和人工可合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型[4]。 1.2.1微生物生产型 通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。 1.2.2合成高分子型 脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。 1.2.3天然高分子型 自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。 1.2.4掺合型 在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

生物可降解高分子材料的应用

生物可降解高分子材料的应用 【摘要】随着科学技术的发展,在医疗领域很多生物性治疗方法,并应用到临床医学中,本文通过生物可降解高分析材料的使用情况进行分析,并且详细介绍了生物可降解高分析材料应用现状,望能够对广大同行提供帮助。 【关键词】可降解高分子材料缓释医用现状 医用材料需要在物理性能和机械性能上有着十分突出的表现,针对现代医学的发展来看,对医用材料有着更高的要求,随着材料技术的发展,生物可降解高分子被广泛的应用到与生命组织相互搭配的过程中,同时生物可降解高分子材料与生命组织的结构十分相近,有利于在活体中的降解和吸收,这为医学发展带来了革命性的进步。 一、生物可降解高分子材料 这种材料能够直接作为医用材料,并且具有可以直接与活体接触使用的共性,所以在器官替换、治疗过程中起到十分重要的作用。目前医疗上的生物可降解高分子材料的范畴十分广阔,并且能够将药物释放体系和医疗材料代替体系相互融合,使诊断和分析中的固化酶、抗原体、生物传感器等作为主要的分析手段。 二、生物可降解医用分子材料 生物可降解高分子属于降解性高分子,它对水有不稳定性能,例如当生物可降解高分子材料被使用在活体环境中,体内的水份会深入到材料中,并且使酯基断链出现水解作用,是材料中的物质扩散到人体中,人体在通过正常的新陈代谢,完成生物的降解性。目前在生物材料的使用技术中,生物可降解高分子材料是最先进的使用技术之一,尤其在骨折处理、估摸修复、肌腱修补等方法应用很关。同时对于生物可降解高分子材料的物理性能要求也在不断的加大,不仅需要该材料具备强度、韧性、生物兼容性外,还对降解性的要求更加严格,希望能够通过新陈代谢直接将其分解,以降低二次手术带来的不必要麻烦。 三、生物可降解高分子材料种类的划分 生物可降解医用高分子主要由天然生物可降解分子材料和合成性生物可降解医用高分子组成。天然生物可降解医用高分子材料应用性很高,通常都是通过多糖、多聚核甘酸、多肽、以及细菌法聚合而成的。天然的生物可降解高分子材料与人体的组织十分接近,并且能够融合人体的生理性,使其被排斥程度大幅度降低,同时人体内每个组织部位的酶浓度不同,对其体内的降解速率大幅度降低,同时使材料的机械性能受到一定的影响。所以天然生物可降解高分子材料在使用上有一定的局限性。随着合成生物可降解高分子材料的诞生,使天然生物可降解高分子材料中的局限性可以通过人工的方法进行控制。合成生物可降解高分子材料。在设计过程中可以通过简单的物理性能改造,使其具备更加广泛的性能,同

2021年生物可降解高分子材料的应用

生物可降解高分子材料的应用 20世纪后,合成高分子材料的研究迅速增加,给人们生活带来了巨大的便利,下面是搜集的一篇探究生物可降解高分子材料应用的,欢迎阅读参考。 :目前我国的高分子材料的生产和使用已跃居了世界前列。为尽量减少对人类环境的污染,许多的高聚物迫切需要进行生物可降解。本文主要探讨了生物可降解高分子材料现阶段的开发应用情况。 现代材料包括金属材料、无机非金属材料和有机高分子材料三大类。20世纪后,合成高分子材料的研究迅速增加,给人们生活带来了巨大的便利。随着高分子材料在各个领域的大量应用,废弃的高分子材料对环境的污染已成为世界性的问题。治理白色污染和寻找新的友好型非石油基聚合物是当前全球关注的问题。生物降解材料正是治标又治本的有效途径,也是我国可持续发展的需要。 高分子材料的降解分为光降解与光学化降解、机械化学降解、热降解与热学化降解、臭氧引发降解、离子降解、辐射分解降解以及生物降解等。生物降解是指高分子材料通过溶剂化作用、简单的水解或酶反应,以及其他有的机体转化为相对简单的.中间产物或小分子的过程。

高分子材料的生物降解过程可分为以下4 个阶段:水合作用、强度损失、物质整体化丧失和质量损失。依靠范德华力和氢键维系的二次、三次结构的破裂而引发的高分子水合作用以及可能因化学或酶催化水解而破裂的高分子主链使高分子材料的强度降低。对交联高分子材料强度的降低,可能由于高分子主链、外悬基团、交联剂的开裂等造成。高分子链的进一步断裂会导致分子量降低和质量损失。最后分子量足够低的小段分子链被酶进一步代谢为二氧化碳、水等物质。总之,生物的降解并非是单一机理,而是一个复杂的生物物理、生物化学的协同作用,还是一个相互促进的物理化学过程。目前为止,除了生物降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。 生物可降解高分子材料的应用范围很广,可用于农业、园林、水产以及装潢、包装、卫生、化妆品等领域,由于成本等因素,目前研究多集中在生物医疗工程领域。 3.1农业、园林、土木等用材 农业、园林、土木等用材包括苗圃用膜材、树根包装袋、防草用地膜、多功能卷材、坡面防护绿化卷材等。各种膜材和功能片材的使用时间不同,有的要求 1 个季节,有的最少要求 1- 3 年,例

相关主题