搜档网
当前位置:搜档网 › 无刷直流电机的无位置传感器控制_0813

无刷直流电机的无位置传感器控制_0813

无刷直流电机的无位置传感器控制_0813
无刷直流电机的无位置传感器控制_0813

无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。

在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。由此,就出现了无位置传感器的无刷直流电动机。

尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。

无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。

无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。

以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。

转子位置间接检测法

目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在:

1、位置传感器可使电机系统的体积增大;

2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响;

3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行

可靠性降低

4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机

的运行性能。

无位置传感器控制技术越来越受到重视,并得到了迅速发展。依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。

反电势法

反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。该方法将检测获得的反电势过零点信号延迟30o电角度,得到6个离散的转子位

置信号,为逻辑开关电路提供正确的换相信息,进而实现无刷直流电机的无位置传感器控制。

无刷直流电机反电势过零点与换相时刻的对应关系如图所示,图中e A、e B、e C为相位互差120o电角度的三相梯形波反电势,Q1~Q6为一个周期内的6个换相点,分别滞后相应反电势过零点30o电角度。

e e 目前,反电势法的关键是如何准确检测反电势过零点,国内外研究者对反电势法进行了深入的研究,已经提出了端电压检测法、反电势积分法、反电势三次谐波法、续流二极管法及线反电势法等多种检测方式。在转速比较低的情况下,感应电动势不容易测量,所以感应电动势过零点检测法不能用于低速场合。1、端电压检测法(反电动势过零法)端电压检测法通过检测断电相(非导通相)绕组的端电压,经过软件计算或利用硬件电路获得反电势过零点,从而控制无刷直流电机正确换相。由端电压信号经过软件计算得到反电势过零点的推导过程如下所述。无刷直流电机的数学模型为

()()()A AG A A N B BG B B N C CG C C N di u Ri L M e U dt di u Ri L M e U dt di u Ri L M e U dt =+-++=+-++=+-++式中:——端电压;AG BG CG u u u 、、——中性点电压;N U ——绕组等效电感。L M -以AB 相导通、C 相悬空为例说明端电压检测法原理,如图所示。e

AB 相导通电流回路图此时,AB 相反电势处于梯形波平顶处,方向相反;C 相反电势处于梯形波斜坡处,随转子位置而变化。无刷直流电机绕组A 相和B 相反电势及电流的关系为

00A B A B e e i i +=+=将AB 相端电压相加,得

()()(()2A B AG BG A B A B N di di u u R i i L M e e U dt dt +=++-++++得2AG BG N u u U +=

C 相悬空无导通电流,存在,得0,0C C di i dt ==(1)2AG BG C CG N CG u u e u U u +=-=-同理,AC 相导通,B 相悬空时,有(2)2AG CG B BG u u e u +=-

BC 相导通、A 相悬空时,有(3)2CG BG A AG u u e u +=-根据(1)~(3)式,将端电压信号经过软件计算,在每个周期内就能得到6个相差60o 电角度的反电势过零点,从而为电机正常运行提供换相信息。换相时刻由反电势过零点延迟30o 电角度获得,延迟30o 可以根据前两次过零点时间间隔计算得到(忽略该时间间隔内转速变化),即1(1)(1)2(1)(2)T k Z k T T Z k Z k -=-+??=---式中:——第k-1次换相时刻;(1)T k -——第k-1次反电势过零点时刻;(1)Z k -、管路敷设技术技术不仅可以解决吊顶层配线敷设技术中包含线槽、管、电气课件中调试结束后进行高中资料试卷调中资料试卷要求,对电气设备高中资料试卷试验方案以备调试高中资料试卷技术试卷配置技术是指机组在进置动作,并且拒绝动作,来

——第k-2次反电势过零点时刻。(2)Z k -值得注意的是,每组绕组在一个周期内有两个反电势过零点,因此需要根据反电势过零点前后的正负变化或绕组的导通状态进行区别。此外,端电压检测电路中需要加入电容进行稳压滤波,导致端电压产生相移,在软件算法中需要根据硬件电路的实际参数进行适当的相移补偿。2.反电势积分法反电势积分法将悬空相反电势的积分量与门限值进行比较,当反电势积分量达到门限值时,即为该相绕组的换相时刻。

out U U 反电势积分信号与换相时刻关系图反电势电压接近线性变化,其斜坡部分函数可以写为0()e t E t =±当非导通相反电势过零点时反电势积分器开始工作,有200()||||2t out E t e t U dt k k ==?式中:——反电势斜坡部分斜率;0E ——积分器输出电压;out U ——积分器增益常数。k 积分器输出电压达到门限值时,停止工作,并输出换相信号。在下一个反电

out U th U 势过零点时,积分器重新工作。控制系统换相时刻滞后反电势过零点30o 电角度,因而在换相时刻有2111||||||2226e out e e th K w U t K wt K U k t k k π====A A 式中:——门限值;th U ——反电势系数。e K 采用反电势积分法进行控制时,应首先根据上式计算,控制系统将与进行

th U out U th U 。在管路敷设过程中,要加调整使其在正常工况下与过确保机组高中资料试卷安全

实时比较,以确定换相时刻。该方法的优点为控制过程不需要转速信息,通过调节门限值大小即可实现电机的超前(超前角必须在30o 以内)或滞后换相,且对开关信号不敏感;缺点为存在积分累计误差和门限值设置问题。缺点:1)如果反电势过零点不能正确检测到,那么该技术不能工作;2)采用电压比较器来比较积分结果和参考电压,而比较器对毛刺、干扰很敏感;3)对同一系列的电机或同一电机在不同温升条件下,其反电动势波形函数都会有所变化。如果采用固定的参考电压,则实际的换相角会有所变化,造成电机运行性能的离散性。3.反电势三次谐波法反电势三次谐波法利用反电势的三次谐波确定无刷直流电机的换相时刻。首先,对三相绕组反电势进行傅里叶分解,得到包括基波在内的一系列奇次谐波分量135135135sin sin 3sin 5222sin()sin 3()sin 5(333444sin()sin 3()sin 5(333A B C e E E E e E E E e E E E θθθπππθθθπππθθθ=+++=-+-+-+=-+-+-+…

……式中:——转子电角度。θ将三式三相反电势求和,得391533sin 33sin 9sin153sin 3A B C e e e E E E E θθθθ++=+++≈…无刷直流电机的相电压方程为()()()A A A A B B B B C C C C di u Ri L M e dt di u Ri L M e dt di u Ri L M e dt

=+-+=+-+=+-+三相电流之间存在关系0A B C i i i ++=将三相电压相加,并整理得33sin 3sum A B C A B C u u u u e e e E θ=++=++≈于是,通过积分得到三次谐波磁链3rd sum u dt ψ=?可知,三相相电压之和包含有相反电势的三次谐波分量信息,积分后可以得sum u sum u 到三次谐波磁链。三次谐波磁链的过零点即为绕组换相时刻,如下图。

e u ψ反电势三次谐波及磁链与换相时刻关系图因此,如将三相相电压经过软件处理可以得到三次谐波磁链信号,三次A B C u u u 、和谐波磁链过零点即为换相时刻。反电势三次谐波法与端电压检测法相比,具有适用转速范围大、相位延迟小等优点;但由于低速时噪声信号的不断积累,该方法在积分过程中会产生误差,造成换相不准确。4.续流二极管法续流二极管法又称为“第三相导通法”,它是通过检测非导通相中反并联于逆变桥功率器件上续流二极管的导通与关断状态来确定转子位置的。下面以AB 相导通、C 相悬空为例说明续流二极管法。逆变桥采用的PWM 调制方式。当电机AB 相绕组导通时,A 相上桥功率器件T1工作在PWM 斩波调制方式,B 相下桥功率器件T6处于导通状态。当调制过程中功率器件T1关闭时,A 相下桥续流二极管D4导通,此时逆变桥工作状态如下图。

此时,功率器件T1截止、二极管D4续流,功率器件T6和二极管D4构成导通回路,

根据该导通回路,非导通相的端电压可以表示为CG u 22CE D A B CG C N C V V e e u e U e -+=+=+-

式中:

——功率器件管压降;

CE V ——二极管管压降。

D V 非导通相续流二极管D2若要导通,需要满足条件

CG D u V <-将其代入前式,可得22CE

D A B C V V e e e ++-<-在非导通相反电势接近零点时,存在,则有C e 0A B e e +=2C

E D C V V e +<-一般而言,和相对反电势很小,当反电势变为负值时,非导通相续流二极

CE V D V C e 管D2中就会有电流通过,该点可近似认为反电势过零点。因此,通过检测续流二极管D2是否导通就能得到转子的位置。续流二极管法从电流角度鉴别反电势过零点,灵敏度较高,在一定程度上拓宽了无位置传感器控制器算法的调速范围。但其附加的续流二极管电流检测电路需要6个独立电源,该检测电路较为复杂。缺点:1)要求逆变器必须工作在上下功率器件轮流处于PWM 斩波方式,必须从众多的二极管导通状态中识别出在反电动势过零点附近发生的那次导通状态;2)逆变器可关断器件及二极管的导通压降会造成位置检测误差;3)在没有PWM 时,这种控制方式无法工作,即适用于方波电动机,不适用于正弦波电动机;4)实现难度大,必须防止无效的二极管续流导通信号和因毛刺干扰产生的误导通信号。

此外,这种方法转子位置误差较大,反电动势系数、绕组电感量不是常数,反电动势波形不是标准的梯形波等因素都会造成转子位置误差,这需要一定的补偿措施。

续流二极管检测电路5.线反电势法

在相反电势法中,绕组换相时刻由相反电势过零点移相30o 电角度得到,移相角与当前电机转速有关。在变速调节过程中,基于相反电势检测的无位置传感器控制会出现绕组换相时刻不准确的问题。线反电势法相对相反电势法而言,省去了移相角的计算,绕组换

相时刻由线反电势过零点直接得到。线反电势法提高了变速过程中的换相精度。由图可知,线反电势过零点对应无刷直流电机换相时刻,不存在延迟角的计算。在每

个周期分别计算线反电势过零点就可正确得到6个换相信号,无刷直流电AB BC CA e e e 、、机就能根据该换相信号可靠运行。线反电势法比较相反电势法更易于在低速下检测,适应的转速范围更广,同时反电势法无须利用前次换相时刻移相,因此只需确定线反电势过零点就可以控制电机正常运行。

e B e e 相反电势、线反电势与换相时刻关系图综上所述,各种反电势法的主要思想是根据绕组反电势信号获得转子位置信息,从而实现绕组正确换相,优点在于原理简单、易于实现。磁链法不同于反电势法,磁链法是通过估计磁链来获得转子的位置信息。磁链法计算量较大,在低速运行时会产生误差累计且易受电机参数变化影响。电感法反电势法和磁链法都是依靠转子磁场的运动判断转子位置,但当转子静止时,两种方法都无法获得转子位置信息,不能实现电机的自启动。针对该问题,可以采用电感法来确定静止转子位置。电感法的基本原理是,首先在绕组中施加方波电压脉冲并检测其产生的电流幅值,然后比较电流幅值得知电感差异,最后根据电感与转子位置之间的关系进而判断转子位置。电感法对于电机静止时转子初始位置检测效果较好,但由于无刷直流电机转子位置不同时电感差异较小,因此该方法依赖于高精度的电流检测。人工智能法基于人工智能算法的转子位置检测基本思想是,采用人工神经网络、模糊策略、遗传算法和人工免疫自适应等理论建立无刷直流电机的电压、电流与转子位置之间的关系,由测量到的电机电压、电流信号映射转子位置信号或直接获得绕组换相信号。人工智能法无需准确的数学模型,因此适用于非线性系统,对实际控制对象有较好的泛化能力。对参数变化和量测噪声具有较强的鲁棒性,可有效解决一些传统和其他现代控制方法难以解决的问题,并提高运动控制的质量和效果。

反电势法、磁链法、电感法和人工智能法等转子位置检测方法具有各自的自身局限性,

针对不同的 系统性能要求和应用场合可采用不同的控制方法。

函数法()G θ函数法又称为速度无关位置函数法,是从一个全新的概念提出的转子位置检测

()G θ方法。在转子转速从零到高速时都能够对转子位置进行检测,给出换相时刻。扩展卡尔曼滤波法扩展卡尔曼滤波法(EKF )通过建立电机的数学模型,周期性地检测外加电压、不导通相反电动势和负载电流等变量,利用特定算法得到电机转子的位置以及速度的估计值;通过比较估计值与设定值的差值后经PID 调节,达到控制电机的目的。

状态观测器法即转子位置计算法。其原理是将电机的三相电压、电流作坐标变换,在派克方程的基础上估算出电机转子位置。

这一种方法一般只适用于感应电动势为正弦波的无刷直流电机,且计算繁琐,对微机性能要求较高。

一种无刷直流电动机控制系统设计

一种无刷直流电动机控制系统设计

————————————————————————————————作者:————————————————————————————————日期:

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y联结全控电路,使用六支高速MOSFET 开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushless DC Motors SUN GuanQun;SHI Ming;TONG LinYi;XU YiPing Abstract:It introduces the MOTORALA company used for the characteristics o f the chip MC33035 and MC33039 which control the brushless direct curren t motor exclusively and its work principle. The system design divides into tw o major parts: the control circuit and the power driver circuit, the control circ uit take MC33035/33039 as the core, receive feedback position signal, with th e speed to the quota synthesis, the judgment circular telegram winding and p roduces the switching signal. In the actuation circuit design, uses the three-p hase Y joint all to control the electric circuit, uses six high speed MOSFET swit ching valve to compose. Through the experiment, the electric motor moveme nt stable is reliable. Keywords:Brushless DC motor;MC33035/33039;control circuit;drive circuit 1.引言 永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。该电机由定子、 转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特 性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便 等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实 现。本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置 信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需 外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试 相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、 运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。

无刷直流电机驱动器说明书

无刷直流电机驱动器说 明书 -CAL-FENGHAI.-(YICAI)-Company One1

无刷驱动器DBLS-02 一概述: 本控制驱动器为闭环速度型控制器,采用最近型IGBT和MOS功率器,利用直流无刷电机的霍尔信号进行倍频后进行闭环速度控制,控制环节设有PID速度调节器,系统控制稳定可靠,尤其是在低速下总能达到最大转矩,速度控制范围150~10000rpm。 二产品特征: 1、 PID速度、电流双环调节器 2、高性能低价格 3、 20KHZ斩波频率 4、电气刹车功能,使电机反应迅速 5、过载倍数大于2,在低速下转矩总能达到最大 6、具有过压、欠压、过流、过温、霍尔信号非法等故障报警功能 三电气指标 标准输入电压:24VDC~48VDC,最大电压不超过60VDC。 最大输入过载保护电流:15A、30A两款 连续输出电流:15A加速时间常数出厂值:秒其他可定制 四端子接口说明 : 1、电源输入端: 引角序号引角名中文定义 1V+直流+24~48VDC输入 2GND GND输入 引角序号引角名中文定义 1MA电机A相

2MB电机B相 3MC电机C相 4GND地线 5HA霍尔信号A相输入端 6HB霍尔信号B相输入端 7HC霍尔信号C相输入端 8+5V霍尔信号的电源线 GND:信号地F/R:正、反转控制,接GND反转,不接正转,正反转切换时,应先关断ENEN:使能控制:EN接地,电机转(联机状态),EN不接,电机不转(脱机状态)BK:刹车控制:当不接地正常工作,当接地时,电机电气刹车,当负载惯量较大时,应采用脉宽信号方式,通过调整脉宽幅值来控制刹车效果。SV ADJ:外部速度衰减:可以衰减从0~100%,当外部速度指令接时,通过该电位器可以调速试机PG:电机速度脉冲输出:当极对数为P时,每转输出6P个脉冲(OC门输入)ALM:报警输出:当电路处于报警状态时,输出低电平(OC门输出)+5V:调速电压输出,可用电位器在SV和GND形成连续可调内置电位器:调节电机速度增益,可以从0~100%范围内调速。 五驱动器与无刷电机接线图

通用无刷直流电机控制器PES331

PES331 3-Phase Brushless DC Motor Controller 10F-2, No. 1, Sec. 2, Dong-Da Road, Hsin-Chu 300, Taiwan, R.O.C. TEL: 886-3-532-7598 + https://www.sodocs.net/doc/8012974218.html, Key Features: Support 3-Phase Brushless DC motor with hall IC interface Applications for electric screwdriver, electric drill and electric tooling Programmable motor phase sequence Automatically stop after lockup Re-lockup protection Over current protection 5V operating voltage Pin Diagram and Pin Description PWM_BH DIR_IN PWM_AL PWM_CL AVDD VDD HALL_A HALL_C NC2 PWM_CH PWM_BL PWM_AL START_IN GND VBus AGND CUR_SEN T_CMD NC1 HALL_B PES331(SSOP20-150mil) Pin No. Pin Name I/O Description 1 PWM_CH Output C output signal to control the high side of motor driver 2 PWM_AL Output A output signal to control the low side of motor driver 3 PWM_BL Output B output signal to control the low side of motor driver 4 START_IN Input Start to operate 5 GND - Ground 6 AGND - Analog Ground 7 T_CMD Input Clutch signal Input to set the required torque 8 CUR_SEN Input Analog input to sense motor current

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

基于无刷直流电机控制系统设计与实现

基于无刷直流电机控制系统设计与实现 发表时间:2017-10-20T11:19:09.350Z 来源:《防护工程》2017年第15期作者:樊圣至[导读] 为了摆脱此系统对进口技术的依赖性,应深入研究其控制系统,提升设计水平,从而实现煤矿开采的自动化。交通运输部东海第一救助飞行队摘要:无刷直流电机具备体积小、效率高以及控制精度高等优势,且在多个领域得到了广泛使用。但在部分控制系统中,外加干扰以及参数摄动等因素干扰了系统的动静态性,基于此,本文在分析无刷直流电机结构与运行原理的基础上,指出了其软硬件方面的优化控制措施,以期为此后无刷直流电机控制系统的设计工作提供更多的参考依据。 关键词:无刷直流电机;控制系统;设计与实现 1 无刷直流电机结构 电机本体、位置测算结构、电子换相逻辑等均属于无刷直流电机的组成结构,且其与永磁同步电机较为相似。相较直流电机,无刷直流电机旋转的转子为磁极,而直流电机为绕组。且定子主要由电枢绕组、定子铁芯以及其他固定部件组成,电枢绕组一般采用三相Y型绕法,而转子磁极则采用稀土永磁钢片组成,安装在转子表面。 2 无刷直流电机软硬件设计2.1系统硬件部分 2.1.1系统硬件结构 系统硬件主要包括整流电路、开关电源电路、控制芯片、信号隔离电路、调试电路、逆变功率电路以及电流电压检测与保护电路等,其具体结构如下图1所示。 图1 无刷直流电机控制系统硬件结构组成图其中键盘控制系统信息,比如完成启动、停机、速度给定以及系统参数的在线修改等工作。系统交流电源通过整流桥获得直流电源,并供给全桥逆变以及开关电源电路。而开关电源电路则为系统提供24V以及5V的直流电源,电压检测电路通过模数转换获得电压时值,通过母线电压的监控实行过压保护动作,而主控芯片则通过判断输入信息进行控制命令。 2.1.2电源部分分路 整个系统能量的主要来源便是电源,且其呈现出交流、直流以及交流的变化过程,整个电路被分为强电与弱电两个组成部分,且单相220伏的交流电在整合后会形成310伏的直流电,为逆变电路以及开关电路提供能量。首先是整流电路,包括单相全桥不可控整流电路以及电容充电电流限制电路两个组成部分,当电机功率为1.5kW时,控制器的输出能力设定为2.2kW,且上电瞬间直流电源对电容充电,断开继电器,且电流在经过电阻的过程中得到缓冲。其次是电源电路,主要由变压器、IC1以及MC7085等部分组成,其中IC1为电源的专门控制面板。且开关电源处于电压工作模式,IC1通过电压反馈调整PWM的输出功率,从而维持电源电压的稳定运行。最后是芯片电源电路,主要采用主控芯片为3.3伏的工作电平。 2.1.3主控芯片以及周边电路研究中采用适合电机控制领域的32位Cortex -M3核的单片机,可以达到较高的运算效率,且其时钟频率为72赫兹,具备丰富的外设资源。在设计管脚分配以及附属电路时应在参考专业手册的基础上进行,第一,对于引脚60的外接电路,芯片应处于下载设置状态,且系统完成后还应焊接0欧姆的电阻,以保持引脚的低电平状态。第二,对于晶振电路应采用8M外部晶体的振荡器,且电源与大地之间连接电容,以排除电源的耦合干扰。第三,PWM信号输出控制电路,应采用安全性较强的芯片,且在芯片输出后以及光电隔离之前设置74ACT244以有效控制信号的总输出。第四,键盘系统属于独立通信模块,设计时应按照协议要求编写通讯软件即可使用。 2.1.4功率器元件以及驱动电路GTO、MOSFET、GTR、IGBT以及IPM等均属于常用的功率开关元件,且设计期间,应根据元件管件的耐压程度、最大开关频率等因素进行选择。本次研究中,电机控制要求较高的开关频率;较小的导通阻抗以及较小的驱动功率,因此可以选择MOSFET、IPM以及IGBT。比较发现,IGBT具备大电流以及低导通阻抗的特点,可以保持开关频率;而IPM则在内部集成了过高电压、过大电流以及高温的检测系统,且可以在引脚处输出故障信号,降低了系统的损害率。但考虑到此次研究的试验性质,因此应选择IGBT的分立元件组建全桥逆变电路,并确定1200伏的耐压与25安的额定电流,上升时间为50毫秒。 2.1.5模拟量采集与故障电路

无刷直流电机控制器的综述【文献综述】

文献综述 电气工程及自动化 无刷直流电机控制器的综述 摘要:实现由专用集成芯片及外围电路构成的一种体积小、结构紧凑、调试方便的无刷 直流电机控制器,实现电机的正反转,并分析了各部分的电路结构。 关键词: MC33035; MC33039;无刷直流电机;控制器; 1引言 无刷直流电机是随着大功率开关器件、专用集成电路、稀有永磁材料、微机、新型控制理论及电机理论的发展而迅速发展起来的一种新型电动机,它比交流电动机的结构简单、运行可靠、维护方便等优点,又具备直流电动机运行效率高、无励磁损耗、调速性能好等特点,因此在当今国民经济的各个领域(如医疗器械、仪器仪表、化工、轻纺以及家用电器等方面) 的应用日益普及。 2无刷电机的控制结构及原理 所谓无刷直流电动机是利用半导体开关电路和位置传感器代替电刷和换向器的直流电动机,也就是,它是把电刷与换向器的机械整流变换为霍尔元件与半导体功率开关元件的电子整流。无刷直流电机由转子和定子两部分组成,转子用永磁材料制成,构成永磁磁极,定子由绕组和铁芯组成,定子铁芯由导磁硅铁片迭压而成,其周上均匀分布的槽中嵌放有很多相电枢绕组。直流无刷驱动器包括电源部及控制部:电源部提供三相电源给电机,控制部分需要转换输入电源频率。 图一 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先用换流器将直流

电压转换成3 相电压来驱动电机,换流器一般由6个功率晶体管分为上臂(A+、B+、C+)臂(A-、B-、C-)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器作为之闭回路控制,同时也作为相序控制的依据。 要让电机转动起来,首先控制部就必须根据hall-sensor 感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如下(图二)inverter 中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/ 逆时转动。当电机转子转动到hall-sensor 感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 图二 基本上功率晶体管的开法可举例如下: AH、BL 一组→AH、CL 一组→BH、CL 一组→BH、AL 一组→CH、AL 一组→CH、BL 一组,但绝不能开成AH、AL 或BH、BL 或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与hall-sensor 信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL 或AH、CL 或BH、CL 或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM 来完成。PWM 是决定电机转速快或慢的方式,如何产生这样的PWM 才是要达到较精准速度控制的核心。高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言 1.1 题目综述 直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。基于这么多的优点无刷直流电机有了广泛的应用。比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。 1.2 国内外研究状况 目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。近些年来,计算机和控制技术快速发展。单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。 经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。 1.3 课题设计的主要内容 本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。本课题涉及的技术概括如下:

无刷直流电机控制系统的Proteus仿真

无刷直流电机控制系统的Proteus仿真-机械制造论文 无刷直流电机控制系统的Proteus仿真 王家豪潘玉民 (华北科技学院电子信息工程学院,河北三河101601) 【摘要】基于Proteus软件仿真平台,提出了一种对无刷直流电机(BLDCM)控制系统实现了转速闭环控制的方案。该系统以AT89S52单片机为核心,采用IR2101芯片驱动及AD1674实现速度,并利用数码动态显示转速,通过增量式PID调节对无刷直流电机实现转速闭环稳定控制。仿真结果表明该系统具有可控调速、显示直观等特点。 关键词无刷直流电机(BLDCM);Proteus;增量式PID;闭环控制 0引言 无刷直流电机(BLDCM)既有直流有刷电机的特性,又有交流电机无刷的优点,在快速性、可控性、可靠性、输出转矩、结构、耐受环境和经济性等方面具有明显的优势,近年来得到迅速推广[1]。BLDCM是一种用电子换向取代机械换向的新一代电动机,与传统的直流电动机相比,它具有过载能力强,低电压特性好,启动电流小等优点。近年来在工业运用方面大有取代传统直流电动机的趋势,所以研究无刷直流电机的驱动控制技术具有重要的实际应用价值。 本设计采用增量式PID控制策略控制无刷电动机,并在Proteus平台上进行转速闭环系统仿真。搭建了无刷直流电动机转速控制系统的仿真模型,基于80C51控制核心,采用keil C51软件编写C程序。 1系统硬件组成 控制系统的硬件组成如图1所示。采用Atmel公司的AT89S52单片机为系统

控制核心、IR2101驱动的MOSFET三相桥式逆变器、无刷直流电机、A/D转换转速检测、闭环PID控制、按键检测、档位和转速显示等部分组成。 2控制系统核心及外围电路 系统核心AT89S52单片机最小系统及按键电路如图2所示。 AT89S52芯片是8位单片机,具有廉价、实用及运算快等优点,它有两个定时器,两个外部中断接口,24个I/O口,一个串行口。 单片机首先进行初始化,将显示部分(转速显示、档位显示)送显“0”然后通过中断对按键进行检测当检测到启动键按下时,系统启动,控制核心输出初始控制码,与此同时通过AD转换器读取当前的实时转速,一方面用于显示,另一方面将当前转速与设定转速送入PID控制环节然后输出下一时刻的控制码。 在本次设计中使用80C51的外部中断接口0(INT0)作按键检测(见图3),通过四个与门,当有任何一个按键按下去时tap端都会出现低电平引发中断。

无刷直流电机驱动器原理精编版

图1 第2章 无刷直流电机的驱动原理 2.1 驱动方式的理论分析 一、主要器件MOSFET MOSFET 又称金属-氧化物半导体场效应晶体管,可分为N 型和P 型两种,又被称为 NMOSFET 与PMOSFET 。 如图1所示,一块P 型硅 半导体材料作衬底, 在其面上扩散了两个N 型区,再在上面覆盖一层二氧 化硅(SiO2)绝缘层,最后在N 区上方用腐蚀的方法 做成两个孔,用金属化的方法分别在绝缘层上及两个 孔内做成三个电极:G(栅极)、S (源极)及D (漏极), 如图所示。在驱动器上用到的MOSFET 是在其上反并 联一个二极管,该二极管通常被称为寄生二极管。由 于添加了二极管的缘故,从而使其没有了反向电压阻 断的能力。一般使用时在栅源极间施加一个-5V 的反向偏执电压,目的是为了保证是器件导通,噪声电压必须阈值门控(栅 极)电压和负偏置电压之和。 MOSFET 的使用方法和三极管的使用方法几乎类似,都是采用小电 流的方式来控制大电流,这在模拟电路中经常用到。如图2所示,在 无刷电机驱动器中使用MOSFET 主要是在MOSFET 的栅源极施加一个寄 生二极管。 二、单相半波逆变器原理 如图3所示是单相半波逆变器的原理图。对其工 作状态分析如下: 第一个工作状态,v1导通,负载电压等于Ud/2,从而 使负载电流与电压同向。 第二个工作状态,v2关短后,负载电流流向vd2,使 得负载上的电压变为-Ud/2。但随着时间的推移会使 负载的电流最终变为0。 第三个工作状态,v2导通,使得负载中出现了负电 压和负电流。 第四个工作状态,v2关断造成vd2正向偏置,得负 载电压变为Ud/2。 如果电压为横坐标u ,电流为竖坐标i 的话,那 么通过上面四个状态就可以是电流和电压在四个象限内轮流工作。因此,采用一定的方法通过控制v1 和v2的导通时间就可以达到控制负载上电流和电压按照一定的频率来轮换着工作。 但是上面的变换有一些缺点。例如,在任何时刻加载在负载上的电压都是全部电压的一半。假如咋某个时刻对于功率额定的器件,电压减半后会使电流变为原来的两倍,同时又欧姆定律可知这时的发热会变为原来的次方倍。这对于器件来说会造成更大的风险。另外电压只能在最大电压的一半,没办法为0V ,那就会是器件造成更大的波纹度。 图2 图3 图2

开题报告无刷直流电机的控制系统

合肥师范学院本科生毕业论文(设计)开题报告 (学生用表) 装 订 线

第l章主要叙述了无刷直流电机的发展趋势、无刷直流电机的控制技术、研究背景及意义。 第2章首先介绍了无刷直流电机的基本结构和工作原理,然后给出了常见的无刷直流电机的数学模型及其推导过程,在此基础上对无刷直流电机的稳态特性进行了详细分析。 第3章对本控制系统的总体结构和设计进行介绍。主要包括控制系统的整体方案,控制芯片,控制技术以及控制策略的选择。 第4章对控制系统的硬件电路进行设计,包括DSP最小系统、功率驱动电路、采样检测电路、保护电路等的设计,并对各个部分进行了详细的分析。 第5章以TI公司的CCS开发环境为开发工具,对整个控制系统的软件部分进行了设计。 第6章总结与展望,总结了本文的主要工作,展望了以后工作的研究方向。 五、可行性分析 此次研究是在指导老师的指导下搜集,查阅相关资料,确定能够通过应用DSP 芯片进行控制是最优方案,采用TI公司的TMS320F2812作为控制器。根据现在无刷直流电机的控制技术的发展水平和未来的发展趋势及可操作性进行分析,该课题能够顺利进行。 六、设计方案 6.1无刷直流电机的基本结构 无刷直流电机的设计思想来源于利用电子开关电路代替有刷直流电机的机械换向器。普通有刷直流电机由于电刷的换向作用,使得电枢磁场和主磁场的方向在电机运行的过程中始终保持相互垂直,这样能够产生最大的转矩,从而驱动电机不停地运转下去。无刷直流电机取消电刷实现了无机械接触换相,做成“倒装式直流电机"的结构,将电枢绕组和永磁磁钢分别放在定子和转子侧。无刷直流电机必须具有由控制电路、功率逆变桥和转子位置传感器共同组成的换相装置以实现电机速度和方向的控制[5]。因此,可以认为无刷直流电机是典型的机电一体化器件,其基本结构由电动机本体、驱动控制电路及转子位置传感器三部分组成,如图所示。 无刷直流电机的构成 6.2无刷直流电机的工作原理 普通直流电机的电枢在转子上,而定子产生固定不变的磁场。为了使直流电机旋转,需要通过换相器和电刷不断地改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转[6]。 无刷直流电动机为了去掉电刷,将电枢放到定子上,而转子做成永磁体,这样的结构正好与普通直流电动机相反。然而即便是这样的改变仍然不够,因为直流电通入定子上的电枢以后,产生的不变磁场还是不能使电动机转动起来。为了达到使电动机

无刷电机驱动器

常州工学院 课程设计报告 课题:无刷电机驱动器 班级: 姓名: 学号: 指导老师:王雁平

目录 1 直流无刷无霍尔电机原理 (1) 2 总体设计方案 (3) 3 硬件设计 (4) 3.1 电源模块 (4) 3.2 驱动电路 (5) 4 心得体会 (6) 5 附录 (6) 5.1 元件清单 (6) 5.2 原理图 (7) 5.3 PCB图 (9)

1、直流无刷无霍尔电机原理 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM 驱动信号来控制直流无刷电机转动。

下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。

直流无刷电机及驱动器介绍

技术部 直流无刷电机及驱动器介绍 ---培训讲义 编制/整理:徐兴强 日期:2010-5-5

一、产品技术特点 1)既具有AC电机的优点:结构简单,运行可靠,维护方便等; 2)又具有DC电机的优点:调速性能好,运行效率高,无励磁损耗等; 3)同时,与DC有刷电机比较:无接触磨损,无火花,低噪音,无辐射干扰等;4)再有,与伺服电机比较:控制/驱动原理较简单,可灵活多变,且成本较低;有较高的成套性价比,实用性很强。 主要缺陷:低速启动时,有轻微震动;但不会失步(比较于步进电机)。 二、主要应用方面 1)在精密电子设备和器械中的应用 如:电脑硬盘的主轴驱动,激光打印机,复印机,医疗器械,卫星太阳能帆板驱动,医疗监控设备等。 2)在家用电器中的应用 如:空调器、洗衣机、电热器、吸尘器、电风扇、搅拌机等。 3)在电瓶车/牵引机中的应用 4)在工业系统中的应用 如:工业缝纫机、纺织印花机、等等;

5)在军事工业和航空航天中的应用 三、特殊功能与性能分析 # 典型特性曲线,如下: ##由以上特性曲线可知: 1)电机的最大转矩为启动和堵转时的转矩; 2)在同一转速下,改变供电电压,可以改变电机的输出转矩; 3)在相同转矩时,改变供电电压,可以改变电机的转速。 即:在驱动电路中,通过PWM方式改变供电电压的平均值,在保证转矩不变的情况下,可以实现对电机的平稳调速。 ###BLDC与AC交流感应式电机相比,具有如下优点: 1)转子采用永磁体,无需激励电流。故,同样的电功率,可以获得更大的机械功率; 2)转子无铜损,无铁损,发热更小; 3)启动、堵转时力矩大,更适合于阀门打开、关闭瞬间需要力矩大的场合; 4)电机的输出力矩与工作电压、电流成正比,从而可以简化力矩的检测电路,并更加可靠; 5)利用PWM调制方式改变供电电压的平均值,可以实现平稳调速,使调速、驱动功率电路更加简单,综合成本降低;

无刷直流电机控制器的设计

无刷直流电机控制器的设计 3.1 无刷直流电机控制器的概述 无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简 单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。 电机控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:对各种信号进行逻辑综合,以给驱动电路提供各种控制信号;产生PWM调制信号,实现电机的调速;对电机进行速度环和电流环调节,使系统具有较好的动态和静态性能;实现短路、过流、欠压、堵转等故障保护功能。 现代控制技术的发展与微处理器的发展息息相关,可以说,每一次微处理器的进步都推动了控制技术的一次飞跃。在微处理器出现之前,控制器只能由模拟系统构成。由模拟器件构成的控制器只能实现简单的控制,功能单一、升级换代困难,而且由分立器件构成的系统控制精度不高,温度漂移,器件老化严重,使得维护成本增高,限制了它的发展和应用范围。随着微处理器的迅速发展和推广,控制器由模拟式转换成了数模混合式,并进一步发展到全数字式,技术的进步使得许多模拟器件难以实现的功能都可以方便地用软件实现,使系统的可靠性和智能化水平大大提高。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便[9][10]。 控制器是电动自行车的驱动系统,它是电动自行车的大脑。其主要作用是在保证电动自行车正常工作的前提下,提高电机和蓄电池的效率、节省能源、保护

相关主题