搜档网
当前位置:搜档网 › 张氏标定法原理及其改进1

张氏标定法原理及其改进1

张氏标定法原理及其改进1
张氏标定法原理及其改进1

张正友算法原理及其改进

由于世界坐标系的位置可以任意选取,我们可以假定世界坐标系和摄像机坐标系重合,故定义模板平面落在世界坐标系的0W Z =平面上。用i r 表示R 的每一列向量,那么对平面上的每一点,有:

[][]12312

0111W W W W X u X Y s v A r r r t A r r t Y ??

??

??

??

??????==??????????????

??

??

这样,在模板平面上的点和它的像点之间建立了一个单应性映射H ,又称单应性矩阵或投影矩阵。如果已知模板点的空间坐标和图像坐标,那么就已知m 和M ,可以求解单应性矩阵H 。)1,,(w w Y X )1,,(v u

因为11W W u X s v H Y ????????=????????????,其中11

121321222331

32

1h h h H h h h h h ??

??=??????

,可推出: 111213

21222331321

W W W W W W su h X h Y h sv h X h Y h s h X h Y =++??

=++??=++?

故,

1112133132212223313211W W W W W

W W W h X h Y h u h X h Y h X h Y h v h X h Y ++?=?++?

?

++?=?++?

将分母乘到等式左边,即有

3132111213

31

32212223W W W W W W W W uX h uY h u h X h Y h vX h vY h v h X h Y h ++=++??++=++?

又令[]T

h h h h h h h h h 3231232221131211

=',则

1

00000

01W

W W W W

W

W

W X Y uX uY u h X Y vX vY v --????

'=????--???

?

多个对应点的方程叠加起来可以看成Sh d '=。利用最小二乘法求解该方程,即1()T T h S S S d -'=,进而得到H 。 摄像机内部参数求解

在求取单应性矩阵后,我们进一步要求得摄像机的内参数。首先令i h 表示H 的每一列向量,需要注意到上述方法求得的H 和真正的单应性矩阵之间可能相差一个比例因子,则H 可写成:

[][]1

2

312h h h A r r t λ=

又因为1r 和2r 是单位正交向量,所以有

1210T T h A A h --=

11

1122T T T T h A A h h A A h ----=

这样就为内参数的求解提供了两个约束方程。 下面,令

()()()111213121

2223313233002222000222222

222

000000002222222111T B B B B A A B B B B B B v u v u v v u v u v u v v γβγααβαβγγβγγαβ

αββαββγγβγβγβαβαββαββ--??

??==??????

??--??

????--??=+--????---??--++????

注意到B 是一个对称矩阵,所以它可以由一个6维向量来定义,即

[]11

12221323

33T

b B B B B B B =

设H 的第i 列向量为123[,,]T i i i i h h h h =,因此有 T T i j ij h Bh V b =

111221223113322333,,,,,T

ij i j i j i j i j i j i j i j i j i j V h h h h h h h h h h h h h h h h h h ??=+++??,那么,

就可以将内参数的两个约束写成关于b 的两个方程为:

1211220T

T T V b V V ??

=??

-????

如果有n 幅图像的话,把它们的方程式叠加起来,得到

0Vb =

其中,V 是一个26n ?的矩阵。当3n ≥时,一般情况下,b 可以在相差一个尺度因子的意义下唯一确定;当2n =时,此时的方程的个数少于未知数的个数,我们可以加上一个附加约束0γ=,即120B =,因此可用[]0100000b =作为式的一个附加方程。方程的最小二乘解即是T V V 的最小特征值对应的特征向量,将该向量归一化即得到要求的b ,进而得到B ;当1n =时,两个方程只能解两个未知数,我们可以假定光心投影在图像的中心,从而求出摄像机在水平和垂直方向上的最大倍数。

一旦b 被求出,就能根据下面两种方法计算出摄像机的内参数矩阵A : (1)由b 构造出B ,再利用Cholesky 矩阵分解算法求解出1A -,再求逆得到A 。

(2) 由b 构造出B ,在相差一个尺度因子的意义下(1T B A A λ--=,其中为λ尺度因子) ,由绝对二次曲线的性质,很容易求出摄像机的内部参数:

2

012131123112212()/()v B B B B B B B =-- 2221301213112311[()]/B B v B B B B B λ=-+-

x f

y f =

212/x y B f f αλ=-

20013//x x u v f B f αλ=-

摄像机外部参数求解

由每幅图像的单应性矩阵H 和上一节的计算结果就可以求得每幅图像的外部参数。

一旦A 求得后,根据式,每幅图像的外部参数很容易求出:

111r A h λ-= 122r A h λ-= 312r r r =? 13t A h λ-=

这里的尺度因子11121/1/A h A h λ--==。当然,由于图像必然有噪声,因此这样解得的123[,,]R r r r =并不能完全满足旋转矩阵的性质,所以要从一个给定的矩阵求解一个最佳的旋转矩阵。 非线性优化(优化内参)

以上我们所得到的摄像机的内参数矩阵和每幅图像对应的外参数矩阵都只是一个粗糙解,没有具体的物理意义,可以通过最大似然估计对所有参数进行非线性优化,进一步求精。在这里可以假定有n 幅关于模板平面的图像,模板平面上有m 个标定点,那么可建立评价函数:

()2

11

,,,n

m

ij i j i j C m m A R t M ===-∑∑

其中ij m 是第i 幅图像中的第j 个像点,i R 是第i 幅图坐标系的旋转矩阵,i t 是第i 幅图坐标系的平移向量,j M 是第j 个点的空间坐标,(),,,i j m A R t M 是通过这些已知量求得的像点坐标。

由于旋转矩阵有9个参量但是只有三个自由度,因此可用三个参量的矢量来表示,即一个旋转可由一个三维向量即旋转向量来表示,他的方向就是旋转轴的方向,他的模等于旋转角。

由三个欧拉角参数确定,123(,,)T r r r r 是旋转矩阵的罗德里克(Rodrigues)表示,

R 与r 之间的关系由公式给出:

22sin /[](1cos )/[]x x R I r r θθθθ=++-

其中,旋转向量T z y x r ),,(=,定义由它构成的反对称矩阵为

??

??

?

?????---=000][x y x z y z r x , 其中||||222r z y x =++=

θ是旋转角。

使评价函数最小的,,,i j A R t M 就是这个问题的最优解。这是一个经典的非线性最小二乘问题,对式求极小值仍采用Levenberg-Marquardt 算法来求解,其初始估计可利用上面线性求解的结果。很明显可以看出,计算顺序依次是投影矩阵、内部参数、外部参数,最后进行优化。 对径向畸变处理

(u,v)理想像素坐标,),(v u 为实际的像素坐标,同样(x,y)和),(y x 为理想和实际的图像坐标。

?????++++=++++=]

)()([]

)()([2

2222212

222221y x k y x k y y y y x k y x k x x x 其中,21,k k 为径向畸变,对于中心点畸变同样适用:

?????+++-+=+++-+=]

)()()[(]

)()()[(2

222221022222210y x k y x k v v v v y x k y x k u u u u 可以通过下面的方法求解畸变系数:

???

?

????--=??????????????+-+-+-+-v v u u k k y x v v y x v v y x u u y x u u 212

2202202220220))(())(())(()()( 高斯一牛顿方法优化:

可以利用极大似然估计来得到畸变系数:

2

11

21||),,,,,(||∑∑==-n i m

j j i i ij

M t R k k A m m

非线性优化的过程:

采用高斯一牛顿方法,而没有用Levenberg 一Marquardt(LM)法是因为在实际应用中发现,如果没有先验知识,LM 法阻尼因子u 不知道去什么值合适,而随意的取值使得方程在求解时收烟速度慢。而高斯一牛顿法在求解的附近一般收敛速度快,虽然对初始值要求严格,当初始值与实际值偏离的太远,其系数阵J T J 容易出现病态解,但是,所以参数的初始值必须要做优化。

这里),,,,(j i i c M T R K K m 是点j M 按照投影公式在第i 幅图片上的投影,K 是摄像机标定内参数矩阵,c K 是畸变系数矩阵,i R 、i T 是第i 副图像的外参数矩阵,其中R 通过Rodrigues 公式用三个参数的旋转向量r 来表达。

优化的步骤:

(1)、首先确定目标函数。这里的优化的目的是使优化后的外参数,按照本文建立的摄像机模型将空间点投影到图像平面上时,投影点与实际获取的图像控制点之间的残差平方和最小。不妨设投影函数为

其中K 是摄像机内参数矩阵,

是畸变系数矩阵,是旋转向量,T 是平移矩阵,

是模板平面上控制点

i M 的坐标。

是投影点图像像素坐标,该点实际的图像坐标是,共n 个控制点。

要优化外参数,则最后需要的偏导数系数Jacobian 矩阵r m i ??/和T m i ??/得组合,而函数

)显然是个复合函数,因此这实际上是个复合函数求

偏导的问题。下面针对第一次迭代即r=r 0、T=T 0为初值时的一个点

来分步求解

第一步,是r 与R 的转换。由Rodrigues 公式可以求出

.

第二步,是世界坐标系到摄像机坐标系的转换。由坐标转换公式求出摄像机坐标系下的坐标及相应偏导数系数阵:

这里偏导数矩阵中的下标i 表示求出偏导数矩阵

后,再将当前点(即第i 点)各相应坐标代入以求得偏导数系数矩阵。

同时可以看出,若直接以R 为参量,因为复合函数求偏导是偏导矩阵相乘的关系,则由于

是3*9矩阵而

第三步,将厉ci M 转化为归一化图像坐标。设ci M 的归一化图像坐标为ni M , 可得ni M 的计算公式及其偏导数系数阵:

注意:

表示qxp 系数矩阵B 将与矩阵A 中的所有分块矩阵ij A (i=1,2,,n,j=1,2,,m)均相乘,其中分块矩阵ij A (i=1,2,,n,j=1,2,,m)的行数等于系数矩阵B 的列数p 。

第四步,计算考虑有图像畸变的归一化图像坐标。设

,则含有

畸变的归一化图像坐标和偏导数系数阵可由归一化公式式来计算(4. 40):

对畸变系数的优化:

???

?

????=??42

42

r y r y r x r

x K m n n

n n c nd

第五步,求迭代计算出的投影点图像像素坐标和偏导数系数阵,按照

式进行计算:

??

????

=??v u nd f f m m 0α

])[(c

nd nd c K m m m K m ????=??

若是对内部参数的优化为:

???

?

????=??1000001nd nd nd y y x K m

优化外部参数:

优化全局参数:

00,,|],,,[

T r i c i T

m

r m K m K m J ????????=

第六步,求第一次迭代产生的偏差,并由式:

i T T J J J εθ1)(-=?

计算参数迭代增量,为下一次迭代做准备。

i i i m m -=ε

改进的方法具体介绍

(1)、改进的平面模板两步法标定摄像机——毛剑飞,邹细勇,诸 静

该方法张正友提出用平面模板两步法来标定摄像机。该方法能高精度地标定摄像机,且简便易行,可以说是两步法标定的代表,但其算法模型仅考虑了镜头径向畸变,其对切向畸变较大的场合,如鱼眼镜头成像,则不适用。为此,通过改进其摄像机模型,提出了一种改进的两步法,该方法先用图像中心附近点求取初值,由于图像中心附近点畸变很小,故求取的初值能很好地逼近准确值,然后采用一种基于内部映射牛顿法的子空间置信域法通过求精来得到所有参数。

由于两步法要求一个比较好的初值,若初值选择不当,则算法难以收敛或只能收敛到局部最小,从而大大降低标定精度。zhang 的方法缺点在求取初值中,虽先不考虑各种畸变,而是先将所有点代入求解,但由于远离图像中心的像点畸变很大,如将这些点也看作没有畸变的像点代入,显然会加大求解初值的误差,但由于考虑到图像中心附近点的畸变很小,因此可以先利用图像中心附近点求取初值。本文算法正是基于这点考虑的,由于本文算法准确地计算了初值,因此接下来的全面考虑各参数的非线性最小化计算就能很快收敛。 仿真摄像机的特性:分辨率为768×576像素, 真实实验

使用三星SCC-421P 型彩色摄像机,分辨率为576×768,模板是用激光打印机打印7×10的国际象棋图案,并贴在硬塑料板上制成的标定模板,每格边长2.5000cm 。因为整个包括角点检测的标定程序已经编好,所以只要让模板对着摄像机随意转动几次,即可完成标定,时间不到10 s 。

用本文提出的模型和算法进行标定,其结果如表1、表2所示。表中S 表示重建后的图像点与实际图像点的平均距离,其是将内外参数代入优化模型计算后求平均得出的,由于利用优化模型式也可求出σ(S),所以S 和σ(S)表示了算法的收敛效果。

表2 重建图像点后的误差对比

总结:

-

??V U ,_实际的测量的角点像素坐标,与矫正后的角点像素的坐标的差值。从上述的数据

可以看出这两个数据是很接近的。重建后的图像点误差分布很均匀,其图像点的总体平均误差为0。相比张正友的算法,精度有一定得提高。

总的来说,这种方法在张正友的方法上添加一个从中间取点算初值(默认为中间的点的畸变量小),对精度有一定的提高。(由借鉴的方面)

革兰氏染色的实验原理

革兰氏染色的实验原理 ●G+细胞壁的网状结构致密,交联度高,用乙醇处理后,发生脱水作用,肽聚糖层孔径缩小,透性降低,故细菌仍保留初染时的紫色。 ●G-肽聚糖层较薄,交联度低,含较多类脂质,故用乙醇处理后,类脂质被溶解,细胞壁孔径变大,通透性增加,使初染的结晶紫和碘的复合物易于渗出,细胞被脱色,经沙黄复染呈红色。 涂片固定→结晶紫初染(碱性)→碘液媒染→乙醇(丙酮)脱色→番红复染(碱性)

◆◆◆原理: 当用结晶紫初染后,所有细菌都被染成初染剂的兰紫色,碘作为媒染剂,它能与结晶紫结合成结晶紫-碘复合物,从而增强了染料与细菌的结合力。当用脱色剂处理时,两类细菌的脱色效果是不同的。革兰氏阳性细菌的细胞壁主要有舦聚糖形成的网状结构组成,壁厚,类脂含量低,用酒精脱色时细胞壁脱水,使舦聚糖层的网状结构孔径缩小,透性降低,从而使结晶紫碘复合物不易被洗脱而保留在细胞内,经脱色和复染后仍保留初染剂的兰紫色。革兰氏阴性细菌则不同,由于其细胞壁舦聚糖层较薄,类脂含量较高,,所以当脱色处理时,类脂质被酒精溶解,细胞壁透性增大,使结晶紫-碘复合物比较容易被洗脱出来,用复染剂复染后,细胞被染上复染剂的红色。 ◆◆实验步骤: 1、制片 涂片——干燥——固定 2、初染 滴加结晶紫染色1——2分钟,水洗; 3、媒染 用碘液冲去残水,并用碘液覆盖1分钟; 4、脱色 滴加95%酒精脱色,25-30秒,立即水洗; 5、复染 用番红液复染约2分钟,水洗; 6、镜检 干燥后,用油镜观察。 细菌:细菌是一种具有细胞壁的单细胞微生物,在适宜条件下,能进行无性二分裂繁殖,其形态和结构相对稳定。一般体积微小,通常需要借助光学显微镜才能看到,其测量单位用微米表示。

赤平投影原理及讲解

一、序言 岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。 二、极射赤平投影的基本原理 (一)投影要素 极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括: 1.投影球(也称投射球):以任意长为半径的球。 2.球面:投影球的表面称为球面。 3.赤平面(也称赤平投影面):过投影球球心的水平面。 4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。 5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。 6.极射点:投影球上两极的发射点(如图一),分上极射点(P)和下极射点(F)。由上极射点(P)把下半球的几何要素投影到赤平面上的投影称为下半球投影;由下极射点(F)把上半球的几何要素投影到赤平面上的投影称为上半球设影。一般采用下半球投影。 7.极点:通过球心的直线与球面的交点称为极点,一条直线有两个极点。铅直线交球面上、下两个点(也就是极射点);水平直线交基圆上两点;倾斜直线交球面上两点(如图五中A、B)。 (二)平面的赤平投影 平面与球面相交成大圆或小圆,我们把大圆或小圆上各点和上极射点(P)的连线与赤平面相交各点连线称为相应平面的赤平投影。 1.过球心平面的赤平投影随平面的倾斜而变化:倾斜平面的赤平投影为大圆弧(如图二中的NB′S);直立平面的赤平投影是基圆的一条直径(如图一(a)中的NS);水平面的赤平投影就是基圆(如图一中的NESW)。 2.不过球心平面的赤平投影也随平面倾斜而变化:直立平面的赤平投影是基圆内的一条圆弧(如图三KD′H);倾斜平面的赤平投影有以下三种情况:⑴当倾斜小圆在赤平面以下时,投影是一个圆,且全部在基圆之内(如图三FG);⑵当倾斜小圆全部位于上半球时,投影也是一个圆,但全部在基圆之外;⑶当倾斜小圆一部分在上半球,另一部分在下半球时,赤平面以下部分的投影在基圆之内,以上部分的投影在基圆之外。当球面小圆通过上极射点时,其赤平投影为一条直线(如图一(c)中PACB的投影为AB);水平小圆的赤平投影在基圆内(如图四中A′B′),A′B′是一个与基圆同心的圆。 (三)直线的赤平投影 直线AB的投影点就是其极点A、B和极射点P的连线与赤平面的交点A′、B′。铅直线的投影点位于基圆中心;过球心的水平直线的投影点就是基圆上两个极点,两点间距离等于基圆直径;倾斜直线的投影点有两个,一点在基圆内,另一个在基圆外,两点呈对蹼点,在赤平投影图上两点的角距相差180°(如图五)。 (四)吴氏网及其CAD制作 目前广泛使用的极射赤平投影有等角距投影网和等面积投影网。等角距投影网是由吴尔福发明的,简称吴氏网;等面积投影网是由施密特发明的,简称施氏网。两者的主要区别在于:球面上大小相等的小圆在吴氏网上的投影仍然是圆,投影圆的直径角距相等,但由于在赤平面上所处位置不同,投影圆的大小不等,其直径随着投影圆圆心与基圆圆心的距离增大而增大。而在施氏网上的投影则呈四级曲线,不成圆,但四级曲线所构成的图形面积是相等的,且等于球面小圆面积的一半。使用吴氏网求解面、线间的角距关系时,旋转操作显示其优越性,不仅作图方便,而且较为精确。而使用施氏网时,可以作出面、线的极点图或等密度图,能够真实反映球面上极点分布的疏密,有助于对面、线群进行统计分析,但其存在作图麻烦等缺点。

革兰氏染色的机理和步骤.

1. 革兰氏染色的机理和步骤 机理:G+、G-主要由其CW化学成分的差异而引起对乙醇的通透性,抗脱色能力的差异。主要有肽聚糖的厚度和结构所决定。 G+的CW:肽聚糖层厚,脂质含量低。乙醇脱色时CW脱水,孔径减少,透性降低,不易脱色,呈初染得蓝紫色。 G-的CW:肽聚糖层薄,脂质含量高。乙醇脱色时,类脂被乙醇溶解,透性升高,细胞被复染显红色。 步骤:①涂片:在干净的载玻片上滴一滴水,用接种环挑取菌体均匀涂布于水中。 ②固定:将玻片靠近酒精灯火焰,蒸干水分,但不要烤焦。 ③初染:用碱性颜料结晶紫对菌液涂片进行初染。 ④媒染: 以碘液媒染1min,水洗,吸干水分。(细胞内形成结晶紫与碘的复合物,增强相互作用) ⑤脱色(关键步骤):以95%的乙醇脱色30s,应适当振荡均匀,是乙醇脱色完全。 ⑥水洗,吸干。 ⑦复染:??(第2张)复染30s,水洗吸干。 ⑧干燥镜检。 2、用渗透皮层膨胀学说解说芽孢耐热机制。 芽孢的耐热性在于芽孢衣对多价阳离子和水分的透性很差,以及皮层的离子强度很高,这就使皮层产生了极高的渗透压去夺取芽孢核心中水分,其结果造成皮层的充分膨胀和核心的高度失水,正是这种

失水的核心才赋予芽孢极强的耐热性。 3、引起微生物培养过程中PH变化的几种可能反应,并说明如何能够维持微培PH稳定。 答:培养过程中,由于营养物质被分解利用,代谢产物的形成与积累,会导致PH变化。 (第2张中的图) 还与培养基的C/N比有关,C/N高,经培养基后PH显著下降,C/N 低,经培养基后PH明显上升。 PH调节:①加入缓冲剂--------常用:一氢二氢磷酸盐,K2HPO4 呈碱性,KH2PO4 酸性,只在一定的PH范围内调节(6.4--7.2) ②大量产酸的菌株,加CaCO3调节,CaCO3难溶于水,不会使培养液的PH过度增加,但可不断中和微生物产的酸。 ③培养液中存在天然的缓冲系统,如AA,肽,Pr均属两性电解质,也起缓冲的作用。 ④过酸:治标------加NaOH、Na2CO3中和,治本-----加适量氮源:NaNO3、Pr、NH3·H2O;增加通风量。 ⑤过碱:治标-----H2SO4、HCl中和,治本----加适量碳源:G类,脂类;减小通风量。 3、抗生素法和菌丝过滤法为何能浓缩营养缺陷型突变株? 抗生素法(青霉素法):适用于细菌。原理:青霉素抑制肽聚糖链间的交联,组织了合成完整的CW,野生型B处于正常生长繁殖,所以对青霉素敏感,可被抑制或杀死;营缺B在基本培养基上休眠状态

比色分析的基本原理朗伯比尔定律,吸光度,消光度,吸光系数

比色分析的基本原理 (朗伯-比尔定律,吸光度,消光度,吸光系数) ( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数) 比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。 有色物质溶液的颜色与其浓度有关。溶液的浓度越大,颜色越深。利用光学比较溶液颜色的深度,可以测定溶液的浓度。 根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。 比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。通常中测定含量在10-1~10-4mg·L-1的痕量组分。比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。 一、物质的颜色和光的关系 光是一种电磁波。自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。如把

两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。 当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。 同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。由此可见,有色溶液的颜色是被吸收光颜色的补色。吸收越多,则补色的颜色越深。比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。表8-1列出了溶液的颜色与吸收光颜色的关系。 表8-1 溶液的颜色与吸收光颜色的关系 二、朗伯-比尔(Lambert-Beer)定律 当一束平行单色光(只有一种波长的光)照射有色溶液时,光的一部分被吸收,一部分透过溶液(图8-2)。

(推荐)革兰氏染色法的过程及原理

革兰氏染色法的过程及原理 一,过程 1 .涂片 将培养的不同菌分别作涂片(注意涂片切不可过于浓厚),干燥、固定。固定时通过火焰l 一2 次即可,不可过热,以载玻片不烫手为宜。 2 .染色 ( 1 )初染加草酸铰结晶紫一滴,约一分钟,水洗。 ( 2 )媒染滴加碘液冲去残水,并覆盖约一分钟,水洗。 ( 3 )脱色将载玻片上面的水甩净,并衬以白背景,用95 %酒精滴洗至流出酒精刚刚不出现紫色时为止,约20 一30 秒钟,立即用水冲净酒精。 ( 4 )复染用番红液染1 一2 分钟,水洗。 ( 5 )镜检干燥后,置油镜观察.革兰氏阴性菌呈红色,革兰氏阳性菌呈紫色。以分散开的细菌的革兰氏染色反应为准,过于密集的细菌,常常呈假阳性。( 6 ) 同法在一载玻片上以大肠杆菌与枯草芽孢杆菌混合制片,作革兰氏染色对比。 二,原理 革兰氏染色法(Gram stain )不仅能观察到细菌的形态而且还可将所有细菌区分为两大类:染色反应呈蓝紫色的称为革兰氏阳性细菌,用G+表示:染色反应呈红色(复染颜色)的称为革兰氏阴性细菌,用G 一表示。细菌对于革兰氏染色的不同反应,是由于它们细胞壁的成分和结构不同而造成的。革兰氏阳性细菌的细胞壁主要是由肤聚糖形成的网状结构组成的,在染色过程中,当用乙醇处理时,由于脱水而引起网状结构中的孔径变小,通透性降低,使结晶紫一碘复合物被保留在细胞内而不易脱色,因此,呈现蓝紫色;革兰氏阴性细菌的细胞壁中肤聚糖含量低,而脂类物质含量高,当用乙醇处理时,脂类物质溶解,细胞壁的通透性增加,使结晶紫一碘复合物易被乙醇抽出而脱色,然后又被染上了复染液(番红)的颜色,因此呈现红色。 革兰氏染色的关键在于严格掌握酒精脱色程度,如脱色过度,则阳性菌可被误染为阴性菌:而脱色,不够时,阴性菌可被误染为阳性菌。此外,菌龄也影响染色结果,如阳性菌培养时间过长,或已死亡及部分菌自行溶解了,都常呈阴性反应。 青霉素作用机制 干扰细菌细胞壁的合成。青霉素你的结果与细胞壁的成分粘肽结构中德D-丙氨酰-D-丙氨酸近似,可与后者竞争转肽酶,阻碍你粘肽的形成,造成细胞壁的缺损,使细菌失去细胞壁的渗透屏障,对细菌起到杀灭作用。 溶菌酶与青霉素对细菌细胞壁的作用 溶菌酶作用机制:是一种能水解致病菌种黏

吸光光度法知识点

第九章吸光光度法知识点 吸光光度法是基于分子对光的选择性吸收而建立的一种分析方法,包括比色法、紫外一可见吸光光度法、红外光谱法等。 1.吸光光度法的基本原理 ①物质对光的选择性吸收:当光照射到物质上时,会产生反射、散射、吸收或透射。若被照射的物质为溶液,光的散射可以忽略。当一束白光照射某一有色溶液时,一些波长的光被溶液吸收,另一些波长的光则透过,溶液的颜色由透射光的波长所决定。吸收光与透射光互为补色光(它们混合在一起可组成白光)。 分子与原子、离子一样,都具有不连续的量子化能级,在一般情况下分子处于最低能态(基态)。当入射光照射物质时,分子会选择性地吸收某些频率的光子的能量,由基态跃迁到激发态(较高能级),其能级差E激发态一E基态与选择性吸收的光子能量hv的关系为Hv=E激发态一E基态 分子运动包括分子的转动、分子的振动和电子的运动。 分子转动、振动能级间隔一般小于1 eV,其光谱处于红外和远红外区。 电子能级间的能量差一般为1~20 eV,由电子能级跃迁而产生的吸收光谱位于紫外及可见光区,其实验方法为比色法和可见-紫外吸光光度法。 ②吸收曲线:以波长为横坐标,以吸收光的强度为纵坐标绘制的曲线,称为吸收光谱图,也称吸收曲线。它能清楚地描述物质对不同

波长的光的吸收情况。 ③光的吸收定律——朗伯一比尔定律:当一束平行单色光垂直通过一厚度为b、非散射的均匀吸光物质溶液时,吸光物质吸收光能,致使透射光强度减弱。 若用I。表示入射光强度,I t表示透射光强度,I。与I t之比称为透光率或透光度T,T=I。/I t,吸光物质对光的吸收程度,还常用吸光度A表示,A=lgT=log I。/I t。 实验证明,当一束平行单色光垂直照射某一均匀的非散射吸光物质溶液时,溶液的吸光度A与溶液浓度c和液层厚度b的乘积成正比,此即朗伯一比尔定律,其数学表达式为 A=lgT=log I。/I t =abc 式中,a为吸收系数。溶液浓度以g·L-1为单位、液层厚度以cm 为单位时,a的单位为L·g-1·cm-1。当溶液浓度以mol·L-1为单位、液层厚度以cm为单位时,此时吸收系数称为摩尔吸收系数,用符号k表示,其单位为L·mol-1·cm-1。 此时朗伯一比尔定律可写为A—Kbc。 摩尔吸收系数k是吸光物质在给定波长和溶剂下的特征常数,k越大,表示该物质对某波长光的吸收能力越强,测定方法的灵敏度也就越高。 根据朗伯一比尔定律,当吸光物质光程一定时,吸光度与吸光物质的浓度成线性关系,因此可以根据直接比较法和标准曲线法测定试样溶液中待测物质的浓度。

革兰氏染色法的步骤

革兰氏染色法的步骤 详细阐叙革兰氏染色法的步骤 浏览次数:174次悬赏分:0 |解决时间:2011-5-25 17:44 |提问者:肖箫 2011shaw 最佳答案 革兰氏染色 一、目的:在细胞发放之前,利用标准的革兰氏染色法对即将发放的细胞悬液进行检测,判断细胞悬液中是否含有革兰氏阳性菌或革兰氏阴性菌。 二、原理: 通过结晶紫初染和碘液媒染后,在细胞壁内形成了不溶于水的结晶紫与碘的复合物,革兰氏阳性菌由于其细胞壁较厚、肽聚糖网层次较多且交联致密,故遇乙醇脱色处理时,因失水反而使网孔缩小,再加上它不含类脂,故乙醇处理不会出现缝隙,因此能把结晶紫与碘复合物牢牢留在壁内,使其仍呈紫色;而革兰氏阴性菌因其细胞壁薄、外膜层类脂含量高、肽聚糖层薄且交联度差,在遇脱色剂后,以类脂为主的外膜迅速溶解,薄而松散的肽聚糖网不能阻挡结晶紫与碘复合物的溶出,因此通过乙醇脱色后仍呈无色,再经沙黄等红色染料复染,就使革兰氏阴性菌呈红色。 三、实验用品准备: 灭菌玻片、10-100ul移液器、10-100ul灭菌移液吸头、100ul-1000ul移液器、100ul-1000ul移液吸头、接种环、酒精灯、打火机、革兰氏染色液、吸水纸、显微镜、香柏油、擦镜纸、计时器 四、操作: 1 涂片:取灭过菌的载玻片于实验台上,用移液枪吸取10ul待检样品滴在载玻片的中央,用烧红冷却后的接种环将液滴涂布成一均匀的薄层,涂布面不宜过大。 2 干燥:将标本面向上,手持载玻片一端的两侧,小心地在酒精灯上高处微微加热,使水分蒸发,但切勿紧靠火焰或加热时间过长,以防标本烤枯而变形。 3 固定:固定常常利用高温,手持载玻片的一端,标本向上,在酒精灯火焰处尽快的来回通过2-3次,共约2-3秒种,并不时以载玻片背面加热触及皮肤,不觉过烫为宜(不超过60℃),放置待冷后,进行染色。 4 初染:在涂片薄膜上滴加草酸铵结晶紫1-2滴,使染色液覆盖涂片,染色约 1min。 5 水洗:斜置载玻片,在自来水龙头下用小股水流冲洗,直至洗下的水呈无色为止。 6 媒染:用100-1000ul移液枪吸取约300ul碘液滴在涂片薄膜上,使染色液覆盖涂片,染色约1min。

分光光度计基本原理

分光光度计基本原理 分光光度计主要用于反射和透射测量。 分三种光源:S偏振光、P偏振光和自然光。 现有设备7台(2台日立U4100、1台JACSO-V650、1台JACSO-V570、2台KT1100、1台瞬间7700)主要由是由分光光度计和电脑组成,由电脑程序驱动。 1 基本部件 光源: 用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 -- 2500 nm。氢灯和氘灯。它们可在180 -- 375 nm范围内产生连续光源。 紫外—可见分光光度计通常都配有可见和紫外两种光源。 单色器:是从连续光谱中获得所需单色光的装置。 (1)入射狭缝 (2)准直镜(透镜或凹面反射镜),它使入射光束变为平行光束。 (3)色散元件,棱镜或光栅,它使不同波长的入射光色散开来。 (4)聚焦透镜或聚焦凹面反射镜聚焦,它使不同波长的光聚焦在焦面的不同位置。 (5)出射狭缝。 积分球:它主要用途是测定光源发出的总光通量。它的制造:首先在球内壁上涂一层腻子,作为底层;然后喷点白漆,作为中间层;最后喷一层白涂料(硫酸钡或氧化镁)作为表层。 检测器:检测器的作用是检测光信号。常用的检测器有光电管和光电倍增管。电脑,就是微处理机。一方面可对分光光度计进行操作控制,另一方面可进行数据处理。 2、先用3台光度计的特点 U4100的 V650能测位相

3、日常测量 改参数 1.光源要求(.自然光) 2、扫描速度 3、狭缝 基本的步骤 设备测量种类 U4100测量:合色棱镜(成品、PL、2P)等 V650:单层,小DVD,带位相的零件,AR的反射测量等 4.测量的原理,影响准确性的因素 单光路分光光度计V650 双光路分光光度计 U4100 它的优点:光电传感器就可以交替探测到经过样品的探测光束的强度与参考光束的光强度,然后将两束光强信号进行相除,就可以得到样品的透过率。它可以降低光源稳定性对光谱测试精度的影响。 测量的原则:入射光轴重合,出射光轴重合,难在后着。 商用的光谱仪都有很好的性能,但是如果操作测试不当,就会获得错误的光谱测试结果。主要影响准确性的因素: 透射因素: 1、测量样品口径的影响 在测量中应保证仪器的测量光束全部穿过样品。 1)、在样品室的测量光路和参考光路中同时添加小孔光阑。 2)、只在样品池添加小孔光阑。

分光光度法原理

分光光度法原理 This model paper was revised by the Standardization Office on December 10, 2020

分光光度法 目录 第一节基本原理 第二节仪器结构 第三节显色与测量条件的选择 第四节 723N型分光光度计操作维护 第一节基本原理 在光谱分析中,依据物质对光的选择性吸收而建立起来的分析方法称为吸光光度法,主要有: 红外吸收光谱:分子振动光谱,吸收光波长范围1000 m ,主要用于有机化合物结构鉴定。 紫外吸收光谱:电子跃迁光谱,吸收光波长范围200400 nm(近紫外区),可用于结构鉴定和定量分析。 可见吸收光谱:电子跃迁光谱,吸收光波长范围400750 nm , 主要用于有色物质的定量分析。 光的吸收定律

1.朗伯—比耳定律 布格(Bouguer)和朗伯(Lambert)先后于1729年和1760年阐明了光的吸收程度和吸收层厚度成正比:A∝b 1852年比耳(Beer)又提出了光的吸收程度和吸收物浓度之间也具有成正比的关系:A∝c 二者的结合称为朗伯—比耳定律:当一束平行的单色光通过均匀、非散射的稀溶液时,溶液对光的吸收程度与溶液的浓度及液层厚度的乘积成正比。 朗伯—比耳定律 朗伯—比耳定律 是吸光光度法的理论基础和定量测定的依据。应用于各种光度法的吸收测量。它不仅适用于可见光,也适用于紫外光和红外光;不仅适用于均匀非散射的液体,也适用于固体和气体。 朗伯—比耳定律,数学表达式 其数学表达式为 式中A:吸光度;描述溶液对光的吸收程度 b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位mol/L; ε:摩尔吸光系数,单位L/mol/cm;

第六讲分光光度法

吸光光度分析法 大纲要求: 1.掌握吸光光度分析法的特点、基本原理、测定方法和计算方法; 2.理解物质对光的选择性吸收和光吸收曲线; 3.掌握朗伯一比耳定律的应用及摩尔吸光系数,了解引起偏离朗伯 一比耳定律的原因; 4.了解分光光度计的主要部件,各部件的作用及仪器的工作原理; 5.了解显色反应的特点,掌握显色条件的选择; 6.掌握分光光度法的应用和测量条件的选择。 基本内容: 一、吸光光度分析概述 基于物质对光的选择性吸收而建立的分析方法称为吸光光度法,包 括比色法,可见分光光度法及紫外分光光度法等。 有些物质的溶液是有色的,若物质的溶液本身是无色或浅色的,但 它们与某些试剂发生反后生成有色物质。有色物质溶液颜色的深浅与其 浓度有关,浓度愈大,颜色愈深。如果是通过与标准色阶比较颜色深浅 的方法确定溶液中有色物质的含量,则称为目视比色法,如果是使用分 光光度计,利用溶液对单色光的吸收程度确定物质含量,则称为分光光 度法。 吸光光度法主要用于测定试样中的微量组分,具有以下特点: a.灵敏度高。常可不经富集用于测定质量分数为10-2~10-5的微量组 分,甚至可测定低至质量分数为10-6~10-8的痕量组分。通常所测试的浓 度下限达10-5~10-6mol·L-1。 b.准确度高。一般目视比色法的相对误差为5%~10%,分光光度法为 2%~5%。 c.应用广泛。几乎所有的无机离子和许多有机化合物都可以直接或 间接地用分光光度法进行测定。 d.仪器简单、操作方便、快速。 二、吸光光度分析的基本原理 1、光的基本性质 光是一种电磁波,同时具有波动性和微粒性。 我们将眼睛能够感觉到的那一段的光称为可见光,也就是我们日常所

计算机视觉测量与导航_张正友法相机标定 _结课实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y 计算机视觉测量与导航 实验报告 院系:航天学院 学科:控制科学与工程 姓名:TSX 学号: 任课教师:张永安卢鸿谦 日期:2014.05.13

摘要 人类视觉过程可看成是一个复杂的从感觉到知觉的过程,也就是指三维世界投影得到二维图像,再由二维图像认知三维世界的内容和含义的过程。信号处理理论与计算机出现以后,人们用摄像机等获取环境图像并转换成数字信号,完成对视觉信息的获取和传输过程,用计算机实现对视觉信息的处理、存储和理解等过程,形成了计算机视觉这门新兴学科。其中从二维图像恢复三维物体可见表面的几何结构的工作就叫做三维重建。随着计算机硬件、软件、图像采集、处理技术的迅速发展,三维重建的理论和技术已被广泛应用于航空航天、机器人技术、文字识别、工业检测、军事侦察、地理勘察、现场测量和虚拟植物可视化等领域。相机标定是三维重建必不可少的步骤,它包括对诸如主点坐标、焦距等与相机内部结构有关的内部参数的确定和对相机的旋转、平移这些外部参数的确定。价格低廉的实验器材、简单的实验环境、快捷的标定速度和较高的标定精度是现在相机标定研究追求的几大方向。数码相机的标定就是研究的热点之一。本次报告介绍了基于棋盘格模板标定的基本原理和算法,利用MATLAB的相机标定工具箱,使用张征友算法对相机进行了标定,记录了标定的过程,并给出结果,最后对影响标定精度的因素进行了分析。 关键词:相机标定张正友角点提取内外参

1基于棋盘格标定的基本原理和算法 1.1基础知识 1.1.1射影几何 当描述一张相机拍摄的图像时,由于其长度、角度、平行关系都可能发生变化,因此无法完全用欧氏几何来处理图像,而射影几何却可以,因为在射影几何中,允许存在包括透视投影的更大一类变换,而不仅仅是欧氏几何的平移和旋转。实际上,欧氏几何是射影几何的一个子集。 1.1.2齐次坐标 设欧氏直线上点p的笛卡尔坐标为(x,y)T,如果x1,x2,x3满足x=x1/x2,y =x2/x3,x3≠0,则称三维向量(x1,x2,x3)T为点P的齐次坐标。当x3= 0时,(x1,x2,0)T规定直线上的无穷远点的齐次坐标。 实际上,齐次坐标是用一个n+ 1维向量来表示原本n维的向量。应用齐次坐标的目的是用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系。形的几何变换主要包括平移、旋转、缩放等。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为P’=R*P+T(R为旋转缩放矩阵,T为平移矩阵,P为原向量,P′为变换后的向量)。当n+1维的齐次坐标中第n+1维为0,则表示n维空间的一个无穷远点。

革兰氏染色的机理和步骤

1.革兰氏染色的机理和步骤 机理:G+、G-主要由其CW化学成分的差异而引起对乙醇的通透性,抗脱色能力的差异。主要有肽聚糖的厚度和结构所决定。 G+的CW:肽聚糖层厚,脂质含量低。乙醇脱色时CW脱水,孔径减少,透性降低,不易脱色,呈初染得蓝紫色。 G-的CW:肽聚糖层薄,脂质含量高。乙醇脱色时,类脂被乙醇溶解,透性升高,细胞被复染显红色。 步骤:①涂片:在干净的载玻片上滴一滴水,用接种环挑取菌体均匀涂布于水中。 ②固定:将玻片靠近酒精灯火焰,蒸干水分,但不要烤焦。 ③初染:用碱性颜料结晶紫对菌液涂片进行初染。 ④媒染: 以碘液媒染1min,水洗,吸干水分。(细胞内形成结晶紫与碘的复合物,增强相互作用) ⑤脱色(关键步骤):以95%的乙醇脱色30s,应适当振荡均匀,是乙醇脱色完全。 ⑥水洗,吸干。 ⑦复染:??(第2张)复染30s,水洗吸干。 ⑧干燥镜检。 2、用渗透皮层膨胀学说解说芽孢耐热机制。 芽孢的耐热性在于芽孢衣对多价阳离子和水分的透性很差,以及皮层的离子强度很高,这就使皮层产生了极高的渗透压去夺取芽孢核心中水分,其结果造成皮层的充分膨胀和核心的高度失水,正是这种

失水的核心才赋予芽孢极强的耐热性。 3、引起微生物培养过程中PH变化的几种可能反应,并说明如何能够维持微培PH稳定。 答:培养过程中,由于营养物质被分解利用,代谢产物的形成与积累,会导致PH变化。 (第2张中的图) 还与培养基的C/N比有关,C/N高,经培养基后PH显著下降,C/N 低,经培养基后PH明显上升。 PH调节:①加入缓冲剂--------常用:一氢二氢磷酸盐,K2HPO4 呈碱性,KH2PO4 酸性,只在一定的PH范围内调节(6.4--7.2) ②大量产酸的菌株,加CaCO3调节,CaCO3难溶于水,不会使培养液的PH过度增加,但可不断中和微生物产的酸。 ③培养液中存在天然的缓冲系统,如AA,肽,Pr均属两性电解质,也起缓冲的作用。 ④过酸:治标------加NaOH、Na2CO3中和,治本-----加适量氮源:NaNO3、Pr、NH3·H2O;增加通风量。 ⑤过碱:治标-----H2SO4、HCl中和,治本----加适量碳源:G类,脂类;减小通风量。 3、抗生素法和菌丝过滤法为何能浓缩营养缺陷型突变株? 抗生素法(青霉素法):适用于细菌。原理:青霉素抑制肽聚糖链间的交联,组织了合成完整的CW,野生型B处于正常生长繁殖,所以对青霉素敏感,可被抑制或杀死;营缺B在基本培养基上休眠状态

第十六章 色谱分析法概论 - 章节小结

一、主要内容 1.基本概念 保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。 死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。 调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。 相对保留值r2,1:两组分的调整保留值之比。 分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。 保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。 分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。 分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。 吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。 离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。 分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。 涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。 纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。 传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。 保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats指数。 保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。 调整保留体积V R':是由保留体积扣除死体积后的体积。 保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。 2.基本理论 (1)色谱分离的原理:组分在固定相和流动相间进行反复多次 的“分配”,由于分配系数K(或容量因子k)的不同而实现分离。各种色谱

对张正友标定的理解

张正友标定算法解读 一直以来想写篇相机标定方面的东西,最近组会上也要讲标定方面东西,所以顺便写了。无论是OpenCV还是matlab标定箱,都是以张正友棋盘标定算法为核心实现的,这篇PAMI的文章<>影响力极大,张正友是zju的机械系出身,貌似现在是微软的终身教授了,有点牛的。我就简单的介绍下算法的核心原理,公式的推理可能有点多。。。 一基本问题描述:空间平面的三维点与相机平面二维点的映射 假设空间平面中三维点:(齐次坐标,世界坐标系) 相机平面二维点:(齐次坐标,相机坐标系) 那么空间中的点是如何映射到相机平面上去呢?我们用一个等式来表示两者之间关系: (1) 注:A为相机内参矩阵,R,t分别为旋转和平移矩阵,s为一个放缩因子标量。我们把等式(1)再简化下: (2) 因为张正友算法选取的是平面标定,所以令z=0,所以平移向量只有r1,r2即可。H就是我们常说的单应性矩阵,在这里描述的是空间中平面三维点和相机平面二维点之间的关系。因为相机平面中点的坐标可以通过图像处理的方式(哈里斯角点,再基于梯度搜索的方式精确控制点位置)获取,而空间平面中三维点可以通过事先做好的棋盘获取。所以也就是说每张图片都可以计算出一个H矩阵。 二内参限制 我们把H矩阵(3*3)写成3个列向量形式,那么我们把H矩阵又可写成:

(3) 注:lamda是个放缩因子标量,也是s的倒数。 那么现在我们要用一个关键性的条件:r1和r2标准正交。 正交:(4) 单位向量(模相等):(5) 这个两个等式是非常优美的,因为它完美的与绝对二次曲线理论联系起来了,这里就不展开了。 三相机内参的求解 我们令: (6) 我们可知B矩阵是个对称矩阵,所以可以写成一个6维向量形式: (7) 我们把H矩阵的列向量形式为: (8) 那么根据等式(8)我们把等式(4)改写成: (9)

吸光光度法

第六章吸光光度法 一、大纲要求及考点提示 大纲内容与要求:了解分光光度计基本原理,光度计的基本原件及其作用。理解光吸收基本原理:朗伯–比耳定律,物质颜色与吸收光颜色的互补关系,以及偏离比耳定律的原因。掌握常用的分光光度计的基本构造,显色剂、显色反应、显色条件、吸光度测量条件,以及光度计的应用。 知识点:分光光度法基本原理,光度计的基本元件及其作用,以及分光光度计的应用。 二、主要概念、重要定理与公式 (一)吸光光度法的特点 1. 光的基本性质:光是一种电磁波。 2. 吸收光谱产生的原理 吸收光谱有原子光谱与分子吸收光谱。原子吸收光谱是由原子外层电子选择性地吸收某些波长的电磁波而引起的。分子吸收光谱由价电子跃迁而产生的分子光谱称为电子光谱。通常比原子的线状光谱复杂的多,呈带状光谱。由分子振动能级和转动能级的跃迁而产生的吸收光谱,成为振动–转动光谱或红外吸收光谱。故红外光谱法可应用于分子结构的研究。3. 目视比色法和吸光光度法的特点 灵敏度高,准确度高,应用广泛,仪器简单、操作简便、快速。 (二)光吸收的基本定律 1. 朗伯–比耳定律 溶液的透射比越大表示它对光的吸收越小,反之亦然。溶液对光的吸收程度与溶液浓度液层厚度及入射光波长等因素有关。 2. 摩尔吸收系数 ε反映吸光物质对光的吸收能力,也反映用吸光光度法测定该吸光物质的灵敏度,是选择显色反应的重要依据。 3. 桑德尔灵敏度 桑德尔灵敏度也可表示吸光光度分析的灵敏度。 (三)比色法和吸光光度法及其仪器 1. 目视比色法 仪器简单,操作简便,适宜于大批试样的分析。但准确度不高,标准系列不能久存,需要在测定时临时配制。 2. 吸光光度法 入射光是纯度较高的单色光,利用吸光度的加和性,可同时测定溶液中两种或两种以上的组分。许多无色物质,只要它们在紫外或红外区域内有吸收峰,都可以用吸光光度法进行测定。 3. 分光光度计及其基本部件 按工作波长范围分:紫外、可见分光光度计。主要应用与无机物和有机物含量的测定。分光光度计又可分为单光束和多光束两类。

六何分析法知识讲解

六何分析法

5W1H分析法也叫六何分析法,是一种思考方法,也可以说是一种创造技法。是对选定的项目、工序或操作,都要从原因(何因)、对象(何事)、地点(何地)、时间(何时)、人员(何人)、方法(何法)等六个方面提出问题进行思考。这种看似很可笑、很天真的问话和思考办法,可使思考的内容深化、科学化。 一、对象 公司生产什么产品?车间生产什么零配件?为什么要生产这个产品?能不能生产别的?我到底应该生产什么?例如如果现在这个产品不挣钱,换个利润高 二、场所 生产是在哪里干的?为什么偏偏要在这个地方干?换个地方行不行?到底应该在什么地方干?这是选择工作场所应该考虑的。 三、时间和程序 例如现在这个工序或者零部件是在什么时候干的?为什么要在这个时候干?能不能在其他时候干?把后工序提到前面行不行?到底应该在什么时间干? 四、人员 现在这个事情是谁在干?为什么要让他干?如果他既不负责任,脾气又很大,是不是可以换个人?有时候换一个人,整个生产就有起色了。 五、手段 手段也就是工艺方法,例如,现在我们是怎样干的?为什么用这种方法来干?有没有别的方法可以干?到底应该怎么干?有时候方法一改,全局就会改变。

5W1H分析法分析的四种技巧 一、取消 就是看现场能不能排除某道工序,如果可以就取消这道工序。 二、合并 就是看能不能把几道工序合并,尤其在流水线生产上合并的技巧能立竿见影地改善并提高效率。 三、改变 如上所述,改变一下顺序,改变一下工艺就能提高效率。 四、简化 将复杂的工艺变得简单一点,也能提高效率。what (什么):应该以什么样的方式来配合(工作的具体内容)。 why (为什么):为什么要开展这项工作(其意义、目的)。 who (谁):是自己来做这项工作,还是和其他的成员共同完成(工作的具体执行者)。 when (什么时候):到什么时候完成(工作的截止日期)。 where (在哪里):在哪里工作(工作地点)。 how (怎么样):怎么样进行工作(工作的进行方式、方法)。 所谓5W1H是指: ①When何时②Who何人③Where何地④What何事⑤Why为什么⑥HOW如何进行。

革兰氏染色法的过程及原理

革兰氏染色法的过程及原理一,过程 1 .涂片将培养的不同菌分别作涂片(注意涂片切不可过于浓厚),干燥、固定。固定时通过火焰l 一 2 次即可,不可过热,以载玻片不烫手为宜。 2 .染色 ( 1 )初染加草酸铰结晶紫一滴,约一分钟,水洗。 ( 2 )媒染滴加碘液冲去残水,并覆盖约一分钟,水洗。 ( 3 )脱色将载玻片上面的水甩净,并衬以白背景,用95 %酒精滴洗至流出酒精刚刚不出现紫色时为止,约20 一30 秒钟,立即用水冲净酒精。 ( 4 )复染用番红液染1 一2 分钟,水洗。 ( 5 )镜检干燥后,置油镜观察.革兰氏阴性菌呈红色,革兰氏阳性菌呈紫色。以分散开的细菌的革兰氏染色反应为准,过于密集的细菌,常常呈假阳性。 ( 6 ) 同法在一载玻片上以大肠杆菌与枯草芽孢杆菌混合制片,作革兰氏染色对比。二,原理 革兰氏染色法( Gram stain )不仅能观察到细菌的形态而且还可将所有细菌区分为两大类:染色反应呈蓝紫色的称为革兰氏阳性细菌,用G+表示:染色反应呈红色(复染颜色) 的称为革兰氏阴性细菌,用G 一表示。细菌对于革兰氏染色的不同反应,是由于它们细胞壁的成分和结构不同而造成的。革兰氏阳性细菌的细胞壁主要是由肤聚糖形成的网状结构组成的,在染色过程中,当用乙醇处理时,由于脱水而引起网状结构中的孔径变小,通透性降低,使结晶紫一碘复合物被保留在细胞内而不易脱色,因此,呈现蓝紫色;革兰氏阴性细菌的细胞壁中肤聚糖含量低,而脂类物质含量高,当用乙醇处理时,脂类物质溶解,细胞壁的通透性增加,使结晶紫一碘复合物易被乙醇抽出而脱色,然后又被染上了复染液 (番红)的颜色,因此呈现红色。 革兰氏染色的关键在于严格掌握酒精脱色程度,如脱色过度,则阳性菌可被误染为阴性菌:而脱色,不够时,阴性菌可被误染为阳性菌。此外,菌龄也影响染色结果,如阳性菌培养时间过长,或已死亡及部分菌自行溶解了,都常呈阴性反应。 青霉素作用机制 干扰细菌细胞壁的合成。青霉素你的结果与细胞壁的成分粘肽结构中德D-丙氨酰-D-丙氨酸近似,可与后者竞争转肽酶,阻碍你粘肽的形成,造成细胞壁的缺损,使细菌失去细胞壁的渗透屏障,对细菌起到杀灭作用。 溶菌酶与青霉素对细菌细胞壁的作用 溶菌酶作用机制:是一种能水解致病菌种黏 多糖的碱性酶,只要通过破坏细胞壁中的N-乙酰胞壁酸和N-乙酰氨基葡萄糖之间的B-1,4糖苷键,使细胞壁不溶性黏多糖分解成可溶性糖肽,导致细胞壁破裂内容物流出而使细菌溶解,溶菌酶还可以和带负电荷的病毒蛋白直接结合,与DNA RNA脱辅基蛋白形成复盐,使病毒失活,因此该酶具有抗菌消炎,抗病毒等作用 判断细菌有无鞭毛的方法 电镜观察,鞭毛染色,半固体穿刺培养,菌落形态观察 描述细菌与古细菌在细胞膜上的主要化学区别 在革兰氏阴性菌的表层,有由肽葡聚糖形成的细胞壁,在壁的外面,又有由蛋白质、磷脂质、脂多糖形成的膜层,与里面的细胞质膜相对应,特称此层为细菌外膜。夕卜膜比细胞质膜的磷脂质含量低,但脂多糖的含量则比较高。夕卜膜的蛋白质与细胞质膜不同,主要部分为数种蛋白质所构成。其主要蛋白质的部分与特异的内面的肽葡聚糖以共价键结合。脂多糖存在于外膜的最外层。在

紫外可见分光光度法基本原理

紫外可见分光光度法基本原理 紫外可见分光光度法基本原理透射比和吸光度当一束平行光通过均匀的溶液介质时光的一部分被吸收一部分被器皿反射。设入射光强度为I0吸收光强度为Ia 透射光强度为It反射光强度为Ir则在进行吸收光谱分析中被测溶液和参比溶液是分别放在同样材料及厚度的两个吸收池中让强度同为I0的单色光分别通过两个吸收池用参比池调节仪器的零吸收点再测量被测量溶液的透射光强度所以反射光的影响可以从参比溶液中消除则上式可简写为透射光强度It与入射光强度I0之比称为透射比亦称透射率用T表示则有: 溶液的T越大表明它对光的吸收越弱反之T 越小表明它对光的吸收越强。为了更明确地表明溶液的吸光强弱与表达物理量的相应关系常用吸光度A表示物质对光的吸收程度其定义为: 则A值越大表明物质对光吸收越强。T及A都是表示物质对光吸收程度的一种量度透射比常以百分率表示称为百分透射比T吸光度A为一个无因次的量两者可通过上式互相换算。朗伯-比耳定律朗伯-比耳定律Lambert-Beer是光吸收的基本定律俗称光吸收定律是分光光度法定量分析的依据和基础。当入射光波长一定时溶液的吸光度A是吸光物质的浓度C及吸收介质厚度l吸收光程的函数。朗伯和比耳分别于1760年和1852年研究了这三者的定量关系。朗伯的结论是当用适当波长的单色光照射一固定浓度的均匀溶液时A与l成正比其数学式为: A kl 此即称为朗伯定律k为比例系数而比耳的结论是当用适当波长的单色光照射一固定液层厚度的均匀溶液时A与C成正比其数学表达式为: 此即称为比耳定律k称为比例系数合并上述k的数值取决于吸光物质的特性外其单位及数值还与C和l所采用的单位有关。l通常采用cm为单位并用b表示。所以k的单位取决C采用的单位。当C采用重量单位g/L时吸收定律表达为: a称为吸光系数单位为当C采用摩尔浓度mol/L时吸收定律表达为: ε称摩尔吸光系数单位为有时在化合物的组成不明的情况下物质的摩尔质量不知道

相关主题