搜档网
当前位置:搜档网 › 风力等级与风速的关系

风力等级与风速的关系

风力等级与风速的关系
风力等级与风速的关系

风速和风力等级

一、概述

空气的水平运动称为风,空气作水平运动时,即有方向,也有速率。风能促使干冷空气和暖湿空气发生交换,是天气变化的重要因素之一。

风向是指风的来向。地面风向用十六方位表示。

风向十六个方位正北、北东北、东北、东东北、东、东东南、东南、南东南、南、南西南、西南、西西南、西、西西北、西北、北西北。

根据方位可目测风向

二、风速风向的测量

空气运动产生的气流,称为风。它是由许多在时空上随机变化的小尺度脉动叠加在大尺度规则气流上的一种三维矢量。

地面气象观测中测量的风是两维矢量(水平运动),用风向和风速表示。

风向是指风的来向,最多风向是指在规定时间段内出现频数最多的风向。人工观测,风向用十六方位法;自动观测,风向以度(°)为单位。

风速是指单位时间内空气移动的水平距离。风速以米/秒(m/s)为单位,取一位小数。最大风速是指在某个时段内出现的最大十分钟平均风速值。极大风速(阵风)是指某个时段内出现的最大瞬时风速值。瞬时风速是指三秒钟的平均风速。

风的平均量是指在规定时间段的平均值,有三秒钟、二分钟和十分钟的平均值。

人工观测时,测量平均风速和最多风向。配有自记仪器的要作风向风速的连续记录并进行整理。

自动观测时,测量平均风速、平均风向、最大风速、极大风速。

三、风速定义

风速是三维向量,在一个较大尺度而有组织的气流上随时空作小尺度而不规则的波动。地面风普遍是以方向和速度的两个数值来说明的二维水平向量。

地面风通常是用风向标和风杯风速表或螺旋桨式风速表来测量。

四、风速规定

由于受到摩擦力的影响,风速会随着高度上升而增加。故此,为风速表安放於空旷地区定下了一个标准高度。风速表安放於平坦而空旷地区的标准高度是离地面10 米。空旷地区是指风速表与任何障碍物相距不少于该障碍物10倍高度的范围。

1、量度单位风速:

米/秒(m/s)

公里/小时(km/h)

海里/小时(knots)

2、换算因子:

1米/秒[s] = 3.6公里/小时[h] = 1.944海里/小时

1公里/小时[h] =0.278米/秒[s] =0.540海里/小时

1海里/小时[h] =0.514米/秒[s]= 1.852公里/小时

风向:风向界定为风来自的方向,并从地理上的北方开始顺时针方向量度。

方位点(例如:北、东北、东、南、西)方位点(例如:北、东北、东、南、西) 角度(例如:360o, 045o, 090o, 180o, 270o)。风向和风速也会影响生物的活动。例如在当风的地方,空气流动速度较快,环境中水份的流失速度会增加,于其中

活动的生物会表现出不同程度的适应性,如形成防止水份流失的特别构造。

五、风力等级划分

风力等级表-风力等级划分

风力等级陆地地面物体征象

海面波浪/浪高

(米)

相当风速

公里/时米/秒

0 静,烟直上。平静/0.0 小于1 0~0.2

1 烟能表示风向。微波峰无飞沫

/0.1

1-5 0.3~1.5

2 人面感觉有风,树叶微动。小波峰未破碎

/0.2

6~11 1.6~3.3

3 树叶及微技摇动不息,旌旗

展开。

小波峰顶破裂

/0.6

12~19 3.4~5.4

4 能吹起地面灰尘和纸张,树

的小枝摇动

小浪白沫波峰

/1.0

20~28 5.5~7.9

5 有叶的小树摇摆,内陆的水

面有小波。

中浪折沫峰群

/2.0

29~38 8.0~10.7

6 大树枝摇动,电线呼呼有声,

举伞困难。

大浪到个飞沫

/3.0

39~49 10.8~13.8

7 全树动摇,迎风步行感觉不

便。

破峰白沫成条

/4.0

50~61 13.9~17.l

8 微枝折毁,人向前行感觉阻

力甚大。

浪长高有浪花

/5.5

62~74 17.2~20.7

9 草房遭受破坏,大树枝可折

断。

浪峰倒卷/7.0 75~88 20.8~24.4

10 树木可被吹倒,,一般建筑物

遭破坏。

海浪翻滚咆哮

/9.0

89~102 24.5~28.4

11 陆上少见,大树可被吹倒,

一般建筑物遭严重破坏

波峰全呈飞沫

/11.5

103~

117

28.5~32.6

12 陆上绝少,其催毁力极大。海浪滔天/14.0 118~

133

32.7~36.9

13 134~

149

37.0~41.4

14 150~

166

41.5~46.1

15 167~

183

46.2~50.9

16 184~

201

51.0~56.0

17 202~

220

56.1~61.2

风力等级与风速的关系

风速和风力等级 一、概述 空气的称为风,空气作水平运动时,即有方向,也有速率。风能促使干冷空气和暖湿空气发生交换,是天气变化的重要因素之一。 风向是指风的来向。地面风向用十六方位表示。 风向十六个方位正北、北东北、东北、东东北、东、东东南、东南、南东南、南、南西南、西南、西西南、西、西西北、西北、北西北。 根据方位可目测风向 二、风速风向的测量 空气运动产生的气流,称为风。它是由许多在时空上随机变化的小尺度脉动叠加在大尺度规则气流上的一种三维矢量。 中测量的风是两维矢量(水平运动),用风向和风速表示。 风向是指风的来向,最多风向是指在规定时间段内出现频数最多的风向。人工观测,风向用十六方位法;自动观测,风向以度(°)为单位。 风速是指单位时间内空气移动的水平距离。风速以米/秒(m/s)为单位,取一位小数。最大风速是指在某个时段内出现的最大十分钟平均风速值。极大风速(阵风)是指某个时段内出现的值。瞬时风速是指三秒钟的平均风速。 风的平均量是指在规定时间段的平均值,有三秒钟、二分钟和十分钟的平均值。 人工观测时,测量平均风速和最多风向。配有自记仪器的要作风向风速的连续记录并进行整理。 自动观测时,测量平均风速、平均风向、最大风速、极大风速。 三、风速定义 风速是三维向量,在一个较大尺度而有组织的气流上随时空作小尺度而不规则的波动。地面风普遍是以方向和速度的两个数值来说明的二维水平向量。 地面风通常是用风向标和风杯表或式风速表来测量。

四、风速规定 由于受到摩擦力的影响,风速会随着高度上升而增加。故此,为风速表安放於空旷地区定下了一个标准高度。风速表安放於平坦而空旷地区的标准高度是离地面10 米。空旷地区是指风速表与任何障碍物相距不少于该障碍物10倍高度的范围。 1、量度单位风速: 米/秒(m/s) 公里/小时(km/h) 海里/小时(knots) 2、换算因子: 1米/秒[s] = 3.6公里/小时[h] = 1.944海里/小时 1公里/小时[h] =0.278米/秒[s] =0.540海里/小时 1海里/小时[h] =0.514米/秒[s]= 1.852公里/小时 风向:风向界定为风来自的方向,并从地理上的北方开始顺时针方向量度。 方位点(例如:北、东北、东、南、西)方位点(例如:北、东北、东、南、西) 角度(例如:360o, 045o, 090o, 180o, 270o)。风向和风速也会影响生物的活动。例如在当风的地方,空气流动速度较快,环境中水份的流失速度会增加,于其中活动的生物会表现出不同程度的适应性,如形成防止水份流失的特别构造。 五、风力等级划分 风力等级表-风力等级划分 风力 等级陆地地面物体征象 海面波浪/浪高 (米) 相当风速 公里/时米/秒 0静,烟直上。平静/小于10~0.2 1烟能表示风向。微波峰无飞沫/1-50.3~1.5 2人面感觉有风,树叶微动。小波峰未破碎/6~111.6~3.3

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风速的规定 一、各类风口风速规定 1、采暖风口 1.1、采用热风采暖系统时,应遵守下列规定: 送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s; 回风口的回风速度,宜取:V=0.3m/s。 来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.7 1.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。 来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.15 2、送排回风口 2.1、进风、排风口风速(m/s) 注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。 来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.8 2.2、自然通风系统的进排风口风速宜按下表采用: 来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.4 2.3、机械通风的进排风口风速宜按下表采用: 来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.5 2.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。 来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.10 2.5、侧送和散流器平送的出口风速采用2m/s~5m/s。 孔板下送风的出口风速,从理论上讲可以采用较高的数值。因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。一般采用3m/s"'_'5m/s 为宜。 条缝形风口气流轴心速度衰减较快,对舒适性空调,其出口风速宜为2m/s~4m/s 。 喷口送风的出口风速是根据射流未端到达人员活动区的轴心风速与平均风速经计算确定。喷口侧向送

洁净空调风管及风速要求

洁净空调风管及风速要求 1、风管应为金属材料制作,咬口缝均应胶封。 2、风管应有足够内径,控制风速在以下范围:总管7~9m/s 无风口支管或干管5~7m/s 有风口支管或干管3~5m/s 3、风管法兰之间均应有密封垫,密封垫材料宜为闭孔海绵橡胶,严禁采用橡胶、乳胶海绵、聚乙烯、厚纸板等含开孔孔隙和易产尘、易老化的材料。厚度不应小于5mm。密封垫上不得有涂料。 4、风管与设备之间应有柔性短管,外表不得结露,当有此可能时应改为双层短管。单层短管必须光面朝里,双层时外层应光面朝外。 5、安装在负压段的柔性短管应处于绷紧状态。 6、送风管上应按设计要求设消声器、防火阀。消声器一节应不小于900mm。 7、空调器(箱)内,至少应有表冷器和加热器,不得无加热器(特殊干燥地区如新疆除外)。寒冷地区空调器(箱)或新风空调器(箱)入口必须有预热器。 8、送风末端过滤器,应是亚高效过滤器或玻璃纤维滤纸的高效过滤器,不得用木质框架。折叠形的滤芯和分隔板必须紧密坚挺,不得有明显松软晃动现象。9、送风末端过滤器不应安在空调箱内,应安在送风口。如不能安在送风口,应安在离高效送风口较近的管道或夹层、顶棚内。 10、送风口扩散板不应采用空调系统用的平面散流器。 11、高效过滤器和框架之间必须密封。在《洁净室施工及验收规范》规定的密封方法中,采用密封条的应符合5.3的要求。压紧螺栓最少采用四角8点压紧,不得只压每边中点。不得只用密封胶粘住过滤器,不得在风口内将过滤器悬空托起,在空隙内打胶。所有密封方法均不得妨碍过滤器拆换,增加拆换难度。12、单向流洁净室每一个送风口高效过滤器均应有工程验收时现场扫描检漏合格报告,报告应由第三方有资质的检验单位出具。更换过滤器后应有更换方和用户共同确认的现场扫描检漏合格报告。 乱流洁净室上述风口检漏抽查数量应达到风口总数的20%,并不少于2个。 对修补1次后仍漏的过滤器应予更换,并有记录。 13、对可能发生具有Ⅲ、Ⅳ类生物危险度的高危生物气溶胶并须严防交叉污染的场合(如动物饲养室、不能停止生产的生物制品车间)的送风系统应具有可不在室内换高效过滤器、换过滤器时可不停止系统运行的功能。

风力等级与风速转换表

级数十七级制m/s国际分级 m/s 海上情况陆上情况 0无风 Clam <0.28 无风 Clam <0.28 (无浪) 海面平静如 镜。 烟直上。 1软风 Light 0.28-1.39 轻微 Light 0.28-1.67 (无浪-小浪) 鳞片状 柔和波纹,无白沫。 微弱的风令烟转向,但风向标不动。 2轻风 Light Breeze 1.67-3.05 轻微 Light 1.94-3.33 (小浪) 玻璃状之浪 峰而不破碎。 使人感觉有风,树叶摇动,风标开始 郁动。 3微风 Gentle Breeze 3.33-5.27 和缓 Moderate 3.61-5.27 (小浪-中浪) 浪峰较 大,开始破碎,间中 有白头浪。 树叶摇动,旗帜飘扬。 4和风 Moderate Breeze 5.55-7.77 和缓 Moderate 5.55-8.33 (中浪) 浪波拖长,白 头浪增加。 尘土及碎纸飘扬,较幼的树枝愮动。 5清风 Fresh Breeze 8.05-10.55 清劲 Fresh 8.33-11.11 (中浪-颇为大浪) 浪 波更长,白头浪开始 有浪花。 较大的树枝或小树都开始摇动,树叶 吹动的声响嘈吵。 6强风 Strong Breeze 10.83-13.61 强风 Strong 11.38-14.44 (大浪) 浪花增加,白 头浪广泛出现。 达三号风球的程度,大树摇动。街上 的木板或杂物可能被吹倒。人撑伞难 行。 7疾风 Near Gale 13.88-16.94 强风 Strong 14.44-17.22 (大浪-非常大浪) 海 浪堆叠,白沫吹成条 纹。 全树摇动,逆风难行。门、窗或墙壁 当风时会发出呼呼低音。 8大风 Gale 17.22-20.55 烈风 Gale 17.5-20.83 (非常大浪-巨浪) 海 浪更长,条纹更显 着。 到达八号风球的程度,小树枝吹 折。若下雨时雨水会可能被卷回半空, 使视野更差。 9烈风 Strong Gale 20.83-24.44 烈风 Gale 21.11-24.16 (巨浪-非常巨浪) 巨 浪汹涌,条纹浓厚。 大树枝吹折。风从门窗之缝隙吹进时 会发出高音的鸣叫。街上的垃圾桶、 路障等物件可能被吹倒。招牌或棚架 摇晃,若不稳固的亦可能被吹倒。 11狂风 Storm 24.72-28.33 暴风 Storm 24.44-28.61 (非常巨浪) 海面白 茫茫,波涛互相冲击 而发出巨响。 到达九号风球的程度。小树连风拔起, 棚架或招牌倒塌的可能性增加,失修 的旧楼有轻微摇曳。窗户有被吹破的 可能。 12暴风 Violent Storm 28.61-32.5 暴风 Storm 28.88-32.5 (非常巨浪-极巨浪) 白沫遍布海面,波涛 膨拜。 陆上出现广泛而中等程度破坏(如招 牌棚架或楼宇外墙结构的破坏)。

风速与风压的关系

风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 引用Cyberspace的文章:风力风压风速风力级别 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2(1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3)

风力等级划分标准

风力等级划分标准 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]

风力等级划分标准(蒲福风级表)

蒲福风级 风级0 概况无风 陆地静,烟直上 海岸0-0.2 相当风速(m/s)0.3-1.5 风级1 概况软风 陆地烟能表示方向,但风向标不能转动 海岸渔船不动 相当风速(m/s)0.3-1.5 风级2 概况轻风 陆地人面感觉有风,树叶微响,寻常的风向标转动海岸渔船张帆时,可随风移动 相当风速(m/s)1.6-3.3 风级3 概况微风 陆地树叶及微枝摇动不息,旌旗展开 海岸渔船渐觉簸动 相当风速(m/s)3.4-5.4 风级4

概况和风 陆地能吹起地面灰尘和纸张,树的小枝摇动海岸渔船满帆时,倾于一方 相当风速(m/s)5.5-7.9 风级5 概况清风 陆地小树摇摆 海岸水面起波 相当风速(m/s)8.0-10.7 风级6 概况强风 陆地大树枝摇动,电线呼呼有声,举伞有困难海岸渔船加倍缩帆,捕鱼须注意危险 相当风速(m/s)10.8-13.8 风级7 概况疾风 陆地大树摇动,迎风步行感觉不便 海岸渔船停息港中,去海外的下锚 相当风速(m/s)13.9-17.1 风级8 概况大风 陆地树枝折断,迎风行走感觉阻力很大

海岸近港海船均停留不出 相当风速(m/s)17.2-20.7 风级9 概况烈风 陆地烟囱及平房屋顶受到损坏(烟囱顶部及平顶摇动)海岸汽船航行困难 相当风速(m/s)20.8-24.4 风级10 概况狂风 陆地陆上少见,可拔树毁屋 海岸汽船航行颇危险 相当风速(m/s)24.5-28.4 风级11 概况暴风 陆地陆上很少见,有则必受重大损毁 海岸汽船遇之极危险 相当风速(m/s)28.5-32.6 风级12 概况飓风 陆地陆上绝少,其摧毁力极大 海岸海浪滔天 相当风速(m/s)32.6以上

风级 风速 风压对照表

风压计算和风力等级表 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为: wp=0.5·ρ·v2 (1) 其中wp为风压[kN/m2],ρ为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ρ)和重度(r)的关系为 r=ρ·g, 因此有 ρ=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15℃), 空气重度 r=0.01225 [kN/m3]。纬度为45°处的重力加速度 g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,ρ在高原上要比在 平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取

风速上限 28.4m/s, 得到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。

风级、风速、风压对照表

风速与风压(风载)的关系 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v (1) 其中wp为风压[kN/m瞉,ro为空气密度[kg/m砞,v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m砞。纬度为45°处的重力加速度g=9.8[m/s瞉, 我们得到wp=v/1600 (3)

风力等级和风速对照表

风力等级和风速对照表 风级、风速、风压对照表?(机构与结构设计参考) ? WindscaleandWindspeed ,Windforcelist?(fordesigned) 风级 名称? 风速windspeed?? 风压W0=V 2 /16(kg/m 2 ), 10N/m 2 陆地地面物体征象 海面状态 浪高(米) km/h (m/s ) 0 无风 <1 0-0.2 0-0.0025 静、烟直上 静 0.0 1 软风 1-5 0.3-1.5 0.0056-0.014 烟能表示方向,但风向标不动 微波峰无飞沫 0.1 2 轻风 6-11 1.6-3.3 0.016-0.68 人面感觉有风,风向标转动 小波峰未破碎 0.2 3 微风 12-19 3.4-5.4 0.72-1.82 树叶及微枝摇动不息,旌旗展 开 小波峰顶破裂 0.6 4 和风 20-28 5.5-7.9 1.89-3.9 能吹起地面纸张与灰尘 轻浪、小浪白沫波峰 1.0 5 清风 29-38 8.0-10.7 4-7.16 有叶的小树摇摆 中浪折沫峰群 2.0 6 强风 39-49 10.8-13.8 7.29-11.9 小树枝摇动,电线呼呼响 大浪到个飞沫 3.0 7 疾风 50-61 13.9-17.1 12.08-18.28 全树摇动,迎风步行不便 巨浪、破峰白沫成条 4.0 8 大风 62-74 17.2-20.7 18.49-26.78 微枝折毁,人向前行阻力甚大 狂浪、浪长高有浪花 5.5 9 烈风 75-88 20.8-24.4 27.04-37.21 建筑物有小损 狂涛、浪峰倒卷 7.0 10 狂风 89-102 24.5-28.4 37.52-50.41 可拔起树来,损坏建筑物 狂涛、海浪翻滚咆哮 9.0 11 暴风 103-117 28.5-32.6 50.77-66.42 陆上少见,有则必有广泛破坏 狂涛、波峰全呈飞沫 11.5 12 飓风 >117 32.7-36.9 ?66.42-85.1 陆上极少见,摧毁力极大 海浪滔天 14.0

风口风速汇总

1、排烟口的风速≤10m/s(老建规9.4.6.6) 2((1)、空调送风口的出口风速,消声要求较高时,宜采用2-5m/s,喷口送风可采用4-10m/s。(采暖6.5.9) 2(2)、空调侧送和散流器平送的出口风速2-5 m/s。孔板下送风的出口风速3-5 m/s。条缝型风口下送(多用于纺织厂),当空气调节区层高为4-6m人员活动区风速不大于0.5m/s时,出口风速宜为2-4m/s。(采暖条文6.5.9&民用条文7.4.11&技措5.4.6.2【孔板】) 3、空调回风口的吸风速度:(采暖6.5.11&民用7.4.13) 利用走廊回风时,回风口安装在门或墙下部的回风口面风速1-1.5m/s(采暖条文6.5.11) 4、自然通风系统的进排风口的空气流速(m/s):(民用表6.6.4-1) 5、机械通风系统的进排风风口风速(m/s):(民用表6.6.5) 6 7 应取4-5m/s。(技措4.2.10.2) 8、洗衣房机械排风系统洗衣机、烫平机、干洗机、压烫机、人体吹机等散热两大或有异味散出的设备上部,应设置排气罩,其罩面风速应≥0.5m/s。(技措4.5.1.3.1) 10、暗室通风宜采用机械排风、自然进风的通风方式,排风量宜取≥5次/h换气。排风口宜设在水池附近,进风口应采用遮光百叶窗,通过百叶窗的风速应<2m/s。(技措4.5.8)11、机械加压送风口不宜大于7m/s;排烟口不宜大于10m/s;机械补风口不宜大于10m/s,公共聚集场所不宜大于5m/s;自然补风口不宜大于3m/s。(技措4.8.5.3) 12、人员长期停留的区域采用置换通风方式时,人脚踝处风速不宜超过0.2m/s。(技措 5.4.10.2)

风速和风速等级

《风向与风速》 ●教学目标 1.知道风可以通过自然界中事物的变化来感知,可以用风向和风速来描述。 2.学生自制简易风向标和小风旗。用自制的风向标和小风旗测量风向和风速,并使用适当的方法记录观察结果。 3.感受到使用简单工具能对天气观察活动提供很大的帮助。进一步提高观察天气现象的兴趣和好奇心。 ●教学重点能描述风向和风速 ●教学难点用自制的风向标和小风旗测量风向和风速,并使用适当的方法记录观察 结果。 ●教学流程 一、创设情境 师:上周我们学习了天气,那么大家说一说:生活中常见的天气现象有哪些? (多媒体出示几幅图画:上面有晴天,阴天,雨,雪,风等天气现象)师:猜猜看,是哪种天气现象呢? 水见它皱眉,花见它弯腰,树见它摇头,云见它就跑。 预设:风 师:请仔细观察这几幅画,找一找风的踪迹? 预设:树叶在动…… 旗杆上的红旗飘了起来。 师:你们都是善于观察的小能手。一下子就发现了风,因为风就在我们身边。今天我们就来研究一下风。(出示课题:风向和风速)

二、说一说风,画一画风向图 师:有谁能说说图中的红旗是往什么方向飘的? 预设:学生观察图画,说出方向:西 师:为什么说是向东飘?(通过这个问题,为等会实际测量风向做一个简单的铺垫。) 预设:早上太阳升起来啦,而旗的方向正好一致。 师:真不错,你还知道有哪些方向? 预设:东、南、西北…… 师:我们同学们说的这些,其实也就是风向。(多媒体出示风向图),我们大家一起来认一认这八个方向,读一读。 生:东,东南…… (在黑板上示范画一个风向图。让学生对风向图有一个初步的认识)师:一般我们在画风向图的时候,总是将北方画在上面,这叫“上北下南,左西右东”。同学们也来照着画一画好吗? (学生动手在纸上画出风向图。这个风向图在等会的风向标中,还将用到。) 三、游戏激趣,动手制作风向标 师:老师这里还有一个好玩的东西,想玩吗? 师:这个装置叫风向标,是用来测定风向的工具。风向就是指风吹来的方向,可以用八个方位来描述风向。这个箭头所指的方向就是风向。我们首先要用指南针来确定一下方向是否正确。 小游戏:老师摆出不同的风的方向,让学生说出是从什么方向吹过来

风量风速计算方法

一、室内风管风速选择表 1、低速风管系统的推荐和最大的流速m/s 2、低速风管系统的最大允许速m/s 注:民用住在≤35dB(A),商务办公≤45dB(A) 二、室内风口风速选择表 1、送风口风速 2、以噪音标准控制的允许送风流速m/s 3、推荐的送风口流速m/s

4、送风口之最大允许流速m/s 5、回风口风速 6、回风格栅的推荐流速m/s 7、百叶窗的推荐流速m/s 8、逗留区流速与人体感觉的关系 三、通风系统设计 1、送风口布置间距 回风口应根据具体情况布置 一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织2、标准型号风盘所接散流器的尺寸表-办公室

注:办公室推荐送风口流速:~ m/s 风机盘管接风管的风速:通常为~ m/s,不能大于 m/s,否则会将冷凝水带出来. 3、散流器布置 散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风范围(面积)的长宽不宜大于1:,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在~之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在米左右,320×320米在米左右. 四、风管、风口分类 1、风管分类 1)按风管材料 A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可 现场临时制作;缺点:受加工设备限制,厚度不宜超过 B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技术 有一定要求) C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管 基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难) D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显着特点是防火性能较好;缺点:综合造价较高) E、复合保温板风管:常用有:上海万博(铝箔聚氨酯)、湖南中野(酚醛树脂)、北京百夏(BBS)、铝箔玻璃绵保温风 管等 F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管 阻力比较大,且对施工管理要求比较高) G、其他风管:土建、砖茄、布风管等 2)按风管作用分:送风、回风、排风、新风管等 3)按风管内风速分:低速、高速风 2、风口分类: 1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等 2)按风口形状及功能分: A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等 B、散流器:方形散流器、矩形散流器、圆形散流器、圆盘散流器、三面吹型散流器、线槽型散流器等 C、旋流风口:具有送出旋转达射流,诱导比大,风俗衰减快等特点 D、球型喷口:送风距离大,适合送风距离较大的地方,如各种大厅、展厅及大型装配车间等 E、其他风口:球形排风口、栅格形风口、装饰板风口等 五、风管、风口设计流程 流程一:风系统的划分→流程二:系统风量计算→流程三:确定送风方式→流程四:确定风管布置→ 流程五:计算风管尺寸→流程六:风口设计选型→流程七:阻力平衡计算机气流组织校核 流程一:风系统的划分

风力与风速相应对照标准表

风力与风速相应对照标准表 0(风力等级,下同);无风(风力名称,下同);0~0.2(米/秒,下同);小于1(千米/小时,下同);静,烟直上。平静如镜(陆地现象,下同) 1;软风;0.3~1.5;1~5;烟能表示风向,但风向标不能转动。微浪2;软风;1.6~3.3;6~11;人面感觉有风,树叶有微响,风向标能转动。小浪 3;微风;3.4~5.4;12~19;树叶及微枝摆动不息,旗帜展开。小浪4;和风;5.5~7.9;20~28;能吹起地面灰尘和纸张,树的小枝微动。轻浪 5;清劲风;8.0~10.7;29~38;有叶的小树枝摇摆,内陆水面有小波。中浪 6;强风;10.8~13.8;39~49;大树枝摆动,电线呼呼有声,举伞困难。大浪 7;疾风;13.9~17.1;50~61;全树摇动,迎风步行感觉不便。巨浪8;大风;17.2~20.7;62~74;微枝折毁,人向前行感觉阻力甚大猛浪9;烈风;20.8~24.4;75~88;建筑物有损坏(烟囱顶部及屋顶瓦片移动)狂涛 10;狂风;24.5~28.489~102;陆上少见,见时可使树木拔起将建筑物损坏严重狂涛 11;暴风;28.5~32.6;103~11;7陆上很少,有则必有重大损毁非凡

现象 12;飓风;32.7~36.9;118~133;陆上绝少,其摧毁力极大非凡现象13;飓风;37.0~41.4;134~149;陆上绝少,其摧毁力极大非凡现象14;飓风;41.5~46.1;150~166;陆上绝少,其摧毁力极大非凡现象15;飓风;46.2~50.9;167~183;陆上绝少,其摧毁力极大非凡现象16;飓风;51.0~56.0;184~201;陆上绝少,其摧毁力极大非凡现象17;飓风;56.1~61.2;202~220;陆上绝少,其摧毁力极大非凡现象

空调风速标准

逗留区之最大允许流速 人体状态长时间坐短时间坐轻工作重工作应用办公室餐厅商店轻工业工厂、舞厅 冷却m/s 加热m/s 0.10 0.20 0.15 0.30 0.20 0.35 0.30 0.45 送风口之最大允许流速 应用场所盘形送风口顶棚送风口侧送风口广播室 医院疗房 饭店房间、会客室 百货公司、剧场 教室、图书馆、办公室 3.0~ 4.5 4.0~4.5 4.0~ 5.0 6.0~ 7.5 5.0~ 6.0 4.0~4.5 4.5~ 5.0 5.0~ 6.0 6.2~ 7.5 6.0~ 7.5 2.5 2.5~ 3.0 2.5~4.0 5.0~7.0 3.5~ 4.5逗留区流速与人体感觉的关系 流速m/s 人体感觉 0~0.08 0.127 0.127~0.25 0.33 0.38 0.38~1.52不舒适,停滞空气的感觉 理想,舒适 基本舒适 不舒适,可以吹动薄纸 对站立者为舒适感之上限用于工厂和局部空调 空调房间允许之最大送风温差 送风方式 下列房间高度m 2 3 4 5 6 侧送,大风量侧送,小风量顶棚散流器6.5 9.0 9.5 8.3 11 16 10 13 17 12 15 18 14 17 18 不同送风方式的送风量指标和室内平均流速 送风方式单位地板面积的 送风量l/sm 工作区平均 流速m/s 换气次数1/h 侧送百叶风口条形风口局部孔板送风顶棚散流器顶棚孔板送风3~6 4~10 5~15 5~25 5~50 0.13~0.18 0.10~0.18 0.10~0.18 0.10~0.25 0.05~0.15 7 12 18 30 60 低速风管系统送风区域的最大允许流速 应用场所以噪声控 制主风管 以摩擦阻力控制 送风主管回风主管送风支管回风支管 住宅 公寓、饭店房间3.0 5.0 5.0 7.5 4.0 6.5 3.0 6.0 3.0 5.0

送风风速标准

第一章送风风速标准 一、百叶窗的推荐流速 位置新风回风减湿器正面减温器旁通加热器旁通流速m/s 2.5~4 6~6 2~4 7.5~12 5~7.5 二、不同送风方式的送风量指标和室内平均流 送风方式 单位地板面积的 送风量l/s m 工作区平均 流速m/s 换气次数1/h 侧送百叶风口条形风口局部孔板送风顶棚散流器顶棚孔板送风 3~6 4~10 5~15 5~25 5~50 0.13~0.18 0.10~0.18 0.10~0.18 0.10~0.25 0.05~0.15 7 12 18 30 60 三、低速风管系统的推荐和最大流速 应用场所 住宅公共建筑工厂 推荐最大推荐最大推荐最大 室外空气入口 空气过滤器 加热排管 冷却排管 淋水室 风机出口 主风管 支风管(水平)支风管(垂直)2.5 1.3 2.3 2.3 2.5 6.0 4.0 3.0 2.5 4.0 1.5 2.5 2.3 2.5 8.5 6.0 5.0 4.0 2.5 1.5 2.5 2.5 2.5 9.0 6.0 4.0 3.5 4.5 1.8 3.0 2.5 2.5 11.0 8.0 6.5 6.0 2.5 1.8 3.0 3.0 2.5 10.0 9.0 5.0 4.0 8.0 1.8 3.5 3.0 2.5 14.0 11.0 9.0 8.0

四、低速风管系统送风区域的最大允许流速 应用场所以噪声控制 主风管 以摩擦阻力控制 送风主管回风主管送风支管回风支管 住宅 公寓、饭店房间办公室、图书馆大礼堂、戏院银行、高级餐厅百货店、自助餐厅 工厂 3.0 5.0 6.0 4.0 7.5 9.0 12.5 5.0 7.5 10.0 6.5 10.0 10.0 15.0 4.0 6.5 7.5 5.5 7.5 7.5 9.0 3.0 6.0 8.0 5.0 8.0 8.0 11.0 3.0 5.0 6.1 4.0 6.0 6.0 7.5 五、逗留区流速与人体感觉的关系 流速m/s人体感觉 0~0.08 0.127 0.127~0.25 0.33 0.38 0.38~1.52 不舒适,停滞空气的感觉 理想,舒适 基本舒适 不舒适,可以吹动薄纸对站立者为舒适感之上限用于工厂和局部空调 六、逗留区之最大允许流速 人体状态长时间坐短时间坐轻工作重工作应用办公室餐厅商店轻工业工厂、舞厅 冷却m/s 加热m/s 0.10 0.20 0.15 0.30 0.20 0.35 0.30 0.45 七、回风格棚的推荐流速 位置近座位逗留区以上门下部门上部工业用流速m/s2~33~443>=4

(完整版)散流器送风计算方法

11.1.2散流器送风计算 方形散流器的规格用颈部尺寸W ×H 表示, (见空调工程P378)外沿尺寸A ×B =(W +106)×(H +106),顶棚上预留洞尺寸C ×D =(W +50)×(H +50) 1、散流器送风气流组织设计计算内容 (1)送风口的喉部风速Vd 取2~5m/s 最大不超过6m/s (2) 射流速度衰减方程及室内平均风速 xo x F K Vo Vx += 式中:X-以散流器中心为起点的射流水平距离(射程)m Vx-在X 处的最大风速m/s Vo -散流器出口风速m/s Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m F-散流器的有效流通面积m 2 按90% K-系数:多层锥面散流器为1.4盘式散流器为1.1 若要求射流末端速度为0.5m/s,则射程为散流器中心到风速为0.5m/s 处的距离根据式8-6,则: 射程X = Vx F Kvo -Xo= X = Xo F Kvo -5 .0 式中:X-以散流器中心为起点的射流水平距离(射程)m K-系数:多层锥面散流器为1.4盘式散流器为1.1 Vo -散流器出口风速m/s F-散流器的有效流通面积m 2 按90% Xo-自散流器中心算起到射流外观原点的距离, 多层锥面散流器为0.07m Vx-在X 处的最大风速一般为0.5 m/s 散流器的喉部风速Vd 一般取2~5m/s 最大不超过6m/s

室内平均风速Vm = 2 12 2 ) 4/(381.0H L rL +(m/s) 式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2 H-房间净空高(m) r L -射程 r-射流射程与边长L 之比,因此r L 即为射程 当送冷风时, 室内平均风速取值增加20%, 送热风时减少20% (3)轴心温差:对于散流器平送,其轴心温差衰减可近似地取 Vd Vx to tx ≈?? to Vd Vx tx ?≈? △tx -射流末端温度衰减值℃ Vx-在X 处的最大风速一般为0.5 m/s △to -送风温差℃ Vd-散流器的喉部风速m/s 2、散流器送风气流设计步骤(见空调工程P401) (1)、布置散流器一般按对称布置或梅花形布置,方形散流器的送风面积的长宽比不宜大于1:1.5散流器中心线和墙体距离一般不小于1m (2)、由空调区的总送风量和散流器的个数,就可以计算出单个方形散流器的送风量,假定散流器的颈部风速(如取2~5m/s)计算出所需散流器喉部面积,根据散流器喉部面积,选择散流器规格 (3)、校核(1)的射程,根据下式(8-7)校核射流的射程是否满足要求,中心处设置的散流器的射程应为散流器中心到房间或区域边缘距离的75% (4)校核室内平均风速,根据式8-8计算室内平均风速,校核是否满足要求 室内平均风速Vm = 2 12 2 ) 4/(381.0H L rL +(m/s) 式中:L-散流器服务区边长(m) 注: (见空调工程P401)例8-2 H-房间净空高(m) r L -射程 r-射流射程与边长L 之比,因此r L 即为射程 (5)校核轴心温差衰减根据式(8-9)计算轴心温差衰减,校核是否满足空调区温度

风管风速参数

风管与风速的确定 风管计算三种方法: 静压复得法 假定风速法 等摩阻法 空调风系统的管道设计 (一)风管机在设计管道时首先必须从产品资料上了解三个参数:风量、风压、噪声。 1.风量:为了确定送风管道大小。 2.风压:也叫机外静压。为了计算在送风过程中克服阻力所需的参数。简单不确切地说,就是能将风送多大距离的动力。 3.噪声:其产品技术资料所标的噪声只是相对的,因为噪声是随不同条件而相应的变动的。可能产生噪声的渠道有:机器本身的风机、机器运行振动、送风风压过大等。 (二)风系统设计包括的主要内容有:合理采用管内的空气流速以确定风管截面尺寸,计算风系统的阻力及选择风机,平衡各支风路的阻力以保证各支风路的风量达到设计值。 那么管内风速如何选择?风管尺寸如何来确定呢? ※管内风速的选取决定了风管截面的尺寸,两者之间的关系如下: F=a×b=L/(3600&#8226;V) (公式1-1) 式中:F:风管断面积(㎡) a、b:风管断面长、宽(m) L:风管风量(m3/h) V:风速(m/s) 以上各取值受到以下几个方面的影响: ①建筑空间:在现代的建筑中,无论是多层建筑或高层建筑,还是高档别墅,建筑空间都是相当紧张的,因此要求我们尽可能提高风速以减少风管的截面。(管内风速与风管截面积成反比,即是风速越高,则风管截面积越小,反之,风速越低,则风管截面积越大。) ②风机压力及能耗:风速越高,则风阻力越大,风机的能耗也就越大,从此点来说又要求降低风速。 ③噪音要求:风速对噪音的影响表现在三个方面:首先,随着风速的提高,风机风压的要求较高而引起风机的运行噪声加大;第二,风速加大至一定程度时,在通过风管部件时将产生气流噪声;第三,随着风速的提高,风管消声的消声能力下降。总的来说,风管内的风速越高,则所产生的噪声就越大。 因此,管内风速的选取是综合平衡各种因素的一个结果.通过查阅相关 资料和有关手册以及根据实际工程的体会,建议空调通风系统中的各种风道内的推荐风速见下表所示:(表1) 场合以合宜噪声为主导主风管的风速V(m/s)以合宜风管阻力为主导的风速V(m/s)

风力等级

风力等级 目录[隐藏] 风力等级表-1(0级-12级) 风力等级表-2(13级-17级) 风级歌 [编辑本段] 风力等级表-1(0级-12级)

[编辑本段] 风力等级表-2(13级-17级) [编辑本段] 风级歌 0 级烟柱直冲天; 1 级轻烟随风偏; 2 级风吹拂脸面; 3 级叶动红旗展; 4 级风吹飞纸片; 5 级带叶小树摇; 6 级举伞步行难; 7 级迎风走不便; 8 极风吹树枝断; 9 级屋顶飞瓦片; 10 级拔树又倒屋; 11、12 级陆上很少见!

风力风压风速风力级别2009-11-25 10:49我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2(1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 [kN/m2] (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 风压P = pV^2/2 = 1.2*9^2/2 = 48.6 (Pa) 假如说9[m/s]风速,风压应该怎么计算,请把公式也写下 要测风道中的风速但手边没有风速计,只有个测风压的, 我知道一般风压与风速的换算公式近似为风压=风速^2x1600 不是风道中测的负压能不能直接带进去,或者有什么其他的换算方式? 你的风压计测得的风道中的压力是静压Pj吧,如果能测出同一断面处的全压Pq,则该断面的动压Pd=Pq-Pj(静压Pj为负值,连同负号代入),而动压Pd=pV^2/2,从中可以算出风速 V=(2Pd/p)^(1/2)。 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2(1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3)

风口风速选择规范

中央空调系统风道风速和风口的选择 作者:admin 来源:本站原创时间:2011-01-04 浏览次 数:576 【大中小】【复制】【打印】 1、风管内的风速 一般空调房间对空调系统的限定的噪音允许值控制在40~50dB (A)之间,即相应NR(或NC)数为35~45dB(A)。根据设计规范,满足这一范围内噪音允许值的主管风速为4~7m/s,支管风速为2~3m/s。通风机与消声装置之间的风管,其风速可采用8~10m/s。 2、出风口尺寸的计算 为防止风口噪音,送风口的出风风速宜采用2~5m/s。风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3~4米的房间大约取风速在2~2.5米每秒。根据经验一般可将使每个风口在20~25 平方米的面积,其风量大约在500立方米左右。 3、回风口的吸风速度 回风口位于房间上部时,吸风速度取4~5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3~4m/s ,若靠近人员经常停留的地点,取1.5~2m/s ,若用于走廊回风时,取1~1.5m/s 。 4、风管安装注意事项及风管计算

在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s, 风管计算公式:所选设备风量÷3600÷风速=风管截面积 同时注意保证风管:长边÷短边≤4一般不要>4 特殊情况特殊对待。 风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积 注意:双百叶风口截面积为以上公式所得面积÷0.7 5、计算风管尺寸 1)等阻尼法(等压法)是一种方便的计算法,适用于多种场合。 2)根据下表确定主风管中的基本阻尼系数。 因回风管位于吸风部位,主要承受外部压力,应注意减轻其风管负担。对于风管系统,常采用送风管0.08-0.15mmH2O/m,回风管0.06-0.1 mmH2O/m作为基准。 6、在进行风管机的风管道设计时,注意在风管机的进、出风处加静压箱,以均衡风压,减少噪音,并且使静压箱内的流速保证在3米每秒以下,其长度可根据实际情况来定。

风速口诀风力的分级歌谣

风速口诀风力的分级歌谣 (2012-09-13 14:54:48) 转载 分类:歌诀 标签: 天气预报 英国 风速表 计数器 风的速度 旅游 风速口诀风力的分级歌谣 历史由来 一千多年以前的我国唐代,人们除了记载晴阴雨雪等天气现象之外,也有了对风力大小的测定。唐朝初期还没有发明测定风速的精确仪器,但那时已能根据风对物体征状,计算出风的移动速度并订出风力等级。李淳风的《现象玩占》里就有这样的记载:“动叶十里,鸣条百里,摇枝二百里,落叶三百里,折小枝四百里,折大枝五百里,走石千里,拔大根三千里。”这就是根据风对树产生的作用来估计风的速度,“动叶十里”就是说树叶微微飘动,风的速度就是日行十里;“鸣条”就是树叶沙沙作响,这时的风速是日行百里。另外,还根据树的征状定出来的一些风级,如《乙已占》中所说,“一级动叶,二级鸣条,三级摇枝,四级坠叶,五级折小枝,六级折大枝,七级折木,飞沙石,八级拔大树及根”。这八级风,再加上“无风”、“和风”(风来时清凉,温和,尘埃不起,叫和风)两个级,可合十级。这些风的等级与国外传入的等级相比较,相差不大。这可以说是世界上最早的风力等级。 两百多年以前,风力大小仍没有测量的仪器,也没有统一规定,各国都按自己的方法来表示。当时英国有一个叫蒲福的人,他仔细观察了陆地和海洋上各种物体在大小不同的风里的情况,积累了五十年的经验,才在1805年把风划成了13个等级。后来,又经过研究补充,才把原来的说明解释得更清楚了,并且增添了每级风的速度,便成了现在预报风力的“行话”。 测量方法 为了更准确的测量风力大小,人们在野外常用轻便风速表测风。这种轻便风速表,一般由感应部分和计数器所组成(见左图)。感应部分由三个风杯(也有四个风杯)装于十字架上,风杯在轴承上可以自由转动,外用小框保护风杯。中轴下部与计数器相接,风杯转动,也使计数器随之转动。所以计数器是记录风杯转动的转数的。计数器通常有两个或三个记数盘,大指针指示个位和十位数,两个小记数盘上的指针分别指示百位数和个位数。仪器的下部有一开关(启动杆),将它推上去,可使计数器与感应部分接合,计数器开始工作。把启动杆拉下来计数器则与感应部分离开,计数器停止工作。当仪器置于高处,用手直接开动不便时,

相关主题