搜档网
当前位置:搜档网 › NDIR红外气体传感器的基本概述

NDIR红外气体传感器的基本概述

NDIR红外气体传感器的基本概述
NDIR红外气体传感器的基本概述

一、NDIR红外气体传感器的基本概述

1.简介

NDIR红外气体传感器用一个广谱的光源作为红外传感器的光源,光线穿过光路中的被测气体,透过窄带滤波片,到达红外探测器。其工作原理是基于不同气体分子的近红外光谱选择吸收特性,利用气体浓度与吸收强度关系(朗伯-比尔Lambert-Beer定律)鉴别气体组分并确定其浓度的气体传感装置。其主要由红外光源、光路、红外探测器、电路和软件算法组成的光学传感器,主要用于测化合物,例如:CH4、CO2、N2O、CO、SO2、NH3、乙醇、苯等,并包含绝大多数有机物。

2.原理

由于各种物质分子内部结构的不同,就决定了它们对不同波长光线的选择吸收,即物质只能吸收一定波长的光。物质对一定波长光的吸收关系服从朗伯—比尔(Lambert2Beer)吸收定律。下图为NDIR红外气体分析原理图:以CO2分析为例,红外光源发射出1~20μm的红外光,通过一定长度的气室吸后,经过一个4.26μm波长的窄带滤光片后,由红外传感器监测透过4.26μm波长红外光的强度,以此表示CO2气体的浓度。

3.分类

1)根据红外探测器的通道数,可以划分为单通道NDIR气体传感器和双通道NDIR气体传感器。单通道就是在红外探测器内部集成了一个敏感元件以及窄带滤波镜片;双通道就是在单通道的基础上,集成了一个参考通道。我公司红外传感器产品皆为双通道类型,长期稳定性更好,受环境温度影响小。

2)根据探测气体种类,可以划分为单一气体和复合气体传感器。目前市场上绝大部分NDIR 气体传感器都是针对单一气体组分进行测量的,技术比较成熟,应用也比较广泛。

4.应用

红外线气体分析器主要应用领域:

1)石油、化工、发电厂、冶金焦碳等工业过程控制;

2)大气及污染源排放监测等环保领域;

3)饭店、大型会议中心等公共场所的空气监测;

4)农业、医疗卫生和科研等领域;

例如:(1)合成氨流程的醇化塔进(出)口,用红外气体分析器分析CO和CO2;(2)甲醇生产流程的脱碳工段,用红外气体分析器分析CO和CO2;(3)环保排放监测,用红外气体分析器分析SO2和NOx。

5.应用注意事项

1)供电电压超过规定工作电压将导致传感器永久性损坏;

2)电压低于规定工作电压传感器将不能正常工作。

3)长期处于高温、潮湿环境;

4)处于强电磁场环境;

5)电磁场对传感器输出紊乱信号的影响

6)高温环境对气体探测器造成涂覆材料熔化、焊点开化、弹性体内应力发生结构变化等问题

7)粉尘、潮湿环境。此环境对气体探测器造成短路的影响。在此环境条件下应选用密闭性很高的气体探测器

8)潮湿、酸性对气体探测器造成弹性体受损或产生短路等影响

6.发展趋势

红外气体传感器及仪器适用于监测各种易燃易爆、二氧化碳气体,具有精度高、选择性好、可靠性高、不中毒、不依赖于氧气、受环境干扰因素较小、寿命长等显著优点。这些优点将导致电化学、红外原理的气体检测仪器占领更广泛的行业高端市场,并在未来逐步成为市场主流。

7.NDIR的技术路线分为两条:

1)向低分辩率、长波长、多气种方向发展,主要市场是分析仪表。

2)向小体积,低成本方向发展,主要市场是室内空气质量IAQ检测,气种包含CO2和碳氢HC类气体,全球销量约几百万只。

二、电化学传感器的基本概述

8.简介

电化学气体传感器属于化学类传感器中的一种,其类型主要有三种:伽伐尼电池式传感器、定电位电解式气体传感器及燃料电池型气体传感器。电化学传感器具有响应速度快、功耗低、线性好、可以定量检测等特点,广泛受到市场的青睐。其敏感体主要是由贵金属催化剂材料制成的,其中应用最为广泛常见的催化剂是铂、金、钌、碳等,通过将膜电极及电解液灌封而成。

9.原理

电化学传感器,顾名思义,是通过发生化学反应对外输出电流信号。气体在电极上发生电化学反应并释放电荷形成电流,产生的电流大小与气体浓度成正比并遵循法拉第定律,通过测定电流的大小即可判定气体的浓度。

10.分类(以我公司传感器为基础)

按照实际用途,我司将电化学气体传感器分为三类:

(1)民用型

此类型传感器主要是用于安防、家报领域,严格准确的检测家庭中有毒气体的实时浓度,为日常人身安全提供了可靠的保障。其代表型传感器为一氧化碳传感器(ME2-CO、ME2-CH2O)。从外形图上看,传感器仅有两个电极,即工作电极和对电极,结构较为简单,使用方便,检测浓度可达到PPm级别,准确度较高。

(2)工业品传感器

此类型传感器主要用于工矿类,畜牧业等行业,用来检测作业中产生的毒

气浓度。比如硫化氢、氨气、氯气等。近年来对于致癌物质的苯等有机物,人们格外的关注,对于有机物的检测有很好的效果,检测浓度可达到PPm级别,准确度高。观察其外形,可以看到,工业品传感器与民用传感器明显的区别就在于其电极的数量。工业用传感器电极有三个,较民用传感器多出一个参比电

极,其提高了检测的准确度以及稳定性。右下图传感器表观看有四个电极,但是实际有效电极也为三个,与三电极体系原理一样。

(3)大气监测传感器

此类型传感器是用于大气监测领域。由于当下经济发展迅速,空气质量也受到不同程度的影响,个别地区空气已经受到严重污染。因此随着国家和人们对于空气质量的看重,大气监测亟需进行。

11.应用中注意事项

电化学传感器对于应用过程有一定的要求,客户使用时应注意以下几点:

①管脚禁止折断和弯曲;

②使用前老化时间不少于48小时;

③传感器避免接触有机溶剂(包括硅橡胶及其它胶粘剂)、涂料、药剂、燃料油类及高浓度气体;

④所有电化学传感器不可用树脂材料完全封装,也不可浸没在无氧环境中,否则会损害传感器的性能;

⑤所有电化学传感器不可长时间应用于含有腐蚀性气体的环境中,腐蚀性气体可以损害传感器;

⑥气体零点测定时,须在洁净的大气中进行;

⑦传感器上方防水透气膜严禁揭开、破损;

⑧传感器不可受到过度的撞击或震动;

⑨外壳有损伤、变形等情况下请勿使用;

⑩禁止用热熔胶或者固化温度高于80℃以上的密封胶封装传感器;

红外线传感器工作原理和技术参数

红外线传感器工作原理和技术参数 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为~μm;紫光的波长范围为~μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性: 一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的传感器 在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向 照相机中的红外线传感器――夜视功能 红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,

红外感应原理知识

红外感应原理知识 所谓的红外感应开关,只是利用了人眼看不到的红外线来感应物体的,感应开关的核心元器件就是红外反射传感器了。红外反射传感器包括一个红外线发光二极管和一个红外线光敏二极管,它们两个都朝着一个方向,被封装在一个塑料外壳里。使用的时候,红外线发光二极管点亮,发出一道人眼看不见的红外光。如果传感器的前方没有物体,那么这道红外光就以每秒299792458 米的速度(光速)消散在宇宙空间。但如果传感器前方有不透明的物体时,红外光就会被反射回来,照在自己也照在旁边的红外线光敏二极管身上。红外线光敏二极管收到红外光时,其输出引脚的电阻值就会产生变化。判断红外线光敏二极管的阻值变化,就可以感应前方物体,控制电器开关了。红外线供应网 下图主要原理把红外线发光二极管以某一频率进行调制,即让它以一定的频率闪烁。在红外线光敏二极管一端则设计一个电路,让接收端可以筛选出这一频率的红外光源。因为环境里的红外光要么是没有频率的,要么就是有着自己固定的频率。像收音机一样,传感器只要以自己的频率发射,再以自己的频率接收就可以过滤其他频率光源的干扰了,而且由于接收管胶体也对可见光的波段光源进行过滤,所以在室内使用的情况下是没有问题的。 不过,当强光照进室内,感应开关受强光的影响而处在不稳定的状态,自行的开关,或是对反射物体没有反应。家里常用的电视机红外线遥控器也会让感应开关失灵。即使把它放在阴暗的角落也会出现一个讨厌的问题,当反射物体处在某一个临界距离时,感应开关就会不断的开关,继电器的吸合很快,好像一台电报机。这是因为反射物体正好处在了感应区的临界点上,也就是“感应到”和“感应不到”的分界线上,物体微微靠近或离开就会产生开关状态的改变。所以一般现都会通过单片机对光干扰进行软件上的处理,而且电路比用硬件来做简单得多。具体电路如下所示:

半导体气体传感器的结构及原理

一、在博物馆文物、档案管理方面的运用 这是温湿度传感器应用的另一个领域。档案的纸张在温湿度适宜的条件可以多存放一些时间,而一旦温湿度条件遭到破坏纸张将要变脆,重要资料也将随之荡然无存,对档案馆进行温湿度记录是必要的,可以预防恶性事故的发生。使用温湿度传感器将使温湿度记录的工作得以简化,也将节约文物保管的成本,使这一工作得以科学化,不受到过多的人为因素的干扰。 二、在疫苗冷链中的运用 气体传感器主要针对于行业中的气体进行检测,在工业、电子、电力、化工、治金等行业中都有一定的应用。气体传感器的种类是比较多的,其中常用的主要有半导体式、接触燃烧方式、化学反应式、光干涉式、热传导式、红外线吸收散式等。而这当中以半导体气体传感器应用更为广泛。 半导体气体传感器由气敏部分、加热丝以及防爆网等构成,它是在气敏部分的sno2、fe2o2、zno2等金属氧化物中添加pt、pd等敏化剂的传感器。传感器的选择性由添加敏化剂的多少进行控制,例如,对于zno2系列传感器,若添加pt,则传感器对丙烷与异丁烷有较高的灵敏度;若添加pd,则对co与h2比较敏感。 气体传感器以陶瓷管为框架,外覆一层敏感膜的材料,利用膜两端的镀金引脚进行测量。敏感膜的材料最常用的有金属氧化物、高分子聚合物材料和胶体敏感膜等。它的两个关键部分是加热电阻和气体敏感膜。金电极连接气敏材料的两端,使其等效为一个阻值随外部待测气体浓度变化的电阻。由于金属氧化物有很高的热稳定性,而且这种传感器仅在半导体表面层产生可逆氧化还原反应,半导体内部化学结构不变,因此,长期使用也可获得较高的稳定性。 原理简介如下:金属氧化物一旦加热,空气中的氧就会从金属氧化物半导体结晶粒子的施主能级中夺走电子,而在结晶表面上吸附负电子,使表面电位增高,从而阻碍导电电子的移动,所以,气体传感器在空气中为恒定的电阻值。这时还原性气体与半导体表面吸附的氧发生氧化反应,由于气体分子的离吸作用使其表面电位高低发生变化,因此,传感器的电阻值要发生变化。对于还原性气体,电阻值减小;对于氧化性气体,则电阻值增大。这样,根据电阻值的变化就能检测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.sodocs.net/doc/7f13042387.html,。

微流红外气体传感器

微流红外气体分析仪器在CEMS应用中的关键难点及检定方法探讨前言:节能减排是世界范围内的主旋律,更是我国的基本国策。近三十年来经济得到快速发展,而由此带来的空气污染问题也是非常严重,为防止空气质量恶化、维护国民的身体健康、改善生活环境及提高生活质量,国家颁布了《中华人民共和国大气污染防治法》,国家、地方也制定了相应的大气污染物排放标准,并要求固定污染源必须安装CEMS,实施大气污染源排放污染物总量监测与控制。因此,安装稳定、可靠的CEMS至关重要。根据《固定污染源烟气排放连续监测技术规范HJ75-2007》和《固定污染源烟气排放连续监测系统技术要求及监测方法HJ76-2007》的要求,气态污染物CEMS主要有完全抽取法、稀释抽取法、直接测量法,从准确性、经济性、运行稳定性、维护便捷性等方面考虑,目前国内绝大部分CEMS采用完全抽取法,分析主机采用微流方法的红外气体分析仪器。目前对于CEMS配套的仪器主要来自于ABB\SIMENSE\FUJI\HORIBA等企业,国内的主要分析仪器厂家依然使用80年代的微音器技术。对于不同的红外气体监测方法和仪器,怎样在原理上确保仪器的精度和稳定性,以及现场的适应性,我国没有系统的研究。本文试图对红外气体分析仪器的技术关键以及检定方法做一探讨。1.概述目前国际上气态污染物成分测量方法主要有非分光红外(NDIR)、紫外(UV)、化学发光(CLD)等,国内外CEMS运行情况表明,非分光红外方法是CEMS应用的主流。下图是日本1997年CEMS所用仪器测量方法的分配比例图。 图1 日本1997年统计的CEMS所用仪器测量方法比例图 1.1分析方法比较表1 不同气态污染物分析方法比较一览表 比较项目NDIR CLD UV 工作原理根据不同气体成分对于特定波长的红外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。根据化学发光反应在某一时刻的发光强度或反应的发光总量来确定反应中相应组分含量的分析方法。根据不同气体成分对于特定波长的紫外线有吸收特性,来确定相应组分的浓度,满足朗伯-比尔定律。测量成分SO2/NOxNOx SO2/NOx价格水平适中昂贵适中使用寿命长中短维修难易程度容易复杂复杂由上表所示,CLD测试方法只能测试NOx,若需要测试SO2还需配备其他仪表,而且价格水平较高;UV紫外吸收方法能够满足低浓度SO2测试的需要,但是用于测试NOx等气体效果不是很好,另外由于紫外光源寿命一般不高于6个月,存在寿命短的问题。NDIR非分光红外在国际上仍然是SO2、NOx的首选测试方法,如西门子的Ultramat 23、Ultramat 6系列,ABB的AO2000、AO3000系列,以及富士的ZRE、ZRJ系列等。1.2 NDIR非分光红外分类比较NDIR非分光红外方法一般分为单光源双光束(Single source Dual beam)、单光源单光束(Single source Single beam);按照检测传感器分类,可以分为热电堆、微音电容(Condenser Micro-Phone)、微流传感器(Mass Flow)三种,其性能特点如表2所示:表2 NDIR非分光红外方法分类比较 比较项目半导体传感器类微音电容微流传感器(传统)微流传感器(改进)测量精度一般高高高分辨率低中高高测量成分SO2/NOx SO2/NOx SO2/NOx SO2/NOx受水分影响有有有无HC化合物影响有有有无抗振性能好差好好 半导体类红外气体传感器(水泥生产过程的CO监测、TOC 分析) 微音器类红外气体传感器(深圳某公司使用,国内北分、川仪等) 微流红外气体传感器(某公司基于SIMENSE平台改装烟气分析仪) 具备调水功能的微流红外气体传感器(FUJI ZRJ\SIMENSE U23) 1.3 NDIR非分光微流红外烟气分析仪存在的问题综合国内外多年的CEMS运行经验来看,CEMS配套的NDIR红外气体分

几种气体传感器的研究进展

一、前言 1964 年,由Wickens 和Hatman 利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick 大学的Persaud 等提出了利用气敏传感器模拟动物嗅觉系统的结构,自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。 下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。 二、气体传感器的分类和工作原理 气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。 电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间 接的检测。 接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。 电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度:

气体传感器模块详细解析

气体传感器模块 1、概述 气体传感器模块包含了一个MQ2型烟雾传感器,该传感器具有良好的重复性和长期的稳定性,响应时间短,长时间工作性能好。可用于家庭和工厂的气体泄漏监测装置,适宜于液化气、丁烷、丙烷、甲烷、酒精、氢气、烟雾等的探测。本模块接口是黑色色标,黑色色标是模拟口,需要连接到主板上带有黑色标识接口。 2、技术规格 ●工作电压:5 0V±0 1 V ●加热电压:5 0V±0 1 V ●加热电阻:33Ω±5% (室温) ●加热功率:<800mw ●预热时间:>24h ●检测范围:100-10000ppm ●检测温度:20±2℃(标准) ●使用温度:-20℃-50℃ ●储存温度:-20℃-70℃ ●相对湿度:<95%RH ●氧气浓度:21%(标准条件) 3、功能特性 ●10K可调电阻用于调节灵敏度; 1

●使用前必须先加热一段时间; ●当检测到可燃气体时,蓝色指示灯亮; ●具备数字信号与模拟信号输出接口; ●传感器稳定性强、检测速度快; ●模块的白色区域是与金属梁接触的参考区域; ●具有反接保护,电源反接不会损坏IC; ●支持mBlock图形化编程,适合全年龄用户; ●使用RJ25接口连线方便; ●配有VCC、GND、DO、AO接头支持绝大多数Arduino系列主控板。 4、引脚定义 气体传感器模块有四个针脚的接头,每个针脚的功能如下表 序号引脚功能 1 GND 地线 2 VCC 电源线 2

3 AO 模拟量输出 4 DO 数字量输出 表1 4-Pin 接头功能表 5、接线方式 ●RJ25连接 由于气体传感器模块接口是黑色色标,当使用RJ25接口时,需要连接到主控板上带有黑色色标的接口。以Makeblock Orion为例,可以连接到6,7,8号接口,如图 图1 气体传感器模块与Makeblock Orion连接 ●杜邦线连接 当使用杜邦线连接到Arduino Uno主板时,模块AO引脚需要连接到ANALOG(模拟)口,DO引脚需要连接到DIGITAL(数字)口,如下图所示: 3

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

气体传感器Word版

实验八气体传感器实验 【实验目的】 1. 理解气体传感器的工作原理; 2. 掌握单片机驱动气体传感器的方法。 【实验设备】 1. 装有IAR 开发工具的PC 机一台; 2. 下载器一个; 3. 物联网多网技术综合教学开发设计平台一套。 【实验要求】 1. 编程要求:编写气体传感器的驱动程序; 2. 实现功能:检测室内的有害气体并输出标志位; 3. 实验现象:将检测到的数据通过串口调试助手显示。 【实验原理】 1. 气体传感器简介 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 2. 气体传感器分类及在本实验中的应用 气体传感器通常以气敏特性来分类,主要可分为:半导体型气体传感器、电化学型气体传感器、固体电解质气体传感器、接触燃烧式气体传感器、光化学型气体传感器、高分子气体传感器等。 半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。这些都是由材料的半导体性质决定的。原理如下图所示:

根据其气敏机制可以分为电阻式和非电阻式两种。 本实验采用的是电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02 等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。 3. 气体传感器MQ-6 灵敏度特性 符号参数名称技术参数备注 Rs敏感体电 阻10KΩ-60KΩ探测范围: 100-1000ppm 检测目标:LPG、 丁烷、丙烷、LNG α (1000ppm/4000PPMLNG) 浓度斜率≤0.6 标准工作条件温度:20℃±2℃ Vc:5.0V ±0.1V 相对湿度:65﹪±5﹪ Vh: 5.0V±0.1V 预热时间不少于24 小时 【电路连接】 电路连接如图所示。

气体传感器文献综述

气体传感器的发展概况 和发展方向 玛日耶姆·图尔贡 107551600545

气体传感器的发展概况和发展方向 【摘要】本文对气体传感器进行分类,介绍了半导体型气体传感器、电阻型气体传感器、非电阻型气体传感器等几种常见气体传感器的特性、总结了这些气体传感器的工作原理,并阐述这几种气体传感器在日常生活及特殊场合中的应用及其选用时的原则。探讨了气体检测仪器在检测对象、检测范围和检测方式上向小型化、智能化、多功能化和通用化等方面不断向前发展的方向。 【关键词】气体传感器;特性;应用;发展方向 一、前言 目前,随着人们环保意识的提高,环境问题日益受到政府和社会关注。环境问题变成了重要的民生问题,影响到人民生活幸福感,甚至环境问题严重威胁群众健康。 近年来生态环境污染状况日趋严重,各种工业废水,废气直接排入水体及空气,造成极为严重的环境污染。影响着人们的正常生活和生存发展,并导致环境污染的气体进行处理是十分急迫的问题。随着科学技术的发展,人们生活水平的提高,对气体传感器的需求已有所不同;同时,随着近年酸雨、温室效应、臭氧层破坏、环境污染等,严重影响了人类的健康和生存,这就给气体传感器提出了新的研究课题和增加了新的研究内容和难度。检测气体的种类由原来的还原性气体(H2、 C4、 H10、 CH4等)扩展到毒性气体(CO、NO2、 H2S、NO、NH3、 PH3等)以及食品有关的气体(鱼、肉鲜度(CH3)3、醋酸乙脂等)[1]。气体传感器作为气体检测最基础的部分,为了满足这些需求,气体传感器必须具有较高的灵敏度和选择性,重复性和稳定性要好,而且能批量生产,性能价格要高等。 随着人们环保意识的增强以及各国对有毒气体排放和污染物排放方面的严格立法,各种气体传感器正在得到越来越广泛的应用。目前,随着生命科学、人工智能、材料科学等学科的发展,气体传感器的应用领域越来越广泛,在大气监测、食品工业、汽车尾气快速实时测定、有毒气体检测安全检查和航空航天等方面,越来越多地显示出气体传感器的重要作用[2]。 二、气体传感器的发展概况 2.1气体检测仪 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类。气体检测的目的是分析各种气体混合物中各组分的含量或其中某一组分的含量。气体检测仪表一般由传感器、信号放大、处理单元、显示单元以及控制单元组成,其中传感器是最关键的部分。 2.2传感器 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器按其基本效应可分为:物理传感器,化学传感器,生物传感器。按检测对象,化学传感器分为气体传感器、湿度传感器、离子传感器。 物理传感器 传感器生物传感器气体传感器 化学传感器离子传感器 湿度传感器

各类气体传感器的原理、结构及参数

各类气体传感器的原理、结构及参数 气体传感器是气体检测系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体体积分数转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、干燥或制冷处理、样品抽吸,甚至对样品进行化学处理,以便化学传感器进行更快速的测量。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NOx、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类。 半导体气体传感器 半导体气体传感器可分为电阻型和非电阻型(结型、MOSFET型、电容型)。电阻型气敏器件的原理是气体分子引起敏感材料电阻的变化;非电阻型气敏器件主要有M()s二极管和结型二极管以及场效应管(M()SFET),它利用了敏感气体会改变MOSFET开启电压的原理,其原理结构与ISFET离子敏传感器件相同。 电阻型半导体气体传感器 作用原理 人们已经发现SnO2、ZnO、Fe2O3、Cr2O3、MgO、NiO2等材料都存在气敏效应。用这些金属氧化物制成的气敏薄膜是一种阻抗器件,气体分子和敏感膜之间能交换离子,发生还原反应,引起敏感膜电阻的变化。作为传感器还要求这种反应必须是可逆的,即为了消除气体分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。SnO2薄

气体传感器及其在火灾探测中的应用

气体传感器及其在火灾探测中的应用 摘要:阐述了几种气体火灾探测器的工作原理、性能特点及其应用, 介绍了几种新型复合气体火灾探测器,探讨了气体火灾探测器的发展前景和趋势。 关键词:火灾探测器;气体火灾探测器;气体传感器。 一、气体火灾探测器概述 气体是火灾的早期特征之一, 研究气体探测器对于防治火灾有重意义。传统的火灾探测器中感温探测器,感烟探刷器,感火焰探测器其原理是基于火灾中温度变化或者利用火灾烟雾,火焰的电学,光学等物理特性来进行火灾识别。这种识别模式很难可靠地发现早期火灾,如感烟探测器不能探测到酒精火焰,感温探测器不易探测到阴燃火源。在现代高大空间建筑中,当存在遮挡和环境干扰的时候,常规的感烟、感温探测器由于火灾燃烧产物在空间传播受空间高度和面积的影响,很难对火灾发生快速响应。近年来,由于气体传感技术有了长足的进步,气体传感器相传统火灾探剧器结合形成多元参数复合探剧技术以及开发研究新型火灾气体传感器已成为火灾探测领域的新动向。目前, 用于检测火灾的气体主要有CO、CO2、NOX、甲烷、H2、H2O、胺( - NH2) 等。对于不同的气体和不同的应用场合, 所用的气体检测方法也不尽相同。可用作探测可燃性气体或可燃物燃烧生成气体传感器已有很多, 应用最广泛的主要有半导体气体传感器、红外吸收气体传感器、电化学传感器以及正在发展的智能气体传感器等。 二、气体传感器 2.1、半导体气体传感器 半导体气体传感器主要是以氧化物半导体作为基本材料, 使气体吸附于该半导体表面, 利用由此产生的电导率的变化而制作的器件。按检测不同气体特征量的方式, 半导体气体传感器大体分为电阻式和非电阻式两种, 见表1。电阻式半导体气体传感器用氧化锡、氧化锌等金属氧化物材料作为敏感元件, 利用其阻值的变化来检测气体的体积分数; 非电阻式半导体气体传感器采用氧化银、金属栅的场效应管、金属/ 半导体结型二极管等作为敏感元件, 利用它们与气体接触后的整流特性, 以及晶体管作用的变化进行表面单位的直接测定。自从1962 年半导体金属氧化物陶瓷气体传感器问世以来, 半导体气体传感器已经成为当今世界上产量最大、最具有实用价值的传感器之一。 表1 半导体气体传感器的分类 2.2、红外吸收式气体传感器

传感器在智能家居中的应用

智能家居中的传感器应用

智能家居中的传感器应用 一、智能家居概述 智能家居就是通过综合采用先进的计算机、通信和控制技术(3C),建立一个由家庭安全防护系统、网络服务系统和家庭自动化系统组成的家庭综合服务与管理集成系统,从而实现全面的安全防护、便利的通讯网络以及舒适的居住环境的家庭住宅。智能家居是IT技术(特别是计算机技术),网络技术、控制技术向传统家电产业渗透发展的必然结果。 相信很多人对一些美国科幻电影中的镜头印象深刻:主人公回到家中,随着门锁被开启,家中的安防系统自动解除警戒,廊灯缓缓点亮,空调、通风系统自动启动,动听的背景交响乐轻轻奏起。主人公坐在家中沙发上,手拿一个外观精美的遥控器,就能控制家中所有的电器。晚上,主人公上床休息,在他躺下的一刻,所有的窗帘都自动关闭,入睡前,床头边的面板上,晚安的灯光按钮亮起,所有需要关闭的灯光和电器设备自动关闭,同时安防系统自动开启处于警戒状态。主人公外出的时候,只要按一个键就可以关闭家中所有的灯和电器。 在科技高速发展的今天,这已经不仅仅是只能在科幻电影中看到的情景了。随着智能家居逐渐走进我们的生活,这样的场景也许不久就会在您身边变成现实。 现代科技进入家居的带来的变化令人啧啧称奇,给人们的家居生活带来了极大的便利。上文所描绘的这些场景,都是是智能家居将要带给您的“神奇”体验,而这一切,不过是智能家居控制系统能为您做的事情中的一小部分。 智能化志在必行是发展的趋势,因为这个世界显然是为懒人设计的。智能家居的概念并不是一个新东西,其实早在10年前,智能家居的概念就从国外引入到国内,从最初的梦想到真正进入我们今天的生活,智能家居在随着科技的发展,经历了一个既热闹又艰难的发展过程的同时,也完成了在中国的跨越式发展。 那么到底什么是智能家居呢?智能家居并没有一个精确地定义,我们大家通常所说的智能家居就是以住宅为平台,兼备建筑、网络通信、信息家电、设备自动化,集系统、结构、服务、管理为一体的高效、舒适、安全、便利、环保的居住环境。智能家居系统可以为您提供家电控制、照明控制、窗帘控制、电话远程控制、室内外遥控、防盗报警、以及可编程定时控制等多种功能和手段,使您的生活更加舒适、便利和安全。 与普通家居相比,智能家居不仅具有传统的居住功能,提供舒适安全、高品位且宜人的家庭生活空间,还由原来的被动静止结构转变为具有能动智慧的工具,提供全方位的信息交换功能,帮助家庭与外部保持信息交流畅通,优化人们的生活方式,帮助人们有效安排时间,增强家居生活的安全性,甚至为各种能源费用节约资金。 由于每个家庭成员的职业、经历、喜好、教育程度、家庭背景千差万别,智能家居不仅是产品的设计安装和功能实现,更重要的是个人风格的体现。同时,智能家居高度的智能化和舒适化正是为了达到家居生活中的高度人性化,使用户个人感官在智能家居系统中得到淋漓尽致的舒展。在这样的趋势下,让智能家居中的人性化应用,成为智能家居得以发展普及的重心。

红外传感器原理

利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。 红外线传感器包括光学系统、检测元件和转换电路。光学系统按结构不同可分为透射式和反射式两类。检测元件按工作原理可分为热敏检测元件和光电检测元件。热敏元件应用最多的是热敏电阻。热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。光电检测元件常用的是光敏元件,通常由硫化铅、硒化铅、砷化铟、砷化锑、碲镉汞三元合金、锗及硅掺杂等材料制成。 红外线传感器常用于无接触温度测量,气体成分分析和无损探伤,在医学、军事、空间技术和环境工程等领域得到广泛应用。例如采用红外线传感器远距离测量人体表面温度的热像图,可以发现温度异常的部位,及时对疾病进行诊断治疗(见热像仪);利用人造卫星上的红外线传感器对地球云层进行监视,可实现大范围的天气预报;采用红外线传感器可检测飞机上正在运行的发动机的过热情况等。 https://www.sodocs.net/doc/7f13042387.html,/view/495838.html 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。人体热释电红外传感器和应用介绍被动式热释电红外探头的工作原理及特性:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。红外线遥控鼠标器中的传感器在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚

电化学气体传感器模组说明.doc

系列智能传感器是专门针对气体探测器生产企业推出的新型智能传感器,主要为解决气体探测种类繁多、各品种传感器互不兼容、生产标定复杂、核心器件更换限制等问题。采用我司生产的智能型气体传感器则只需开发一款产品,即可快速响应客户对不同气体种类探测的需求,且生产过程简化,无需重新标定,大幅度降低企业的研发成本、生产成本,产品品质也立即提升到国际一流水准。 该传感器操作方便、测量准确、工作可靠,适用于工业现场或实验室测量等不同的要求。传感器具有电压和串口同时输出特点,方便客户调试及使用。 ■本安电路设计,可带电热拔插操作; ■专业精选、原装进口,兼容红外、电化学、催化、半导体等多种传感器; ■自带温度补偿,出厂精准标定,使用时无需再标定; ■电压和串口同时输出特点,方便客户调试及使用; ■最简化的外围电路,生产简单、操作方便。 传感器安装尺寸 图 接线示意图 传感器外部尺寸图 电化学气体传感器模组说明概述 产品特点 技术参数

2)工作电流:≤50mA (催化≤100mA); 1)工作电压:DC5V±1%(4-20mA输出的是DC 24V); 3)测量气体:有毒、可燃气体、挥发性有机物气体;4)安装方式:7脚拔插式; 5)测量范围:0-10000可选(以检测气体而定);6)检测原理:电化学、红外、催化; 7)测量单位;PPM 、%LEL 、%VOL (以检测气体而定);8)响应时间:<30s; 9)采样精度:±2%FS ;10 )预热时间:30s; 11)重复性:±1%FS;12)长期零漂:≤1%FS /年; 13)工作温度:-20~70 ℃;14)工作湿度:10 ~95%RH(无凝露); 15)存贮温度:-40~70 ℃;15)工作气压:86kPa~106kPa; 17)外壳材质:铝合金;18)输出接口:6PIN; 19)使用寿命:2年以上(以传感器使用寿命为准);20)质保期: 1年; 21)数字信号格式:数据位:8;停止位:1;校验位:无;22)波特率: 9600; 23)输出信号:0.4-2.0VDC( 常规)、0-1.6VDC 、0-4VDC 、0-5VDC电压信号或4-20mA电流信号可选; 24)外型尺寸:Φ33.5*31mm(引脚除外); 引脚定义 序号名称说明 1 GND 地 2 Vout 电压输出 3 Iout 电流输出 4 TX/A 串口发送或485A 5 RX/B 串口接收或485B 6 24V/5V 电源输入 传感器底视图 传感器通讯协议说明 1、异步串行通信参数: 始位:1 数据位:8 停止位:1 校验:无波特率:9600 2、帧格式:(详见下文)

气体传感器介绍

气体传感器介绍 1气体传感器简介 1、稳定性 2、灵敏度 3、选择性 4、抗腐蚀性 2气体传感器分类 1气体传感器简介 气体传感器是电子鼻系统的核心,通常安装在探测头内。从本质上讲,气体传感器是一种将某种气体浓度转化成对应电信号的转换器。探测头通过气体传感器对气体样品进行调理,通常包括滤除杂质和干扰气体、作干燥或制冷处理、样品抽吸、甚至对样品进行化学处理以便化学传感器进行更快速的测量。 采样方法直接影响传感器的响应时间。目前,气体的采样方式主要是通过简单扩散法,或是将气体吸入检测器。简单扩散是利用气体天然向四处传播的特性。目标气体穿过探头内的传感器,产生一个正比于气体浓度的信号。由于扩散过程渐趋减慢,所以扩散法需要探头的位置非常接近于测量点。扩散法的一个优点是它将气体样本直接引入传感器而无需物理和化学变换。 样品吸入式探头通常用于采样位置接近处理仪器或排气管道的情况,这种技术可以为传感器提供一种速度可控的稳定气流,所以在气流大小和流速经常变化的情况下,这种方法较值得推荐。将测量点的气体样本引到测量探头可能经过一段距离,距离的长短主要是根据传感器的设计。但采样线较长会加大测量滞后时间,该时间是采样线长度和气体从泄漏点到传感器之间流动速度的函数。对于某 SiH以及大多数生物溶剂,气体和汽化物样品量可能会因种目标气体和汽化物如 4 为它们的吸附作用甚至凝结在采样管壁上而减少。 在任何情况下,探头及其内部气体传感器都必须能够检测某给定值以上的气体浓度,并发出报警信号;或者说,当气体浓度低于给定值时,探头不允许发出警报。经常误警会使人对传感器的可靠性产生怀疑,而忽略正确发出的警报,最终可能造成严重的后果。 在介绍气体传感器之前,有必要先对气体传感器的一些特性作一介绍:

各类气体传感器介绍

各类气体传感器介绍 一、引言 广义的说,传感器(Transducer或Sensor)是一种能把物理量或化学量转变成便于利用的电信号的器件或装置,在有些国家或科学领域,也将传感器称为变换器、检测器或探测器等。将物理量或化学量得变化转变成电信号是传感器的最终目的。 国际电工委员会(IEC:International Electrotechnical Committee)的定义为:“传感器是测量系统中的一种前置部件,它将输入变量转换成可供测量的信号”。国家标准GB 7765—87给传感器的定义是:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。此处的可用输出信号,一般即指易于处理和传输的电信号。从这个角度也可以说传感器即为将非电信号转换成电信号的器件。当然,可以预料,将来的“可用信号201D或许是光信息或者是更先进、更实用的其他信息。 本文主要介绍气体传感器的工作原理及应用场合,并对气体传感器的发展方向进行一些介绍。 二、工作原理 传感器之所以具有能量信息转换的机能,在于它的工作机理是基于各种物理的、化学的和生物的效应,并受相应的定律和法则所支配。了解这些定律和法则,有助于我们对传感器本质的理解和对新效应传感器的开发。传感器工作物理基础的基本定律和法则有以下四种类型: (1)守恒定律。包括能量、动量、电荷量等守恒定律。这些定律,是我们探索、研制新型传感器时,或在分析、综合现有传感器时,都必须严格遵守的基本法则。 (2)场的定律。包括运动长的运动定律,电磁场的感应定律等,气相互作用与物体在空间的位置及分布状态有关。一半可由物理方程给出,这些方程可做诶许多传感器工作的数学模型。例如:利用静电场定律研制的电容式传感器;利用电磁感性定律研制的自感、互感、电涡流式传感器;利用运动定律与电池感应定律研制的磁电式传感器等。利用场的定律构成的传感器,其形状、尺寸(结构)决定了传感器的量程、灵敏度等主要性能,故此类传感器可统称为“结构型传感器”。 (3)物质定律。它是表示各种物质本身在性质的定律(如克定律、欧姆定律等),通常以这种物质所固有的物理常数加以描述。因此,这些常数的大小决定着传感器的主要性能。如:利用半导体物质法则—压阻、热阻、磁阻、光阻、湿阻等效应,可分别做成压敏、热敏、光敏、湿敏等传感器件;利用压电晶体物质法则—压电效应,可制成压电、声表面波、超声波传感器等等。这种基于物质定律的传感器,可统称为“物性型传感器”。这是当代传感器技术领域中具有广阔发展前景的传感器。 (4)统计法则。它是把围观系统与宏观系统联系起来的物理法则。这些法则,常常与传感器的工作状态有关,它是分析某些传感器的理论基础。这方面的研究尚待进一步深入。 气体传感器(Gas Sensor)是以气敏器件为核心组成的能把气体成分转换成电信号的装置。它具有响应快,定量分析方便,成本低廉,实用性广等优点,应用越来越广。 气体种类繁多,性质各异,因此,气体传感器种类也很多。按待检气体性质可分为:用于检测易燃易爆气体的传感器,如氢气、一氧化碳、瓦斯、汽油挥发气等;用于检测有毒气体的传感器,如氯气、硫化氢、砷烷等;用于检测工业过程气体的传感器,如炼钢炉中的氧气、热处理炉中的二氧化碳;用于检测大气污染的传感器,如形成酸雨的NO x、CH4、O3,家庭污染如甲醛等。按气体传感器的结构还可分为干式和湿式两类;按传感器的输出可分为电阻式和费电阻式两类;按检测院里可分为电化学法、电气法、光学法、化学法几类,如图:

相关主题