搜档网
当前位置:搜档网 › 二次函数、圆、相似三角形

二次函数、圆、相似三角形

二次函数、圆、相似三角形
二次函数、圆、相似三角形

二次函数、圆、相似三角形

一、典型例题

例1、如图,已知在△ABC 中,AD 是内角平分线,点E 在AC 边上,且∠AED=∠ADB . 求证:(1)求证:△ABD ∽△ADE ; (2)AD 2=AB·AE .

例2、如图8-2,AB 是的⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD=()

A .1000

B .1100

C .1200

D .1350

例3、已知M 、N 两点关于y 轴对称,且点M 在双曲线1

2y x

=

上,点N 在直线y=x+3上,设点M 的坐标为(a ,b ),则二次函数y=abx 2+(a+b )x ( )

A 、有最小值,且最小值是

9

2 B 、有最大值,且最大值是-9

2 C 、有最大值,且最大值是

9

2 D 、有最小值,且最小值是-9

2

例4、已知:AB 和CD 为⊙O 的两条平行弦,⊙O 的半径5cm ,

AB=8cm ,CD=6cm ,求AB 、CD 间的距离是.

例5、用圆规、直尺作图,不写作法,但要保留作图痕迹. 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图7-5图是水平放置的破裂管道有水部分的截面.

(1)请你补全这个输水管道的圆形截面;

(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.

例6、如图7-9,AB 是⊙O 的直径,BD 是⊙O 的弦,延长

BD 到点C ,使DC =BD ,连接AC 交⊙O 与点F . (1)AB 与AC 的大小有什么关

系?为什么?

(2)按角的大小分类,请你判

断△ABC 属于哪一类 三角形,并说明理由.

例7、如图,AD 为ABC ?外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .

(1) 求证:BD CD =;

(2) 请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆

上?并说明理由.

例8、已知二次函数24y x x =+,

(1) 用配方法把该函数化为2

()y a x h k =++ (其中a 、

h 、k 都是常数且a ≠0)形式,并画出这个函数的图像,

根据图象指出函数的对称轴和顶点坐标. (2) 求函数的图象与x 轴的交点坐标.

例9、直线 和抛物线 都经过点A(1,0)B(3, 2).

⑴ 求m 的值和抛物线的解析式; ⑵ 求不等式 的解集.(直接写出答案)

例10、如图,在矩形ABCD 中,AB=6米,BC=8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0

. (1)求面积S 与时间t 的关系式;

(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请

说明理由。

m x y +=c bx x y ++=2

m x c bx x +>++2

B

7-9

O F

D

C

B

A

二.巩固练习

1、如图1,A 、B 、C 、D

y=1

4x -是1、2、3、4()

A 、3.6

B 、3.2

C 、3

D 、4

2、已知抛物线y=ax

2- 4ax+ak 与x

轴有交点,则() A 、k >4 B 、k <4 C 、k ≥4 D 、k ≤4

3、点E 在半径为5的⊙O 上运动,AB 是⊙O 的一条弦且AB=8,则使△ABE 的面积为8的点E 共有() A 、1个 B 、2个 C 、3个 D 、4个

4、一个直角三角形两条直角边为a =6,b =

8,分别以它的两条直角边所在直线为轴,旋转一周,得到两个几何体,它们的表面面积相应地记为S a 和 S b ,则有() A 、S a = S b B 、S a < S b C 、S a > S b D 、不确定

3.将二次函数y =x 2的图象向上平移2个单位,再向左平移3个单位,得到新的图象的二次函数表达式是( ) A .2(3)2y x =+- B .2(3)2y x =-- C .2(3)2y x =++ D .2(3)2y x =-+

7.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( )

5、某商品进价降低5%而售价不变,则利润将从a %增加到(a +15)%,则a =

6、某三角形,三边长均能满足6x - x 2=8,则三角形的周长为

7、在半径为10的圆的铁片中,要裁剪出一个直角扇形,这个直角扇形的最大面积是,这个直角扇形围成一个圆锥,则圆锥的底面直径是

8、抛物线2

y ax bx c =++与x 轴只有一个交点P ,与y 轴的交点为B (0,4),且a c =b ,求抛物线解析式.

9、如图,△ABC 是正三角形,曲线CDEF 叫做“正三角形

的渐开线”,其中 ,,CD DE EF 的圆心依次按A ,B ,C 循环.如

果AB=1,

求:(1)曲线CDEF 的长l ;

(2)图中阴影部分的面积S .

10、已知直角梯形ABCD 的四条边长分别为AB =2,BC =CD =10,AD =6,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,并延长CD 交圆于G 点. (1)求证:BF=GD (2)求BE -BF 的值.

11、如图,在平面直角坐标系xOy 中,以点(0)M ,1为圆心,以2长为半径作M 交x 轴于A B ,两点,交y 轴于

C D ,两点,连结AM 并延长交M 于P 点,连结PC 交x 轴于E .

(1)求证:点P 是 BD

(2)求直线PC (3)求PCA

ACE

S S ??的值.

12、如图,平行四边形 ABCD 中,E 是AB 延长线上一点,DE 交BC 于点F ,已知:BE :AB=2:3,?S △BEF =4,求△CDF 的面积.

B

C

A

E

D F

x

13、如图,AB 为⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CB CE =。

(1)求证:BC 为⊙O 的切线;

(2)若52=AB ,2=AD ,求线段BC 的长。

14、如图,在△ABC 中,∠BCA =90°,以BC 为直径的⊙O

交AB 于点P ,Q 是AC 的中点. (1)请你判断直线PQ 与⊙O 的位置关系,并说明理由; (2)若∠A =30°,AP

=O 半径的长.

15、如图所示,AB 是直径,OD 垂直于弦于点,且交于点,若.

(1)判断直线BD 和的位置关系,并给出证明; (2)当时,求BD 的长.

O ⊙BC F O ⊙E AEC ODB ∠=∠O ⊙108AB BC ==

, D

B

O

A

C

E F

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

2018中考复习——二次函数和相似三角形

2018数学中考复习 ——二次函数与相似三角形 二次函数中因动点问题产生的相似三角形的解题方法一般有以下三种: 1.如图,已知△ABC 的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A 、B 、C 三点的抛物线解析式; (2)设直线BC 交y 轴于点E ,连接AE ,求证:AE=CE; (3)设抛物线与y 轴交于点D ,连接AD 交BC 于点F , 试问以A 、B 、F ,为顶点的三角形与△ABC 相似吗请说明理由. 2、如图,已知抛物线过点A (0,6),B (2,0),C (7, 5 2 ). 若D 是抛物线的顶点,E 是抛物线的对称轴与直线AC 的交点,F 与E 关于D 对称. (1)求抛物线的解析式; (2)求证:∠CFE=∠AFE ; (3)在y 轴上是否存在这样的点P ,使△AFP 与△FDC 相似,若有,请求出所有合条件的点P 的坐标;若没有,请说明理由. O A B E D F C x N M

3.如图,已知抛物线的方程C1:y=-(x+2)(x-m)(m>0)与x 轴相交于点B 、C ,与y 轴相交于点E ,且点B 在点C 的左侧. (1)若抛物线C 1过点M(2,2),求实数m 的值. (2)在(1)的条件下,求△BCE 的面积. (3)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标. (4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为 顶点的三角形与△BCE 相似若存在,求m 的值;若不存在,请说 明理由. 4. 如图,已知抛物线 与x 轴的正半轴分别交于点A 、B (点A 位于点 B 的左侧),与y 轴的正半轴交于点 C . ⑴点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示); ⑵请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形如果存在,求出点P 的坐标;如果不存在,请说明理由; ⑶请你进一步探索在第一象限内是否存在点Q ,使得△ QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由. 5.如图已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三 x y P O C B A

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题 二次函数中因动点产生的相似三角形问题一般有三个解题途径: 例题1:已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 (1)求抛物线的解析式;(用顶点式求得抛物线的解析式为x x 41 y 2+-=) (2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO =AB,△AOB =△ABO. 若△BOP 与△AOB 相似,必须有△POB =△BOA =△BPO 设OP 交抛物线的对称轴于A′点,显然A′(2,-1) △直线OP 的解析式为x 21y -= 由 x x 41 x 212+-=- , 得6x ,0x 21== .△P(6,-3) 过P 作PE△x 轴,在Rt△BEP 中,BE =2,PE =3, △PB =13≠4. △PB≠OB,△△BOP≠△BPO, △△PBO 与△BAO 不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P 点. 所以在该抛物线上不存在点P,使得△BOP 与△AOB 相似. 例1题图 图1 O A B y x O A B y x 图2 E A' O A B P y x 图2 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ② 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③ 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

二次函数中相似三角形存在性

相似三角形的存在性(作业) 例:在平面直角坐标系中,二次函数图象的顶点坐标为C (4,3-),且与x 轴 的两个交点间的距离为6. (1)求二次函数的解析式; (2)在x 轴上方的抛物线上,是否存在点Q ,使得以Q ,A ,B 为顶点的三角形与△ABC 相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由. x y O C B A x y O C B A 第一问:研究背景图形 【思路分析】 ①由顶点坐标C (4,3-)可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A (___,___),B (___,___). ②设交点式__________________,再代入坐标__________可求解出解析式__________________. 6 (4,-3) (7,0) (1,0) x y O C B A 【过程示范】 ∵顶点坐标为C (4,3-), ∴抛物线对称轴为直线x =4, 又∵抛物线与x 轴的两个交点间的距离为6, ∴由抛物线的对称性可知:A (1,0),B (7,0). 设抛物线的解析式为(1)(7)y a x x =--, 分析不变特征,确定分类标准. 定点:_____________; 动点:_____________; 目标三角形: 特征:

Q 1 E x y O D C B A Q 2 x y O B A 将C (4,3-)代入可得,39 a =, ∴所求解析式为238373999 y x x = -+. 第二问:整合信息、分析特征、设计方案 【思路分析】 相似三角形存在性问题也是在存在性问题的框架下进行的: ①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形. ②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ = _____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况. ③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证. 【过程示范】 存在点Q 使得△QAB 与△ABC 相似. 由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于D , 则AD =3,CD =3. 在Rt △ACD 中,tan ∠DAC = 3 3 , ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=3 6332 ? =,BE =3, ∴E (10,0),Q 1(10,33). 当x =10时,y =33, ∴点Q 1在抛物线上.

二次函数中的相似三角形

二次函数中的相似三角形 例1(2011绵阳):已知抛物线y = x2 -2x +m -1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B. (1)求m的值; (2)过A作x轴的平行线,交抛物线于点C,求证△ABC是等腰直角三角形; (3)将此抛物线向下平移4个单位后,得到抛物线C’,且与x轴的左半轴交于E点,与y轴交于F点。如图,请在抛物线C’上求点P,使得△EFP是以EF为直角边的直角三角形. 例1图例1(1)(2)图例1(3)图

例2:如图,抛物线y = ax2 +bx + 1与x轴交于两点A(-1,0)、B(1,0)与y轴交于点C.(1)求抛物线的解析式; (2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由. 例2(1)(2)图例2(3)图

例3:已知,如图,二次函数y = ax2 - 2ax + c(a ≠ 0)的图象与y轴交于点C(0,4),与x 轴交于点A、B,点A的坐标为(4,0). (1)求该二次函数的关系式并写出它的对称轴和顶点坐标; (2)点Q是线段AB上的动点,过点Q作QE∥AC交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标; (3)若平行于x轴的直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标(2,0).问:是否存在这样的直线l.使△ODF是等腰三角形?若存在,请求出点P坐标;若不存在,请说明理由. 思考:在(1)中抛物线的对称轴上是否存在点M,使△BCM是直角三角形?若存在,请直接写出点M坐标;若不存在,请说明理由. 例3(1)(2)图例3(3)图 例3思考

二次函数与相似三角形

课题二次函数与相似三角形 教学目标知识与 技能 根据条件寻找或构造相似三角形,从而得出点的坐标。 过程与 方法 通过复习,掌握中考题型中二次函数的综合应用。 情感态 度与价 值观 培养学生的参与意识和探索精神。 教学重点根据条件寻找或构造相似三角形 教学难点根据条件寻找或构造相似三角形 教学准备课件,活页练习 教学课时1课时 教学过程个案修改 (手写)一、导入: 我们已经学完了二次函数的基础知识,从今天开始我们要学习二次函 数与其他知识的综合应用。首先,我们来学习中考中最常见的一种—— 二次韩数与相似三角形。 二、复习提问: 1、二次函数的一般形式是 2、如何确定一条抛物线与X轴和y轴的交点坐标? 3、抛物线的顶点坐标如何确定? 4、相似三角形的判断方法有哪些? 三、例题讲解: .如图,已知抛物线y=–(x–2)2+1 的图像与x轴交于A、B 两点 (点A在点B左侧),与y轴交于点C. (1)求点A,点B,点C的坐标;

(2)若点D是抛物线的顶点,DH垂直于x轴,垂足为H,试判断直角三角形DHA与直角三角形COB是否相似?说明理由. (3)若点M在抛物线上且在x轴上方,过点M作MG垂直于x轴, 垂足为点G,是否存在M,使得△AMG与△AOC相似。若存在,求出M 点坐标;若不存在,说明理由。 分析: (1)第一步是基础知识,可由学生自己解决,只对个别不会的学生加以辅导,可以由B号学生帮助解决 (2)第二步要判断两个直角三角形相似,可以证明夹着直角的四条边成比例;另外,还要注意强调格式——先回答问题,再书写证明过程(3)第三步要先设出点M的坐标,进一步表示出MG和AG的长度,然后再分两种情况利用四条线段成比例得方程,从而解得点M的坐标。另外,题目中“点M在抛物线上且在x轴上方”能给我们 什么信息,需要注意什么? 教学组织: (1)学生自己分析题意,找出不会的地方; (2)小组内讨论,初步解决 (3)汇总不能解决的问题,教师分析解决 (4)书写第(3)问解答过程,A号展示 四、变式练习: 上题中,若点D是抛物线的顶点,点M在抛物线上且在x轴上方,

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

专题训练二次函数与相似三角形

专题训练:二次函数与相似三角形 例1、如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式; ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 例2、已知:如图,抛物线22 1 412-+= x x y 与y x 、轴分别相交于A 、B 两点,将△AOB 绕着点O 逆时针旋90°到△''A OB ,且抛物线2 2(0)y ax ax c a =++≠过点''B A 、。 (1)求A 、B 两点的坐标; (2)求抛物线2 2y ax ax c =++的解析式; (3)点D 在x 轴上,若以'B D 、B 、为顶点的三角形与△B B A ''相似,求点D 的坐标. 图1 O A B y x O A B y x 图 2 B' A'O B A y x

例3、已知:矩形OABC 在平面直角坐标系中的位置如图所示,()6,0A ,()0,3C ,直线 3 4 y x = 与BC 边交于D 点. (1)求D 点的坐标; (2)若抛物线2 y ax bx =+经过A 、D 两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 是对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求出符合条件的点P .

例4、已知抛物线c bx x y ++=2 4 3与坐标轴交于点A,B,C 三点,A 点的坐标为)0,1(-,过点C 的直线343 -= x t y 与x 交于点,Q 点P 是线段BC 上的一个动点,过点P 作OB PH ⊥于点H ,若)10(,5<<=t t PB ,请回答下面的问题; (1)、求出抛物线的解析式 (2)、求线段QH 的长,(用含有t 的式子表示) (3)、根据P 点的变化,是否存在t 的值,使得以点Q H P ,,为顶点的三角形与COQ ?相似?若存在,求出所有的t 的值,若不存在,说明理由;

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师姓名学科上课时间年月日学生姓名年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学内容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

二次函数中的相似三角形问题

二次函数与相似三角形的综合问题 宜良八中 陈红 二次函数与相似三角形的综合问题也是上海中考数学试卷中常见的热点问题如:2012年的最后第二题,就是二次函数与相似三角形相结合的综合问题.先来看这个问题: 2012年中考第23题:如图,在平面直角坐标系中,二次函数2 6y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1 = 2 tan DAE ∠,EF OD ⊥,垂足为F . (1)求这个二次函数的解析式; (2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值. 解:(1)二次函数c x ax y ++=62 图像经过 点A (4,0),B (-1,0), ∴?? ?=+-=++0602416c a c a ,解得???=-=8 2 c a . ∴这个二次函数的解析式为8622 ++-=x x y . (2)易证△ED F ∽△DAO ,∴ DA ED AO DF DO EF = =. 在R t △ADE 中,=90ADE ,∵2 1 tan ==∠AD DE DAE , ∴21==AO DF DO EF ,即2 1=t EF ,∴t EF 21=. ∵点A 的坐标为(4,0),∴OA =4,DF =2,∴OF =t -2. (3)由(1)得,点C 的坐标为(0,8). 延长CE 交x 轴于点G ,设G 点的坐标为(x ,0), ∵ECA =∠OAC ,∴CG= AG , ∴()22 48-= +x x ,解得6-=x ,∴GO =6. 由已知,可得点F 在线段OD 上, 又∵OF =t -2,∴FC =OC -OF =10- t , ∵EF ∥GO ,∴CO CF GO EF = ,∴8 1062t t -=,解得6=t . 【点评】本题是利用二次函数图像上的点组成图形与相似形结合,主要是运用了相似三角形中线段的比例关系来解决问题. 难点是角相等这个条件的运用,如何由角的关系转化为边的关系.

初三二次函数与相似三角形

【例1】 如图,抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,-3),设抛物线的 顶点为D . (1)求该抛物线的解析式与顶点D 的坐标; (2)以B 、C 、D 为顶点的三角形是直角三角形吗?为什么? (3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与△BCD 相似?若存在,请指出符合条件的点P 的位置,并直接写出点P 的坐标;若不存在,请说明理由. 例题精讲 二次函数与相似三角形

【例2】如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0), 与y轴交于点C. (1)求抛物线的解析式; (2)过点B作BD∥CA与抛物线交于点D,求四边形ACBD的面积; (3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.

【例3】如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过C点的直线为y轴建立平面直角坐标系,此时,A点坐标为(-1,0),B点坐标为(4,0). (1)试求点C的坐标; (2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式; (3)点D(1,m)在抛物线上,过点A的直线y=-x-1交(2)中的抛物线于点E,那么在x 轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P 点坐标;若不存在,说明理由.

【例4】如图,在平面直角坐标系xO y中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k.所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D. (1)求h、k的值; (2)判断△ACD的形状,并说明理由; (3)在线段AC上是否存在点M,使△AOM与△ABC相似.若存在,求出点M的坐标;若不存在,说明理由.

二次函数与相似三角形

3.( 2015?西安模拟)如图,已知抛物线 y=ax C ( 0, 2)三点. (1) 求这条抛物线的解析式; 2 +bx+c ( a ≠0)经过 A (﹣ 1, 0), B ( 4, 0), (2) E 为抛物线上一动点,是否存在点 E 使以 A 、B 、E 为顶点的三角形与 △ COB 相似? 若存在,试求出点 E 的坐标;若不存在,请说明理由. 二次函数与相似三角形 一.解答题(共 8 小题) 1.( 2013?青海)如图,已知抛物线经过点 (1)求抛物线的解析式; A ( 2, 0), B ( 3, 3)及原点 O ,顶点为 C . (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且以 A , O , D , E 为顶点的四边形 是平行四边形,求点 D 的坐标; (3)P 是抛物线上第二象限内的动点,过点 P 作 PM ⊥ x 轴,垂足为 M ,是否存在点 P 使得 以点 P ,M ,A 为顶点的三角形与 明理由. △BOC 相似?若存在,求出点 P 的坐标;若不存在,请说 2.( 2009?临沂)如图,抛物线经过 (1)求出抛物线的解析式; A ( 4, 0), B (1, 0),C ( 0,﹣ 2)三点. (2) P 是抛物线上一动点,过 P 作 PM ⊥ x 轴,垂足为 M ,是否存在 P 点,使得以 A , P , M 为顶点的三角形与 说明理由; △OAC 相似?若存在,请求出符合条件的点 P 的坐标;若不存在,请 (3)在直线 AC 上方的抛物线上有一点 D ,使得 △ DCA 的面积最大,求出点 D 的坐标.

2 4.(2015?洛阳一模)抛物线y=ax +bx+c (a≠0)的顶点坐标为(2,﹣1),并且与y 轴交于点C(0,3),与x 轴交于两点 A ,B. (1)求抛物线的解析式; (2)设点P 是位于直线BC 下方的抛物线上一动点 ①如图1,过点P 作PD ⊥BC,垂足为 D ,求垂线段PD 的最大值并求出此时点P 的坐标; ②如图2,抛物线的对称轴与直线BC 交于点M ,过点P 作y 轴的平行线PQ,与直线BC 交于点Q,问是否存在点P,使得以M 、P、Q 为顶点的三角形与△BCO 相似?若存在,直接写出点P 的坐标;若不存在,请说明理由. 5.(2013 秋?松江区月考)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C. (1)求抛物线的函数解析式. (2)设点 D 在抛物线上,点 E 在抛物线的对称轴上,若四边形AODE 是平行四边形,求 点D 的坐标. (3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足是M ,是否存在点p,使得以P、M 、A 为顶点的三角形与△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.

二次函数与存在相似三角形

二次函数与存在相似三角形 3、(红河)如图,抛物线24y x 与x 轴交于A 、B 两点,与y 轴交于C 点, 点P 是抛物线上的一个动点且在第一象限,过点P 作x 轴的垂线,垂足为D ,交直线BC 于点E . (1)求点A 、B 、C 的坐标和直线BC 的解析式; (2)求△ODE 面积的最大值及相应的点E 的坐标; (3)是否存在以点P 、O 、D 为顶点的三角形与△OAC 相似?若存在,请求出点 P 的坐标, 若不存在,请说明理由. 解:(1)在y=﹣x 2+4中,当y=0时,即﹣x 2+4=0,解得x=±2. 当x=0时,即y=0+4,解得y=4. ∴点A 、B 、C 的坐标依次是A (﹣2,0)、B (2,0)、C (0,4). 设直线BC 的解析式为y=kx+b (k ≠0),则,解得. 所以直线BC 的解析式为y=﹣2x+4. (2)∵点E 在直线BC 上,∴设点E 的坐标为(x ,﹣2x+4), 则△ODE 的面积S 可表示为:. ∴当x=1时,△ODE 的面积有最大值1.此时,﹣2x+4=﹣2×1+4=2, ∴点E 的坐标为(1,2). (3)存在以点P 、O 、D 为顶点的三角形与△OAC 相似,理由如下: 设点P 的坐标为(x ,﹣x 2+4),0<x <2. x B A O y C P D E

因为△OAC与△OPD都是直角三角形,分两种情况: ①当△PDO∽△COA时,,, 解得,(不符合题意,舍去). 当时,. 此时,点P的坐标为. ②当△PDO∽△AOC时,,, 解得,(不符合题意,舍去). 当时,=. 此时,点P的坐标为. 综上可得,满足条件的点P有两个: ,. 1. (2014?东营?T25)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=﹣x2+bx+c与直线BC交于点D(3,﹣4). (1)求直线BD和抛物线的解析式; (2)在第一象限内的抛物线上,是否存在一点M,作MN垂直于x轴,垂足为点N, 使得以M、O、N为顶点的三角形与△BOC相似?若存在,求出M的坐标;若不存在,说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P作PH垂直于x轴,交直线BD于点H,当四边形BOHP是平行四边形时,试求动点P的坐标.

二次函数中的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形) 1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。 (1)求抛物线的解析式; (2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; (3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 A A B B O O x x y y

x y F - 2 -4 -6 A C E P D B 5 2 1 2 4 6 G 2、设抛物线2 2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________. 解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,. ∴OA ·OB=OC 2;∴OB= 22 241 OC OA == ∴m=4. 3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出?OBC 的面积S 的值. (3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.

二次函数与相似三角形综合题

O 二次函数与相似三角形综合题 黄陂区实验中学 邓静 教学目标: 1、会求二次函数解析式; 2、根据条件寻找或构造相似三角形,在二次函数的综合题中利用其性质求出线段的长度,从而得出点的坐标。 教学重点: 1、求二次函数解析式; 2、相似三角形的判定与性质在二次函数综合题中的运用。 教学难点: 根据条件构造相似三角形解决问题。 情感与态度: 1、培养学生积极参与教学学习活动的兴趣,增强数学学习的好奇心和求知欲。 2、使学生感受在数学学习活动中获得成功的体验,锻炼学生克服困难的意志,建立自信心。 3、培养学生科学探索的精神。 教学过程: 一、复习巩固 如图,抛物线y=ax 2+b x -2与x 轴交于点A (-1,0),B (m ,0)两点,与y 轴交于C 点,且∠ACB=90°,求抛物线的解析式. 分析:OC 2=OA·OB ∴4=1×m ,m=4 ∴B (4,0) 设抛物线解析式为y=a(x+1)(x -4) 代入C 点(0,-2) ∴抛物线解析式为213222 y x x =--. 二、新授 例题、如图,直线y =-x+3与x 轴、y 轴分别相交于B 、C ,经过B 、C 两点的抛物线y=ax 2+bx+c 与x 轴另一交点为A ,顶点为P ,且对称轴是直线x=2, (1)求抛物线解析式; (2)连结AC ,请问在x 轴上是否存在点Q ,使得以点P 、B 、Q 为顶点的三角形与△ACB 相似,若存在,请求出Q 点坐标;若不存在,说明理由. (3)D 点为第四象限的抛物线上一点,过点D 作DE ⊥x 轴,交CB 于E ,垂足于H ,过D 作DF ⊥CB ,垂足为F ,交x 轴于G ,试问是否存在这样的点D ,使得△DEF 的周长恰好被x 轴平分?若能,请求出D 点坐标;若不能,请说明理由.

相关主题