搜档网
当前位置:搜档网 › 不定积分中有理函数的分解

不定积分中有理函数的分解

不定积分中有理函数的分解
不定积分中有理函数的分解

有理函数及三角函数有理式的积分

§3.6 有理函数及三角函数有理式的积分 教学目的:使学生理解有理函数及三角函数有理式积分法,掌握有理函数及三角函数有理式积分法的一般步骤及其应用。 重点:有理函数及三角函数有理式积分法及其应用 难点:有理函数及三角函数有理式积分法及其应用 教学过程: 一、问题的提出 前面两节我们利用基本积分表、不定积分性质和两种基本积分发(换元积分法与分部积分法)已经求出了一些不定积分。从求解过程中可见,求不定积分不像求导数那样,只要按照求导法则并利用基本求导公式就一定能求出一个函数的导数,而求不定积分却没有那样容易。即使一个看起来并不复杂的函数,要求出结果,有时候都需要一定的技巧,有些甚至还“积不出”。例如, ????+-31,,ln ,sin 2 x dx dx e x dx dx x x x , 被积函数都是初等函数,看起来也并不复杂,但是在初等函数范围内却积不出来,这是 因为被积函数的原函数不是初等函数。本节主要介绍几类常见的函数类型的积分方法与积分计算技巧。 求不定积分的主要方法有“拆、变、凑、换、分、套” “拆”,即将被积函数拆项,把积分变为两个或几个较简单的积分。“变”,即代数恒等变形:加一项减一项、乘一项除一项、分子分母有理化、提取公因子;三角恒等变形:半角、倍角公式,平方和公式,积化和差、和差化积、和角公式;陪完全平方:根号下配完全平方、分母配完全平方等;“凑”,即凑微法(第一类换元法)。“换”,即第二类换元法(三角代换、倒代换、指数代换法等)。“分”,即分部积分法。“套”,即套基本公式。 求不定积分的主要技巧在一个“巧”字和一个“练”字,即巧用上述方法和综合 运用上述方法。 二、 有理函数的积分 有理函数)(x R 是指由两个多项式的商所表函数,即 =)(x R m m m m n n n n b x b x b x b a x a x a x a x Q x P +++++++= ----11101110) ()(ΛΛ 其中m 和n 都是非负整数;n a a a a ,,,,2 10Λ及m b b b b ,,,,210Λ都是实数,通常总假定 分子多项式)(x P 与分母多项式)(x Q 之间没有公因式,并且00≠a ,00≠b . 当m n <时,称)(x R 为真分式;而当m n ≥时,称)(x R 为假分式. 一个假分式总可化为一个多项式和一个真分式之和的形式.例如 111122 234-++++=-+x x x x x x x .

一元函数微积分重点

微积分的基本内容可以分为三大块:一元函数微积分,多元函数微积分(主要是二元函数),无穷级数和常微分方程与差分方程。一元函数微积分学的知识点是考研数学三微积分部分出题的重点,应引起重视。多元函数微积分学的出题焦点是二元函数的微分及二重积分的计算。无穷级数和常微分方程与差分方程考查主要集中在数项级数的求和、幂级数的和函数、收敛区间及收敛域、解简单的常微分方程等。 一、熟记基本内容 事实上,数学三考微积分相关内容的题目都不是太难,但是出题老师似乎对基本计算及应用情有独钟,所以对基础知识扎扎实实地复习一遍是最好的应对方法。阅读教材虽然是奠定基础的一种良方,但参考一下一些辅导资料,如《微积分过关与提高》等,能够有效帮助同学们从不同角度理解基本概念、基本原理,加深对定理、公式的印象,增加基本方法及技巧的摄入量。对基本内容的复习不能只注重速度而忽视质量。在看书时带着思考,并不时提出问题,这才是好的读懂知识的方法。 二、紧抓内容重点 在看教材及辅导资料时要依三大块分清重点、次重点、非重点。阅读数学图书与其他文艺社科类图书有个区别,就是内容没有那么强的故事性,同时所述理论有一定抽象性,所以在此再一次提醒同学们读书需要不断思考其逻辑结构。比如在看函数极限的性质中的局部有界性时,能够联系其在几何上的表现来理解,并思考其实质含义及应用。三大块内容中,一元函数的微积分是基础,定义一元函数微积分的极限及微积分的主要研究对象——函数及连续是基础中的基础。这个部分也是每年必定会出题考查的,必须引起注意。多元函数微积分,主要是二元函数微积分,这个部分大家需要记很多公式及解题捷径。无穷级数和常微分方程与差分方程部分的重点很容易把握,考点就那几个,需要注意的是其与实际问题结合出题的情况。 三、检测学习效果 大量做题是学习数学区别与其他文科类科目的最大区别。在大学里,我们常常会看到,平时不断辗转于各自习室占坐埋头苦干的多数是学数学的,而那些平时总抱着小说看,还时不时花前月下的同学多半是文科院系的。并不是对两个院系的同学有什么诟病,这种状况只是所学专业特点使然。在备考研究生考试数学的时候,如果充分了解其特点,就能对症下药。微积分的选择及填空题考查的是基本知识的掌握程度及技巧的灵活运用,可做做《考研数学客观题1500题》,必定能达到所希望的结果。微积分的解答题注重计算及综合应用能力,平时多做这方面的题目既可以练习做题速度及提高质量,也能检测复习效果。 高考数学中关于一元函数微积分学所考查的知识点高考数学中关于一元函数微积分学所考查的知识点:

常见不定积分的求解方法

常见不定积分的求解方法的讨论 马征 指导老师:封新学 摘要介绍不定积分的性质,分析常见不定积分的各种求解方法:直接积分法、第一类换元法(凑微法)、第二类换元法、分部积分法,并结合实际例题加以讨论,以便于在解不定积分时能快速选择最佳的解题方法。 关键词不定积分直接积分法第一类换元法(凑微法)第二类换元法分部积分法。 The discussion of common indefinite integral method of calculating Ma Zheng Abstract there are four solutions of indefinite integration in this discourse: direct integration; exchangeable integration; parcel integration. It discussed the feasibility which these ways in the solution of integration, and it is helpful to solve indefinite integration quickly. Key words Indefinite integration,exchangeable integration, parcel integration.

0引言 不定积分是《高等数学》中的一个重要内容,它是定积分、广义 积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础, 要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是 常见不定积分的解法。不定积分的解法不像微分运算时有一定的法 则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运 算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出 来”的,就是说这些函数的原函数不能用初等函数来表示,例如 ?-x k dx 22sin 1(其中10<

教你如何判断无损连接和函数依赖

教你如何判断无损连接和函数依赖 无损分解和保持依赖的判断 大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。 以下的论述都基于这样一个前提: R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。 首先我们给出一个看似无关却非常重要的概念:属性集的闭包。 令α为一属性集。我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。 下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result 中。 算法一: result:=α; while(result发生变化)do for each 函数依赖β→γ in F do begin if β∈result then result:=result∪γ; end 属性集闭包的计算有以下两个常用用途: ·判断α是否为超码,通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。若是,则α为R的超码。 ·通过检验是否β∈α+,来验证函数依赖是否成立。也就是说,用属性闭包计算α+,看它是否包含β。 (请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。) 看一个例子吧,2005年11月系分上午37题: ● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。 (37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3 首先我们按照上面的算法计算A1+ 。 result=A1, 由于A1→A2,A1∈result,所以result=result∪A2=A1A2 由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3 由于A2→A4,A2∈result,所以result=result∪A3=A1A2A3A4 由于A3→A2,A3∈result,所以result=result∪A2=A1A2A3A4 通过计算我们看到,A1+ =result={A1A2A3A4},所以A1是R的超码,理所当然是R的候选关键字。此题选A 。

浅谈无理函数不定积分的求解方法

浅谈无理函数不定积分的求解方法 摘要:我们将自变量包含在根式之下的函数称为无理函数。这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。 本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。同时,总结了对一些常见的无理函数不定积分类型的常用解法。为无理函数不定积分的求解提供一种思路。 关键字:无理函数不定积分计算方法 Abstract:We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider. This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems. key words:irrational function indefinite integral method

关系模式的无损分解

1、已知关系模式R(ABC),F={A→C,B→C},求F+。 可以直接通过自反律、增广律、传递律加以推广: F+={φ→φ,A→φ,B→φ,C→φ,A→C,B→C,AB→φ,AB→A,AB→B,AB→C,AB→BC,AB→AB,AB→ABC,BC→φ,BC→C,BC→B,BC→BC,AC→φ,AC→C,AC→A,AC→AC,ABC→φ,ABC→A,ABC→B,ABC→C,ABC→BC,ABC→AB,ABC→ABC} 4.6 试分析下列分解是否具有无损联接和保持函数依赖的特点: (1)设R(ABC),F1={A→B} 在R上成立,ρ1={AB,AC}。 首先,检查是否具有无损联接特点: 第1种解法--算法4.2: (1) 构造表(2)根据A→B进行处理 结果第二行全是a行,因此分解是无损联接分解。 第2种解法:(定理4.8) 设 R1=AB,R2=AC R1∩R2=A R2- R1=B ∵A→B,∴该分解是无损联接分解。 然后,检查分解是否保持函数依赖 πR1(F1)={A→B,以及按自反率推出的一些函数依赖} πR2(F1)={按自反率推出的一些函数依赖} F1被πR1(F1)所蕴涵,∴所以该分解保持函数依赖。

2、设R(ABC),F2={A→C,B→C}在R上成立,ρ2={AB,AC} 首先,检查是否具有无损联接特点: 第1种解法(略) 第2种解法:(定理4.8) 设 R1=AB,R2=AC R1∩R2=A R2- R1=C ∵A→C,∴该分解是无损联接分解。 然后,检查分解是否保持函数依赖 πR1(F2)={按自反率推出的一些函数依赖} πR2(F2)={A→C,以及按自反率推出的一些函数依赖} ∵F1中的B→C没有被蕴涵,所以该分解没有保持函数依赖。 3、设R(ABC),F3={A→B},在R上成立,ρ3={AB,BC}. 首先,检查是否具有无损联接特点: 第1种解法: (1) 构造表(2)根据A→B进行处理没有一行全是a行。因此这个分解不具有无损联接特性。 第2种解法:(定理4.8) 设 R1=AB,R2=BC R1∩R2=B

一元函数积分知识点完整版

一元函数积分知识点完整版

牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知?+=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 一.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在 ]1,0[上连续,A dx x f =?20)cos (π,则 ==?π 20)cos (dx x f I _______。 二.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑?=∞→--+=n i n b a n a b n a b i a f dx x f 1))((lim )( ∑?=∞→---+=n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5:

求∑=∞→+=n i n i n n i n w 12tan lim 三.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 四.考察分项积分方法 讲解:利用不定积分(定积分)线性性质把复杂函数分解成几个简单函数的和,再求积分。 问题6: 求下列不定积分: dx x x ?++2cos 1cos 12 五.考察定积分的分段积分方法 讲解:利用定积分的区间可加性把复杂的区间分解成几个简单区间的和,再求积分。 问题7: 计算以下定积分: {}?-+22cos ,5.0min )1(ππdx x x 六.考察不定积分的分段积分方法 讲解:有时被积函数是用分段函数的形式表示的,这时应该采用分段积分法。 问题8:

有理函数的原函数

120 §6.3 有理函数的原函数 有理函数 若,P Q 都是实系数多项式函数,则称P R Q =为实有理函数;当P 的次数严格小于Q 的次数时,称有理函数P R Q = 为真分式. 引理 首系数为1的实系数多项式Q 在实数范围内有唯一的因式分解 22()()()()()Q x x a x b x px q x rx s αβμν=--++++ , 其中,,a b 是互不相同的实数;(,),(,)p q r s 是互不相同的实数偶, 满足224,,4p q r s << ;,,,,,,2()αβμναβμν*∈+++++ 恰为多项式Q 的次数. 证: 由代数学的基本定理(任何《复变函数》教材中都会证明)容易得 到这里的结论.只要注意到,当复数(0)A iB B +≠是Q 的k 重根时,A iB - 也是Q 的k 重根.故Q 含有因式 22[()][()][()]k k k x A iB x A iB x A B -+--=-+ 222222(2),(2)4()k x Ax A B A A B =-++<+.□ 例1 将41x +在实数范围内因式分解. 解: 41x +有4 个复根 2i i ± -±,故 41( 2222222 2 x x i x i x i x i + =---++-++ 222211(((1)(1)2222x x x x ????=-+++=-+++????? ???.□ 例2 将32584x x x +++在实数范围内因式分解. 解: 32584x x x +++有实根1-,故 3222584(1)(44)(1)(2)x x x x x x x x +++=+++=++.□ 定理6.1(部分分式分解) 若P R Q =是真分式,其分母Q 有形如引理所 述的因式分解,则P R Q = 在实数范围内有唯一的部分分式分解

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

一元函数积分知识点完整版

一元函数积分相关问题 前言: 考虑到学习的效率问题,我在本文献中常常会让一个知识点在分隔比较远的地方出现两次。这种方法可以让你在第二次遇到同样的知识点时顺便复习下这个知识点,同时第二次出现这个知识点时问题会稍微升华点,不做无用的重复。 一.考查原函数与不定积分的概念和基本性质 讲解:需要掌握原函数与不定积分的定义、原函数与不定积分的关系,知道求不定积分与求微分是互逆的关系,理解不定积分的线性性质。 问题1: 若)(x f 的导函数是x sin ,则所有可能成为)(x f 的原函数的函数是_______。 二.考查定积分的概念和基本性质 讲解:需要掌握定积分的定义与几何意义,了解可积的充分条件和必要条件,掌握定积分的基本性质。 定积分的基本性质有如下七点: 1、线性性质 2、对区间的可加性 3、改变有限个点的函数值不会改变定积分的可积性与积分值 4、比较定理(及其三个推论) 5、积分中值定理 6、连续非负函数的积分性质 7、设)(x f 在],[b a 上连续,若在],[b a 的任意子区间],[d c 上总是有 ? =d c dx x f 0)(,则当 ],[b a x ∈时,0)(≡x f 问题2: 设? = 2 )sin(sin π dx x M ,?=20 )cos(cos π dx x N ,则有() (A )N M <<1 (B )1<

分的关系,了解初等函数在定义域内一定存在原函数但不一定能积出来,需要重点掌握牛顿—莱布尼兹公式及其推广。 其中变限积分的求导方法为: 设)(x f 在],[b a 上连续,)(x ?和)(x ψ在],[βα上可导,当],[βα∈x 时, b x x a ≤≤)(),(ψ?,则? =) () ()(x x dt t f y ?ψ在],[βα上可以对x 求导,且 )('))(()('))((x x f x x f dx dy ψψ??-= 牛顿—莱布尼兹定理为: 设)(x f 在],[b a 上连续,)(x F 是)(x f 在],[b a 上的一个原函数,则 )()()(a F b F dx x f b a -=? 问题3: 已知 ? +=) 1ln(2)(x x t dt e t x f ,求)('x f )0(≥x 四.考查奇偶函数和周期函数的积分性质 讲解:需要掌握对称区间上奇偶函数的定积分性质、周期函数的积分性质,学会用性质化简积分。 问题4: 设)(x f 在]1,0[上连续, A dx x f =? 2 )cos (π ,则==? π 20 )cos (dx x f I _______。 五.利用定积分的定义求某些数列极限 讲解:需要掌握把某些和项数列和积项数列求极限的问题转化为求解定积分的方法。关键是确定被积函数、积分区间及区间的分点。 常见的情形有: ∑? =∞ →--+ =n i n b a n a b n a b i a f dx x f 1))((lim )( ∑? =∞ →---+ =n i n b a n a b n a b i a f dx x f 1 )))(1((lim )( 问题5: 求∑ =∞ →+=n i n i n n i n w 1 2tan lim 六.考察基本积分表 讲解:需要掌握基本初等函数的积分公式。 七.考察分项积分方法

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

74简单无理函数的不定积分与三角函数的不定积分

§7.4简单无理函数的不定积分与三角函数的不定积分 一、简单无理函数的不定积分 对被积函数带有根号的不定积分,它的计算是比较麻烦的。但对某些特殊情况,我们可通过作变量替换,将其转化为有理函数的不定积分,这样就可以用上述的方法计算。 下面总假设),(y x R 表示关于变量y x ,的有理函数。 1.??? ? ??++n d cx b ax x R ,型函数的不定积分。其中0≠-bc ad 解法:作变量替换n d cx b ax t ++=,即dt t dx t ct a b dt x n n )(,)(φφ'==--=,于是 []??'=??? ? ??++dt t t t R dx d cx b ax x R n )(),(,φφ, 转化为有理函数的不定积分。 例1.求 ?++dx x x x x 14 158217 1 分析:要把被积函数中的几个根式化为同次根式。 ()2 14 7 7 1x x x = = ,()7 14 2 1x x x = =,() 16 14 7 8 7 8x x x = = ,() 15 14 14 15x x = 作变量替换14x t =,即dt t dx t x 1314 14,==,就可以把原不定积分化为有理函数的不定积分。 解:作变量替换14x t =,即dt t dx t x 1314 14,==,则 =++=?++=++???dt t t dt t t t t t dx x x x x 111414513 15167214 1582 1 71 例2.求 ? -?+-dx x x x 2 3 ) 2(1 22 解:设,223t x x =+- 则33122t t x +-=,dt t t dx 2 32 ) 1(12+-=,所以 ??? =-=+-???? ? ??+--?=-?+- dt t dt t t t t t dx x x x 323223323 1 43) 1(1212221)2(122 2.() c bx ax x R ++2,型函数的不定积分,其中042≠-ac b (即方程02 =++c bx ax 无重根) 分两种情况讨论: (1)042 >-ac b 时,方程02 =++c bx ax 有两个不等的实数根α、β

关于无损分解和保持依赖的判断

关于无损分解和保持依赖的判断,是系分和数工考试中每年基本上都会考的题,而且绝大部分是对一个关系模式分解成两个模式的考察,分解为三个以上模式时无损分解和保持依赖的判断比较复杂,考的可能性不大,因此我们只对“一个关系模式分解成两个模式”这种类型的题的相关判断做一个总结。 以下的论述都基于这样一个前提: R是具有函数依赖集F的关系模式,(R1 ,R2)是R的一个分解。 首先我们给出一个看似无关却非常重要的概念:属性集的闭包。 令α为一属性集。我们称在函数依赖集F下由α函数确定的所有属性的集合为F下α的闭包,记为α+ 。 下面给出一个计算α+的算法,该算法的输入是函数依赖集F和属性集α,输出存储在变量result中。 算法一: result:=α; while(result发生变化)do for each 函数依赖β→γ in F do begin if β∈result then result:=result∪γ; end 属性集闭包的计算有以下两个常用用途: ·判断α是否为超码,通过计算α+(α在F下的闭包),看α+ 是否包含了R中的所有属性。若是,则α为R的超码。 ·通过检验是否β∈α+,来验证函数依赖是否成立。也就是说,用属性闭包计算α+,看它是否包含β。 (请原谅我用∈符号来表示两个集合之间的包含关系,那个表示包含的符号我找不到,大家知道是什么意思就行了。) 看一个例子吧,2005年11月系分上午37题: ● 给定关系R(A1,A2,A3,A4)上的函数依赖集F={A1→A2,A3→A2,A2→A3,A2→A4},R的候选关键字为________。 (37)A. A1 B. A1A3 C. A1A3A4 D. A1A2A3 首先我们按照上面的算法计算A1+ 。 result=A1, 由于A1→A2,A1∈result,所以result=result∪A2=A1A2 由于A2→A3,A2∈result,所以result=result∪A3=A1A2A3 由于A2→A4,A2∈result,所以result=result∪A3=A1A2A3A4 由于A3→A2,A3∈result,所以result=result∪A2=A1A2A3A4 通过计算我们看到,A1+ =result={A1A2A3A4},所以A1是R的超码,理所当然是R的候

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

不定积分求解方法及技巧

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上 的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分变量,C称为积分常数。 性质1 设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx. 性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理

如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式 ?f[?(x)] ?’(x)dx=?f(u)du=F(u)+C=F[?(x)]+C. 第一类换元法是通过变量代换u=?(x),将积分?f[?(x) ?’(x)dx化为?f(u)du.但有些积分需要用到形如x=?(t)的变量代换,将积分?f(x)dx化为?f[?(t)] ?’(t).在求出后一积分之后,再以x=?(t)的反函数t=?1-(X)带回去,这就是第二类换元法。即 ?f(x)dx={?f[?(t)] ?’(t)dt})(1X . =? t- 为了保证上式成立,除被积函数应存在原函数之外,还应有原函数t=?1-(x)存在的条件,给出下面的定理。 定理 2 设x=?(t)是单调,可导的函数,并且?‘(t)≠0.又设f[?(t)] ?’(t)具有原函数F(t),则?f(x)dx=?f[?(t)] ?’(t)dt=F(t)+C=F[?1-(x)]+C 其中?1-(x)是x=?(t)的反函数。 三.常用积分公式 1 基本积分公式

有理函数不定积分的研究毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

有理函数

有理函数就是通过多项式的加减乘除得到的函数。一个有理函数h可以写成如下形式:h=f/g,这里 f 和g 都是多项式函数。有理函数是特殊的亚纯函数,它的零点和极点个数有限。 有理函数全体构成所谓的有理函数域。 在实数范围内,无限不循环的小数叫做无理数,一般通过开平方得到。但有两个例外,他们分别是π和 e 。在二次函数里面,如y=a*x^2+b*x+c,如果△≥0,那么y=0 有实数解;如果△<0,那么y=0 没有实数解,但有虚数解。 有理函数是可以表示为以下形式的函数: ,不全为0。 有理数式是多项式除法的商,有时称为代数分数。 渐近线 ?不失一般性可假设分子、分母互质。若存在,使得是分母的因子,则有理函数存在垂直渐近 线。 ?若,有水平渐近线。 ?若,有水平渐近线。 ?若,有斜渐近线。 [编辑] 泰勒级数 有理函数的泰勒级数的系数满足一个线性递归关系。反之,若一个泰勒级数的系数满足一个线性递归关系,它对应的函数是有理函数。 [编辑] 部分分式 部分分式,又称部分分数、分项分式,是将有理数式分拆成数个有理数式的技巧。 有理数式可分为真分式、假分式和带分式,这和一般分数中的真分数、假分数和带分数的概念相近。真分式分子的次数少于分母的。 若有理数式的分母可分解为数个多项式的积,其部分分数便是,其中是的因子,是次数不大于Q(x)/h_n(x)的多项式。 [编辑] 例子 1分拆 分子的次数是3,分母的是2,所以先将它转成真分式和多项式的和(即带分式):

因为,所以 其中A和B是常数。两边乘以,得 即 比较系数,得 解得。 故: 也可以把x的特殊值代入等式来解出A和B。例如,当x=4时,我们有 当x=-7时,我们有 [编辑] 应用 ?伸缩和 ?复分析 ?拉普拉斯变换 [编辑] 积分 [编辑] 部分分数 在计算有理数式的积分时,部分分数的方法很有用,因为分母的1和2次多项式的有理数式的积分都有固定的方法计算。 ?分母为1次多项式:求。 设: 原式变为

不定积分公式

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??????-=+-≠++=+1 ln 11 11 μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ? +-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ④()()()C x e e x dx dx e dx x e x x x x +-=-=??? ? ?-???ln 21ln 2121ππππ ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1csc cot 22 ⑧???++-=??? ? ?++-=++-=+C x x x dx x x dx x x dx x x arctan 3111111113222424 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③()())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

相关主题