搜档网
当前位置:搜档网 › 二项分布和离散型随机变量的期望及方差

二项分布和离散型随机变量的期望及方差

二项分布和离散型随机变量的期望及方差
二项分布和离散型随机变量的期望及方差

二项分布和离散型随机变量的期望及方差

一 二项分布

(1)定义:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发

生k 次的概率为:()(1),0,1,2,3,,k k n k n P X k C p p k n -==-=.

此时称随机变量X 服从二项分布,记作~(,)X B n p . (2)超几何分布和二项分布的区别:

①超几何分布需要知道总体的容量,而二项分布不需要; ②超几何分布是“不放回”抽取,而二项分布是“有放回”抽取(独立重复).

例1已知1~(6,)3X B ,则(2)P X ==____.80243

例2 在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生一次

的概率为6581

,则事件A 在一次试验中发生的概率为____.13

例3 位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移

动的方向为向上或向右,并且向上、向右移动的概率都是12

,质点P 移动五次之后位于点(2,3)的概率为____.

例4抛掷一枚均匀的硬币,正反每面出现的概率都是12

,反复这样抛掷,数列{}n a 定义如下:1n a =,表示第n 次投掷出现正面向上;1n a =-表示第n 次投掷出现反面向上;若12(*)n n S a a a n N =++

+∈,则事件“82S =”发生的概率是____.732

例5 箱子里有5个黄球,4个白球,每次随机取一个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概

率为____.5006561

例6 某居民小区有两个相互独立的安全防御系统(简称系统)A 和B ,系统A

和系统B 在任意时刻发生故障的概率分别为110

和p . (1)若在任意时刻至少有一个系统不发生故障的概率为 4950,求p 的值. 15 (2)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量X ,求

X 的概率分布列. 2710

例7一名学生骑自行车上学,从他家到学校的途中有6个交通岗亭,假设他在

.

各个交通岗遇到红灯的事件是相互独立的,并且概率都是1

3

(1)设X为这名学生在途中遇到红灯的次数,求X的分布列;

(2)设Y为这名学生在首次停车前经过的路口数,求Y的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 665

729

例8 某校社团联即将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,不出现平局,且比赛进行到有一人比对方多2分或打

,且每局比满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率为3

4

赛胜负互不影响.

(1)求比赛进行4局结束,且甲比乙多得2分的概率;

(2)设ξ表示比赛结束时已比赛的局数,求随机变量ξ的分布列和数学期望.

练习1 在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是____. [0.4,1)

练习2甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率为1

2

外,其余每局比赛甲队获胜的概率都是

2 3,假设各局比赛结果相互独立,则甲队以3:1胜利的概率为____. 8

27

练习3 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立.则该选手恰好回答了4个问题就晋级下一轮的概率等于____.0.128

练习4在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一巨大汽油罐,已知只有5发子弹备用,首次命中只能使汽油流出,再次命中才能引爆成功,每次射击命中率都是2

3

,每次命中与否互相独立,则油罐被引爆的概

率为____. 232

243

练习5 将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率为____. 11

32

练习6 甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,

,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1

3

,且各次投篮互不影响.

乙每次投篮投中的概率为1

2

(1)求甲获胜的概率;13

27

(2)求投篮结束时甲的投球次数X的分布列与期望. 13

9

练习7 某班将要举行篮球投篮比赛,比赛规则是:每位选手可以选择在A 区投篮2次或选择在B 区投篮3次,在A 区每进一球得2分,不进得0分;在B 区每进一球得3分,不进球得0分,得分高的选手胜出.已知某参数选手在A 区和

B 区每次投篮进球的概率分别是910和13

. (1)如果以投篮得分的期望值高作为选择的标准,问该选手应该选择哪个区投篮?A

(2)求该选手在A 区投篮得分高于在B 区投篮得分的概率.

4975

例8 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果3n =,再从这批产品中任取4件作检验,若都为优质品,则这批 产品通过检验;如果,再从这批产品中任取1件作检验,若全为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

假设这批产品的优质品率都为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.

(1)求这批产品通过检验的概率;364 (2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望. 506.25 4=n

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

知识讲解离散型随机变量的均值与方差

知识讲解离散型随机变量的均值与方差(总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有 =1p =2p …n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有 b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为

于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ ∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系:

知识讲解离散型随机变量的均值与方差(理)(基础)

离散型随机变量的均值与方差 【学习目标】 1. 理解取有限个值的离散型随机变量的均值或期望的概念,会根据离散型随机变量的分布列求出均值或期望,并能解决一些实际问题; 2. 理解取有限个值的离散型随机变量的方差、标准差的概念,会根据离散型随机变量的分布列求出方差或标准差,并能解决一些实际问题; 【要点梳理】 要点一、离散型随机变量的期望 1.定义: 一般地,若离散型随机变量ξ的概率分布为 则称=ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 要点诠释: (1)均值(期望)是随机变量的一个重要特征数,它反映或刻画的是随机变量取值的平均水平. (2)一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p … n p n 1= =,=ξE +1(x +2x …n x n 1 )?+,所以ξ的数学期望又称为平均数、均值。 (3)随机变量的均值与随机变量本身具有相同的单位. 2.性质: ①()E E E ξηξη+=+; ②若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,有b aE b a E +=+ξξ)(; b aE b a E +=+ξξ)(的推导过程如下:: η的分布列为 于是=ηE ++11)(p b ax ++22)(p b ax …()i i ax b p +++… =+11(p x a +22p x …i i x p ++…)++1(p b +2p …i p ++…)=b aE +ξ

∴b aE b a E +=+ξξ)(。 要点二:离散型随机变量的方差与标准差 1.一组数据的方差的概念: 已知一组数据1x ,2x ,…,n x ,它们的平均值为x ,那么各数据与x 的差的平方的平均数 [1 2n S = 21)(x x -+22)(x x -+…+])(2x x n -叫做这组数据的方差。 2.离散型随机变量的方差: 一般地,若离散型随机变量ξ的概率分布为 则称ξD =121)(p E x ?-ξ+22 2)(p E x ?-ξ+…+2()n i x E p ξ-?+…称为随机变量ξ的方差,式中 的ξE 是随机变量ξ的期望. ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 要点诠释: ⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的; ⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;方差(标准差)越小,随机变量的取值就越稳定(越靠近平均值). ⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛。 3.期望和方差的关系: 22()()D E E ξξξ=- 4.方差的性质: 若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机变量,2 ()D D a b a D ηξξ=+=; 要点三:常见分布的期望与方差 1、二点分布: 若离散型随机变量ξ服从参数为p 的二点分布,则 期望E p ξ= 方差(1).D p p ξ=-

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

二项分布期望和方差的推导过程

二项分布期望和方差推导 若随机变量),(~p n B X ,则np X E =)(,)1()(p np X D -= 二项分布数学期望的证明: 注意到11--=k n k n nC kC (证明:11)]! 1()1[()!1()!1()!()!1()!1()!(!!--=---?--?=-?--?=-??=k n k n nC k n k n n k n k n n k n k n k kC ) 所以n n p p C X E )1(0)(00-?=111)1(1--?+n n p p C Λ+-?+-222) 1(2n n p p C Λ+-?+-k n k k n p p C k )1( 111)1()1(p p C n n n n -?-+--0)1(p p C n n n n -?+ 1101)1(---?=n n p p C n Λ+-?+--2211)1(n n p p C n Λ+-+---k n k k n p p nC ) 1(11 1121)1(p p C n n n n -?+---011 )1(p p C n n n n -?+-- 101)1([---=n n p C np Λ+-+--2111)1(n n p p C Λ+-+----k n k k n p p C )1(1111221)1(p p C n n n -+---])1(0111p p C n n n -+--- np p p np n =+-=-1])1[(,故np p p C i X E n i i n i i n ∑=-=-?=0)1()(; 二项分布方差的证明:)1()(p np X D -= 证明:i n i i p X E x X D ?-= ∑-12)]([)(i n i i i p X E X E x x ∑-?+-=122)]()(2[∑-??+?-?=n i i i i i i p X E p X E x p x 122])()(2[ ∑∑∑-=-?+?-?=n i n i i n i i i i i p X E p X E x p x 11 212 )()(2)()(22X E X E -= 故任何离散随机变量的方差均满足式子:)()()(22X E X E X D -= 当随机变量),(~p n B X 时,=)(X D 20 2)()1(np p p C i i n i n i i n --?-=∑ i n i n i i n p p C i i -=-?-=∑)1()1(0 220)1(p n p p C i i n i n i i n --?+-=∑(注意np p p C i X E n i i n i i n ∑=-=-?=0)1()() i n i n i i n p p iC i -=-?-=∑)1()1(222p n np -+i n i n i i n p p nC i -=---?-=∑)1()1(21122p n np -+ i n i n i i n p p C i n -=---?-?=∑)1()1(21122p n np -+i n i n i i n p p C n n --=---?-?=∑)1()1(22 2222p n np -+ i n i n i i n p p C n n -=---?-=∑)1()1(22222p n np -+i n i n i i n p p C p n n --=---?-=∑)1()1(22 22222p n np -+ (指数之后凑组合数下标2-n ,利用展开式i i n n i i n n b a C b a ---=--∑=+22022) () i n i n i i n p p C p n n ---=--?-=∑22 022 )1()1(22p n np -+

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

2.5 随机变量的均值和方差

2.5随机变量的均值和方差 扬州市新华中学查宝才 教学目标: 1.通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; 2.能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点: 取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学方法: 问题链导学. 教学过程: 一、问题情境 1.情景. 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.怎样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用X1,X2表示,X1,X2的概率分布如下. 2.问题. 如何比较甲、乙两个工人的技术? 二、学生活动 1.直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,

似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2.学生联想到“平均数”,如何计算甲和乙出的废品的“平均数”? 3.引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三、建构数学 1.定义. 在《数学3(必修)》“统计”一章中,我们曾用公式x1p1+x2p2+…+x n p n 计算样本的平均值,其中p i为取值为x i的频率值. 类似地,若离散型随机变量X的分布列或概率分布如下: X x1x2…x n P p1p2…p n 其中,p i≥0,i=1,2,…,n,p1+p2+…+p n=1,则称x1p1+x2p2+…+x n p n为随机变量X的均值或X的数学期望,记为E(X)或μ. 2.性质. (1)E(c)=c;(2)E(aX+b)=aE(X)+b.(a,b,c为常数) 四、数学应用 1.例题. 例1高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色之外完全相同.某学生一次从中摸出5个球,其中红球的个数为X,求X的数学期望. 分析从口袋中摸出5个球相当于抽取n=5个产品,随机变量X为5个球中的红球的个数,则X服从超几何分布H(5,10,30). 例2从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X表示这10件产品中的不合格品数,求随机变量X的数学期望E(X). 说明例2中随机变量X服从二项分布,根据二项分布的定义,可以得到:当X~B(n,p) 时,E(X)=np. 例3设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场, 那么比赛宣告结束,假定A,B在每场比赛中获胜的概率都是1 2 ,试求需要比赛 场数的期望.

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案) 一、选择题 1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =, 0.1p = 【答案】B 【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得 6n =,0.4p =. 考点:二项分布的数学期望与方差. 【难度】较易 2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13 B .23 C .15 D .25 【答案】A 考点:二项分布的数字特征. 【题型】选择题 【难度】较易 3.若随机变量),(~p n B ξ,9 10 3 5==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52 D. 5 3 【答案】A 【解析】由题意可知,()5,3 101,9E np D np p ξξ? ==????=-=?? 解得5,1,3n p =???=??故选A. 考点:n 次独立重复试验.

【题型】选择题 【难度】较易 4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( ) ξ 0 1 P m n A .()()3 ,E m D n ξξ== B .()()2 ,E m D n ξξ== C .()()2 1,E m D m m ξξ=-=- D .()()2 1,E m D m ξξ=-= 【答案】C 考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易 5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( ) A. 7 1 B. 6 1 C. 5 1 D. 4 1 【答案】A 【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴1 49,7 n p ==,故选A. 考点:二项分布的期望与方差. 【题型】选择题 【难度】较易 6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )

独立随机变量期望和方差的性质

第七周多维随机变量,独立性 7.4独立随机变量期望和方差的性质 独立随机变量乘积的期望的性质: Y X ,独立,则()()() Y E X E XY E =以离散型随机变量为例,设二元随机变量(),X Y 的联合分布列() ,i j P X x Y y ==已知,则()()(),i j i j P X x Y y P X x P Y y ====?=, () 1,2,,; 1,2,,i m j n == ()() 11,m n i j i j i j E XY x y P X x Y y =====∑∑()() 11 m n i j i j i j x y P X x P Y y =====∑∑()() 1 1 m n i i j j i j x P X x y P Y y =====∑∑()() E X E Y =***********************************************************************独立随机变量和的方差的性质: Y X ,独立,则()()() Y Var X Var Y X Var +=+()()() 2 2 Var X Y E X Y E X Y ??+=+-+?? ()222E X XY Y =++()()()()22 2E X E X E Y E Y ??-++? ? ()()()()2 2 22E X E X E Y E Y =-+-()()()22E XY E X E Y +-()()()() 2 2 22E X E X E Y E Y =-+-()() Var X Var Y =+若12,,,n X X X 相互独立,且都存在方差,则()() 121 n m k k Var X X X Var X =+++=∑ ***********************************************************************利用独立的0-1分布求和计算二项分布随机变量()~,X b n p 期望和方差 我们在推导二项分布随机变量的方差时,已经利用了独立随机变量和的方差等于方差

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

离散型随机变量的期望值和方差

离散型随机变量的期望值和方差 一、基本知识概要: 1、 期望的定义: 一般地,若离散型随机变量ξ的分布列为 则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。 它反映了:离散型随机变量取值的平均水平。 若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。 E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P 2、 方差、标准差定义: D ξ=(x 1- E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。 D ξ的算术平方根ξD =δξ叫做随机变量的标准差。 随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。 且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。 若ξ~B(n ,p),则D ξ=npq ,其中q=1-p. 3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。 二、例题: 例1、(1)下面说法中正确的是 ( ) A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。 B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。 C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。 D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。 解:选C 说明:此题考查离散型随机变量ξ的期望、方差的概念。 (2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是 。 解:含红球个数ξ的E ξ=0× 101+1×106+2×10 3=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本 题型和内容为主,突出应用性和实践性及综合性。考生往往会因对题意理解错误,或对概念、公式、性质应用错误等,导致解题错误。 例2、设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ 剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ。 解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以??? ? ???≤≤-≤=+-+11 2101212122 q q q q

二项分布的数学期望和方差

4EX np ∴== 100.40.6 2.4DX npq ==??= 222() 2.4418.4EX DX EX =+=+= 12. 解:8n =,0.2p = 根据二项分布的数学期望和方差的公式 1.6EX np == (1) 1.28DX npq np p ==-= 求解得 8n =,0.2p = 13. 解: ~(1,)B p ξ 2(1)9D p p ξ∴=-= 解方程2209 p p -+=,得23p =或13p = ξ∴的概率函数为 {}1(1)(0,1)k k p k p p k ξ-==-= 将13p =或23 p =代入,得ξ的概率函数为 {}121()()33 k k p k ξ-== 或 {}112()()(0,1)33k k p k k ξ-=== 14. 解:设ξ的概率密度为 1,()0, a x b f x b a ?≤≤?=-???其他 =3E ξ,1=3D ξ ∴得方程组2+=32()1 =12 3a b b a ????-???,解得24a b =??=?

1,24()=20x f x ?≤≤?∴???其他 ξ为连续型随机变量 {}=2=0p ξ∴ {}3312111<<3=()==22 p f x dx dx ξ?? 15. 解:设ξ表示直到取到废品为止所要取的产品个数,则ξ的概率函数 {}-1 ==0.050.95(=1,2,)k p k k ξ???? 当{}-1 ==(1)(=1,2,)k p k p p k ξ-???时,由幂级数 -12=1 1= (1)n n nx x ∞-∑ 2-13 =11=(1)n n x n x x ∞+-∑ 可计算 -1=11=(1)=k k E kp p p ξ∞-∑ 2-122=1 1=(1)()= k k p D k p p E p ξξ∞---∑ 本题中=0.05p 1==200.05 E ξ∴, 210.05==19.490.05 D ξ- 16. 解:8 22[()]DX EX E x =- 222[()]428EX DX E x ∴=+=+= 17. 解:由题意X 的分布律为 {}=(0)!k p X k e k λλλ-=>

二项分布、数学期望与方差专题复习 word 有详解 重点中学用

第十讲 二项分布及应用 随机变量的均值与方差 知识要点 1.事件的相互独立性(概率的乘法公式) 设A 、B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2. 互斥事件概率的加法公式:如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ). 3.对立事件的概率:若事件A 与事件B 互为对立事件,则P (A )=1-P (B ). 4.条件概率的加法公式:若B 、C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ) 5.独立重复试验:在相同条件下重复做的n 次试验称为n 次独立重复试验,即若用A i (i =1,2,…,n )表示第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ). 注:判断某事件发生是否是独立重复试验,关键有两点 (1)在同样的条件下重复,相互独立进行;(2)试验结果要么发生,要么不发生. 6.二项分布:在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=Ck n p k ·(1-p ) n -k (k =0,1,2,…, n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 注:判断一个随机变量是否服从二项分布,要看两点 (1)是否为n 次独立重复试验.(2)随机变量是否为在这n 次独立重复试验中某事件发生的次数. 7.离散型随机变量的均值与方差及其性质 定义:若离散型随机变量X 的分布列为P (ξ=x i )=p i ,i =1,2,…,n . (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望. (2)方差:D (X )=∑n i =1 (x i -E (X ))2 p i 为随机变量X 的方差,其算术平方根D X 为随机变量X 的标 准差. (3)均值与方差的性质:(1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2 D (X ).(a ,b 为常数) 8.两点分布与二项分布的均值、方差 变量X 服从两点分布: E (X )=p , D (X )=p (1-p ); X ~B (n ,p ): E (X )=np ,D (X )=np (1-p ) 典例精析 例1.【2015高考四川,理17】某市A,B 两所中学的学生组队参加辩论赛,A 中学推荐3名男生,2名女生,B 中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队 (1)求A 中学至少有1名学生入选代表队的概率. (2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.

随机变量的均值与方差

随机变量的均值与方差 一、填空题 1.已知离散型随机变量X 的概率分布为 则其方差V (X )=解析 由0.5+m +0.2=1得m =0.3,∴E (X )=1×0.5+3×0.3+5×0.2=2.4,∴V (X )=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44. 答案 2.44 2.(优质试题·西安调研)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________. 解析 设没有发芽的种子有ξ粒,则ξ~B (1 000,0.1),且X =2ξ,∴E (X )=E (2ξ)=2E (ξ)=2×1 000×0.1=200. 答案 200 3.已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值分别为________. 解析 由二项分布X ~B (n ,p )及E (X )=np ,V (X )=np ·(1-p )得2.4=np ,且1.44=np (1-p ),解得n =6,p =0.4. 答案 6,0.4 4.随机变量ξ的取值为0,1,2.若P (ξ=0)=1 5,E (ξ)=1,则V (ξ)=________. 解析 设P (ξ=1)=a ,P (ξ=2)=b , 则????? 15+a +b =1,a +2b =1, 解得????? a =3 5,b =1 5,

所以V(ξ)=(0-1)2×1 5+(1-1) 2× 3 5+(2-1) 2× 1 5= 2 5. 答案2 5 5.已知随机变量X+η=8,若X~B(10,0.6),则E(η),V(η)分别是________.解析由已知随机变量X+η=8,所以有η=8-X.因此,求得E(η)=8-E(X)=8-10×0.6=2,V(η)=(-1)2V(X)=10×0.6×0.4=2.4. 答案 2.4 6.口袋中有5只球,编号分别为1,2,3,4,5,从中任取3只球,以X表示取出的球的最大号码,则X的数学期望E(X)的值是________. 解析由题意知,X可以取3,4,5,P(X=3)=1 C35= 1 10, P(X=4)=C23 C35= 3 10,P(X=5)= C24 C35= 6 10= 3 5, 所以E(X)=3×1 10+4× 3 10+5× 3 5=4.5. 答案 4.5 7.(优质试题·扬州期末)已知X的概率分布为 设Y=2X+1,则 解析由概率分布的性质,a=1-1 2- 1 6= 1 3, ∴E(X)=-1×1 2+0× 1 6+1× 1 3=- 1 6, 因此E(Y)=E(2X+1)=2E(X)+1=2 3. 答案2 3 8.(优质试题·合肥模拟)某科技创新大赛设有一、二、三等奖(参与活动的都有奖)且相应奖项获奖的概率是以a为首项,2为公比的等比数列,相应的奖金分

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()()X F x P X x μ σ-=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞=??具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞ +∞-∞==? ? 边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞ -∞+∞-∞-∞=+∞==+∞=???? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

相关主题