搜档网
当前位置:搜档网 › 精密电压调节器TL431三种应用电路设计

精密电压调节器TL431三种应用电路设计

精密电压调节器TL431三种应用电路设计
精密电压调节器TL431三种应用电路设计

收稿日期:2005207215

作者简介:贺桂芳(1963-),女,副教授,现主要从事电子技术和传感器技术的教学和科研工作。

文章编号:100224026(2006)0120050203精密电压调节器T L431三种应用电路设计

贺桂芳

(山东交通学院信息工程系,山东济南250023)

摘要:介绍了三种精密电压调节器T L431的应用电路:不平衡直流电桥输出信号的稳定和线性化电路,恒流源

电路,4~20mA Π0~5V 电流Π电压转换电路。分析了电路工作原理,给出了电路设计方法。所设计的电路简

单、新颖、实用。可广泛用于模拟电子电路,特别是传感器的信号调理电路中。由于采用了精密电压调节器

T L431做基准电压源,因此电路精度高,稳定性能好。

关键词:电压调节器;线性化;恒流源;I ΠV 转换

中图分类号:T N43 文献标识码:A

1 T L431简介

T L431是精密电压调节器,利用两只外部电阻可设定2.5~36V 范围内的任何基准电压值。其电压温度

系数很小,为30×10-6Π℃,动态阻抗低,典型值为0.2Ω。T L431的等效电路如图1所示。图中A 为阳极,使

用时需接地,K 为阴极,需经限流电阻接正电源;V REF 是输出电压U 的设定端,外接电阻分压器。其中误差放大器A 同相输入端接从电阻分压器得到的取样电压,反相输入端则接内部2.5V 基准电压U REF ,V REF 端的电压常态下应为2.5V ,因此也称基准端。晶体管VT 在电路中起到调节负载电流的作用

[1]。

图1 T L431等效电路T L431性能优良,价格低廉,现广泛用于开关电源或线性稳压电源中,本文用T L431构成输出稳定和线性化的电桥电路、精密恒流源电路、I ΠV 转换电

路。

2 电桥输出信号的稳定和线性化电路

传感器的信号调理电路经常要用到单臂不平衡直流电桥,如图2(a )所

示[2]。某一非电量,例如压力或温度引起桥臂电阻变化ΔR ,电桥失去平衡,

产生输出电压ΔU 0,通过测量该不平衡输出电压可以求得ΔR ,从而求出非

电量的大小。图2(a )中ΔU 0为

ΔU 0=U 2-R 2R +ΔR U =ΔR 2(2R +ΔR )

U 由于电桥输出ΔU 0与ΔR 是非线性关系,需作线性化处理。在测控技术中通常的硬件处理办法是增加非线性校正电路,结果使信号调理电路变得很复杂。图2(b )所示电路,利用T L431设计了线性化的不平衡直流电桥,很简单地解决了非线性的问题。图2(b )中ΔU 0为

ΔU 0=V C -V D =U 2-V REF =12(1+R +ΔR R )V REF -V REF =ΔR 2R

V REF 第19卷 第1期

2006年2月

山东科学SH ANDONG SCIE NCE V ol 119 N o 11Feb 12006

图2 不平衡直流电桥电路

可见电桥输出ΔU 0与ΔR 成线性关系。从上式还可以看到输出与供桥电压无关,供桥电压的变化不会影响输出电压。也即,电桥采用四线制长电缆的长短、导线周围的环境温度以及供桥电压的变化不会影响电桥的输出。因此图2(b )所示电桥电路输出电压稳定,并且实现了线性化输出。

3 恒流源电路

恒流源是模拟集成电路中广泛使用的一种单元电路,传感器的信号调理电路也经常要用到恒流源。采用T L431可以构成精密恒流源电路。电路如图3所示。输出电流为

图3 恒流源电路

I =

β1+βI R ≈I R =U -V REF R =2.5(1+R 1R 2

)-2.5R =2.5R 1

RR 2

式中β为三极管的电流放大倍数。应选取β较大的

三极管,例如9015,其β约为150,也可以选用复合管。

β值越大,温漂系数越小,恒流值越稳定。运放A 应选用高

输入阻抗的运算放大器,例如C A3140。

4 I ΠV 转换电路

在计算机自动测控系统的设计中,经常选用具有一

定功能的电动组合单元作为系统的一部分,

对于电动组合单元DDZ -Ⅲ型,其输出信号的标准为4~20mA DC 。而一般单片机应用系统信号输出只是电压信号,它能处理的也只有电压信号,因此需要电流Π电压转换[3]。

图4为采用T L431设计的4~20mA Π0~5V 电流Π电压转换电路。该电路设计思路如下:

图4 4~20mA Π0~5V 转换电路

1

5第1期贺桂芳:精密电压调节器T L431三种应用电路设计

25山 东 科 学 2006年 首先4~20mA电流经过电阻x变为(4~20mA)x的电压,再减去基准电压y,得到输出电压U

=(4~

O

20mA)x(kΩ)-y(V)。因为4mA电流对应输出电压0V,20mA电流对应输出电压5V,所以

4x-y=0

20x-y=5

解上述两个方程,得到x=5Π16kΩ,y=5Π4V

于是输出电压U

=(4~20mA)×5Π16(kΩ)-5Π4(V)

图4中U

=(4~20mA)R(1+R fΠR1)-R fΠR1V REF=(4~20mA)R×1.5-0.5×2.5,式中R=(5Π16)Π1.5 0

=208.33Ω,R采用200Ω固定电阻和10Ω微调电阻串联。

5 结束语

本文采用T L431设计了输出电压稳定的线性不平衡电桥、精密恒流源和IΠV转换电路,电路结构设计简单、新颖、实用,可广泛用于模拟电子电路,特别是传感器的信号调理电路中。由于精密电压调节器T L431在电路中做基准电压,因此电路精度高,稳定性能好。

参考文献:

[1]何希才,张明莉.新型稳压电源及应用实例[M].北京:电子工业出版社,2004.82-83.

[2]贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2000.53-54.

[3]李华.MCS-51系列单片机实用接口技术[M].北京:北京航空航天大学出版社,1993.588-592.

Three practical circuits design of precision voltage conditioner T L431

HE G ui2fang

(Department o f Information Engineering,Shandong Jiaotong Univer sity,Jinan250023,China)

Abstract:Three practical circuits of precision v oltage conditioner T L431are introduced:The steady and linear output circuit of imbalance DC bridge,the constant current s ource,4~20mAΠ0~5V converter.The circuit principle is analyzed,and the design method is given.The designed circuit is sim ple and novel and practical,and it can be used extensively in analogue circuits,special in signal condition circuits of sens or.Because precision v oltage conditioner T L431is used for v oltage reference,the circuit is precise and steady.

K ey w ords:v oltage conditioner;linearzation;constant current s ource;IΠV converter

TL431的原理及应用说明

TL431的原理及使用说明 TL431简介 德州仪器公司(TI)生产的TL431是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V 范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管。例如,数字电压表,运放电路、可调压电源,开关电源等等。 上图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。 TL431的具体功能可以用如图1的功能模块示意。 图1 由图可以看到,VI是一个内部2.5V的基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。

图2 前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA。 当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。 图3 大电流的分流稳压电路

可调式精密稳压集成电路TL431及应用

可调式精密稳压集成电路TL431及应用 * 潘玉成 (宁德职业技术学院,福建福安 355000) 摘要:介绍了TL 431三端可调精密并联稳压器内部结构、工作原理和主要特点,分析了其典型应用电路,并总结了该器件应用时应注意的几个问题. 关键词:TL431;稳压基准;性能;典型应用 中图分类号:TN 453 文献标识码:A 文章编号:1004-2911(2008)01-0051-05 TL431是美国德洲仪器公司(Texas I nstr um ent)开发的一个有良好热稳定性能的三端可调精密电压基准集成电路,其全称是可调试精密并联稳压器,也称为电压调节器或三端取样集成电路.该器件犹如上世纪70年代诞生的555时基芯片一样,价廉物美、参数优越、性能可靠,因而广泛应用于各种电源电路中.此外,TL431与其它器件巧妙连接,还可以构造出具有其它功能的实用电路.现在TL431已成为用途很广、知名度很高的通用集成电路之一,越来越受到电路设计者的欢迎.1 内部结构和工作原理 TL431有三个引出脚,分别为阴极(CATHODE )、阳极(ANODE)和参考端(REF),应用中将这三个引脚分别用K 、A 、R 表示,其中,K 为控制端,A 为接地端,R 为取样端,有些电路图中用1、2、3分别代表R 、A 、K,在电路中的表示符号如图1所示.TL431有两种封装形式:一种为TO -92封装,它的外型和小功率塑封三极管一模一样;另一种为双列直插8脚塑封结构. TL431内部电路如图2所示,它由多极放大电路、偏置电路、补偿和保护电路组成.其中晶体管V 1、V 2构成输入极,V 3、V 4、V 5构成稳压基准,V 6、V 7、V 8、V 9构成差分放大器,V 10、V 11形成复合管,构成输出极,其它一些电阻、电容、二级管分别起偏置、补偿和保护作用,在原理上它是一个单端输入、单端输出的多级直流放大器.其等效功能框图如图3所示,由一个2.5V 的精密基准电压源、一个电压比较器和一个输出开关管等组成,参考端R 的输出电压与2.5V 的精密基准电压源相比较,当R 端电压超过2.5V 第20卷第1期 宁德师专学报(自然科学版) 2008年2月 Journa l o f N i ngde T eachers Co ll ege(N a t ura l Sc i ence) V o l 20 N o 1 Feb .2008 *收稿日期:2007-12-10 作者简介:潘玉成(1964-),男,高级讲师,福建福州人,现从事高校物理教学及研究. E-ma i:l FA PYC@https://www.sodocs.net/doc/8d974184.html,

tl431反馈电路

在一般的隔离电源中,光耦隔离反馈是一种简单、低成本的方式。但对于光耦反馈的各种连接方式及其区别,目前尚未见到比较深入的研究。而且在很多场合下,由于对光耦的工作原理理解不够深入,光耦接法混乱,往往导致电路不能正常工作。本研究将详细分析光耦工作原理,并针对光耦反馈的几种典型接法加以对比研究。 1 常见的几种连接方式及其工作原理 常用于反馈的光耦型号有TLP521、PC817等。这里以TLP521为例,介绍这类光耦的特性。 TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。 通常选择TL431结合TLP521进行反馈。这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器,所以在其1脚与3脚之间,要接补偿网络。 常见的光耦反馈第1种接法,如图1所示。图中,Vo为输出电压,Vd为芯片的供电电压。com信号接芯片的误差放大器输出脚,或者把PWM 芯片(如UC3525)的内部电压误差放大器接成同相放大器形式,com信号则接到其对应的同相端引脚。注意左边的地为输出电压地,右边的地为芯片供电电压地,两者之间用光耦隔离。 图1所示接法的工作原理如下:当输出电压升高时,TL431的1脚(相当于电压误差放大器的反向输入端)电压上升,3脚(相当于电压误差放大器的输出脚)电压下降,光耦TLP521的原边电流If增大,光耦的另一端输出电流Ic增大,电阻R4上的电压降增大,com引脚电压下降,占空比减小,输出电压减小;反之,当输出电压降低时,调节过程类似。 常见的第2种接法,如图2所示。与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。因此,采用这种接法的电路,一定要把PWM 芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。

TL431_典型应用电路

TL431 典型应用电路及稳压电路 TL431是一个有良好的热稳定性能的三端可调分流基准源。他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。 TL431是一种并联稳压集成电路。因其性能好、价格低,因此广泛应用在各种电源电路中。其封装形式与塑封三极管9013等相同。 TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。 主要参数 三端可调分流基准源 可编程输出电压:2.5V~36V 电压参考误差:±0.4% ,典型值25℃(TL431B) 低动态输出阻抗:0.22Ω(典型值) 等效全范围温度系数:50 ppm/℃(典型值) 温度补偿操作全额定工作温度范围 稳压值送从2.5--36V连续可调, 参考电压原误差+-1.0%, 低动态输出电阻, 典型值为0.22欧姆,

输出电流1.0--100毫安。 全温度范围内温度特性平坦, 典型值为50ppm, 低输出电压噪声。 封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23 最大输入电压为37V 最大工作电流150mA 内基准电压为2.5V 输出电压范围为2.5~36V 内部结构 TL431的具体功能可以用下图的功能模块示意。由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。 典型应用电路如下: 1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。但在连接容

TL431内部分析

上图是一个基准电压源电路,若D6与D5、D4的特性完全一样,那么就有 Vref=Vbe4+(Vd3/Rd3)*Rd2 式中Vbe4是D4的基级与发射极之间的电压,Vd3是D3的电压,为Vbed6-Vbed5。由于这三个管子特性完全相同,那么D5、D6的集电极电压是相等的。所以Vref= Vbe4+(KT/q)* (Rd2/Rd3)*ln(Rd2/Rd1),这里利用了PN结的电流方程:i=Is(equ/kt -1)【Is为PN结反向饱和电流】 基准稳压电源在电路中的应用是很广泛的,特别是在AD/DA IC中,本想接下来介绍以下比较常见的TL431的,我在学习TL431时,发现它的内部结构电路图,不是我想象的拿么难,觉得有必要把内部结构分析下,纯粹是为了提高自己的模电。 不过我首先得先介绍两个基准电流源: 1> 微电流源: 它的原理图如下: 这里的NPN管的放大倍数β都是>>1的,所以U2管的集电极电流为 Iu2=Iu4=(Ubeu1-Ubeu2)/Ru4 式中Ubeu1-Ubeu2只有几十毫伏,甚至更小,因此只要几千欧的Ru4就可以得到几十微安的Iu2,由于这两管子特性完全相同,所以同样可以利用PN结的电流方程得到: Iu2=(Ut/Ru4)*ln(Iu3/Iu2) 2> 比例电流源 它的原理图如下: 这里的NPN管同样是特性相同的管子。从电路可知 Ubeu0+Iru3*Ru3=Ubeu1+Iru4*Ru4 (1) 根据PN结的电流方程可知

Ubeu0 = Ut * ln(Ieu0/Is), Ubeu1=Ut*ln(Ieu1/Is) 把上两式代入 1 中可得: Iru4*Ru4 = Iru3*Ru3 + Ut*ln(Ieu0/Ieu1);这里的对数部分可以忽略,因为Ieu0/Ieu1接近于1。 当β>>2时,Icuo=Iru3=Iru2, Icu1=Iru4; 所以 Iru4*Ru4 = Iru2*Ru3 而此式中的Iru2=(Vcc-Ubeu0)/(Ru2+Ru3) 这两个基准电流源的具体分析可以参考童诗白教授和华成英副教授主编的模拟电子技术基础。 TL431内部电路结构: 初看这原理图,发现它使用了两个电流源,左下角使用的是微电流源,中上面使用的是比例电流源。 原理图分析: 首先当阴极CATHODE通电时,a点便有了电压,那么后面的Q10、Q11组成的达林顿管也会导通,但会马上截止【电压稳定后a点电压会为0】,同时Q4,Q1也导通,拿么下面的微电流源就开始工作,这样整个电路的在通电的瞬间开始工作,在微电流源中,由于电流源比较稳定,不管阴极的电压波动多大,它总会因为后面有个稳压管而使得微电流源的电流很稳定,这样b点的电压也就很稳定,进而REF端的电压也很稳定在2.5V ,【至于为什么是2.5V,我觉得没有必要进行具体分析】;由于微电流源工作,所以Q7、Q8都导通,从而上面的比例电流源也开始导通,由于这里的两个电阻都为800,所以也可以把它看成是一个镜像电流源,事实上镜像电流源与比例电流源的原理几乎没有差别。不过这里的Q7我觉得它会饱和,因为集电极端可以等效的认为比基级端接了个800欧的电阻,可能电压没有基级高,Q8处于放大状态。而当比例电流源工作后,Q9会导通,那么a点便又有了电压,这样后面的达林顿管也会导通。这样它会去控制CATHODE端的电压。

TL431开关电源电路中的应用

TL431的应用 1、介绍 后备式电源的安全运行需要将输入和输出隔离,这种隔离需要保证控制芯片不能直接对输入和输出电压进行侦 测。由于输入控制输出,一个用于控制输出的误差信号必须从输出得到,这篇应用文章主要讨论了一种应用 AS431 和光耦 4N27 实现电压反馈的简单方法。 2、电源电路 图一显示了一种简单的反激调整器,用电流型控制芯片 AS3842 控制输出, AS431 被用来侦测输出电压的参考 和反馈误差放大器,并产生相应得误差放大信号,然后误差电压信号转化成误差电流信号通过光耦 4N27 送到原边。 3、光耦 目前,光耦器件制造厂商在光耦元件的处理以及封装技术上得到了关键的提高,得到更好的传输比( current transfer ratio CTR )误差和更长时间的可靠性。 当设计光耦反馈电路的时候,设计人员应该注意到光耦正向二极管的电流,因为它直接关系到器件的电流传输比 CTR 和器件长时间内的可靠性,就像灯丝一样,光耦二极管在遭受较高电流时将老化,损坏。光耦的增益带宽随着 二极管正向电流增加而相应增加,带宽的控制由输出晶体管参数的变化来调制。值得一提的是,输出晶体管基极和 集电极间的米勒电容将使光耦的带宽下降。一个好的光耦反馈环不但需要提高整体可靠性,还需要保证系统的响应 速度。 4、设计实例参考 图二显示了反激电路电压反馈环,为了保证 5V 电压的稳定输出, Vcomp 必须跟随输出电压,输出电压通过两 个 2.5k 的电阻分压,结果送到 AS431 误差反馈网络,误差反馈的输出电压 Vcathode 被转化成与二极管成比例的 电流信号,此处光耦起到隔离原边二次侧的作用,并产生与二极管电流成比例的集电极电流(即光耦的三极管的集电极),因为光耦连接到 Vcomp 脚,光耦输出电流就是 Icomp 电流,在一般运行状态下,更高的输出电流促使 Vcathode 下降,导致流过光耦二极管电流增加,发光二极管发光增强,使得三极管接受到的信号增加,使得集电极 电流增加,即 Icomp 增加,从而使得 Vcomp 下降, Vcomp 下降使得 PWM 占空比减小,输出电压下降。 5、光耦工作电流 此设计实例显示了由最大 Icomp 决定的二极管工作电流,为了得到随着 Icomp 线性变化的 Vcomp ,需要让 Icomp 工作于稍大于最大 Icomp 源极电流的线性工作区。图三显示了其线性工作区

Tl431资料及应用电路

Tl431资料及应用电路 Tl431资料及应用电路 1 TL431的应用资料简介 德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 左图是该器件的符号。3个引脚分别为:阴极(CATHOD E)、阳极(ANODE)和参考端(REF)。TL431的具体功能可以用如图1的功能模块示意。

由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1 的电流将从1到100mA变化。当然,该图绝不是TL4 31的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。 2. Tl431在恒压电路中的应用

前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V O增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 MA 。 当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。

TL431的几种基本用法电路

TL431的几种基本用法电路 作者:疯狂的三极管来源:未知日期:2009-12-22 10:19:52 人气:1096 标签: 导读:TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。图(1)是TL431的典型接法,输出一个固定电压值,计算 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是: Vout = (R1+R2)*2. 5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压 Vin < (R1+R2)*2.5/R 2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2. 5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为: Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin 决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。 这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。 图(6)是交流放大器,这个结构和直流放大器很相似,而且具有同样的优缺点。我正在尝试用这个放大器代替次级运放来放大热释红外传感器的输出信号。

TL431及PC817在开关电源中的应用

TL431及PC817在开关电源中的应用 TL431功能简介 本设计的基准电压和反馈电路采用常用的三端稳压器TL431来完成,在反馈电路的应用中运用采样电压通过TL431限压,再通过光电耦合器PC817把电压反馈到SG3525的COMP端。 由于TL431具有体积小、基准电压精密可调,输出电流大等优点,所以用TL431可以制作多种稳压器。其性能是输出电压连续可调达36V,工作电流范围宽达0.1~100mA,动态电阻典型值为0.22欧,输出杂波低。其最大输入电压为37V,最大工作电流为150mA,内基准电压为2.5V,输出电压范围为2.5~30V。 TL431是由美国德州仪器(TI)和摩托罗拉公司生产的2.5~36V可调式精密并联稳压器。其性能优良,价格低廉,可广泛用于单片精密开关电源或精密线性稳压电源中。此外,TL431还能构成电压比较器、电源电压监视器、延时电路、精密恒流源等。 TL431大多采用DIP-8或TO-92封装形式,引脚排列分别如图4.26所示。

图中,A为阳极,使用时需接地;K为阴极,需经限流电阻接正电源;UREF是输出电压UO的设定端,外接电阻分压器;NC为空脚。 TL431的等效电路如图所示,主要包括①误差放大器A,其同相输入端接从电阻分压器上得到的取样电压,反相端则接内部2.5V基准电压Uref,并且设计的UREF=Uref,UREF通常状态下为2.5V,因此也称为基准端;②内部2.5CV基准电压源Uref;③NPN型晶体管VT,它在电路中起到调节负载电流的作用;④保护二极管VD,可防止因K-A间电源极性接反而损坏芯片。TL431的电路图形符号和基本接线如图4.27所示。 它相当于一只可调式齐纳稳压管,输出电压由外部精密分压电阻来设定,其公式为(4-16):

TL431基准发生器稳压原理及应用

TL431基准发生器稳压原理及应用 如图1是TL431的框图。一般情况下,使用时CATHODE端通过一个电阻接到电源正或调整管上,ANODE端接到电源地,REF端则一般通过分压电阻进行采样。TL431是一个名义 =2.500V(名义值),当REF端的电压与之相等电压为2.5V的电压基准,亦即图1中的V REF 时,电路工作稳定,即三极管电流稳定不变----这时电路是通过控制内部的调整管(即三极管)工作电流的大小来达到稳压的目的。 图1 如图2是TL431的基本应用图。正常情况下,应当在R EF与CATHODE之间接一个电容,以确保电路的工作稳定。电路的控制效果通过控制TL431内部的受控程度在一定范围内的三极管的电流来达到稳定电压V 的目的(其反馈过程,请自己尝试画出来)。我们注意到, O 端上的负载并联的,所以,称之为并联稳压器。 TL431的这个三极管实际上是和接在V O 事实上,如果将图中的R1、R2和TL431合成一个整体,那么我们就不难发现它和一个稳压二极管所处的位置和作用是完全相同的。平时,你觉得稳压管是并联稳压的器件吗?如果没觉得,就得清醒一下了。也许用稳压管的稳压电路你很熟悉,也没觉得它有什么,不过不能让人换个名称叫做并联稳压(电路)就给搞糊涂了。 图2 图片链接:TL431框图.gif TL431的基本应用1.gif 附注: 这里名义值的意思是,生产这个产品时的控制目标就是2.500V,但实际产品可能存在或高或低一些的偏差,因此,我们虽然叫它是2.500V稳压器,但实际上并不保证它一定准确地输出2.500V。当然,误差范围是确定的,如数据表中给出了在一定温度范围内的最大值和最小值。关于误差的概念大家不要小看,这是个可以很简单也可以很复杂的问题。今后要讲到的。

TL431的工作原理

摘要:分析了TL431的工作原理,整理了技术指标,论述了四个方面的典型应用,总结了使用注意事项,并以详尽的图表证明,该芯片参数优越,性能可靠,应用前景广阔。 关键词:TL431 稳压基准性能应用 1 引言 TL431是TL、ST公司研制开发的并联型三端稳压基准。由于其封装简单(型如三极管)、参数优越(高精度、低温漂)、性价比高(民品1.3~1.5元/只),近年来在国外已经得到了广泛应用。 从1988年获得该器件的第一手资料开始,我们就对该器件给予了关注。通过大量的实验和多年的应用证明,该器件犹如七十年代诞生的555时基芯片一样,价廉物美、参数优越、性能可靠、应用方便、值得推广。尤其是在民品开发中,大有用武之地。 2 工作原理 该芯片的内部等效电路如图1所示。其中V1V2构成输入级,V3V4V5构成稳压基准,V6V7V8V9构成差分放大器,V10V11形成复合管,构成输出级。D1D2均为反向极向保护。引线端子1为参考电压输入端R,2为公共阳极端A,3为输出阴极端K。 其等效功能框图如图2(a)所示。其中VR为基准电压(VR=2.5V),A为同相放大器,V为并联型调整管(总增益A0≥1000倍),W为馈电支路。其封装引脚如图2(b),电路符号如图2(c)所示。 3 技术指标

TL431的电气参数见表1。 表1 TL431电气参数 附注:①上表是综合多个生产厂家提供的参数及实测数据(*)而制。 ②TL431尾缀字母表示产品级别及工作温度范围,C 为商业品(-10℃~+70℃),I 为工业品 (-40℃~+85℃),M 为军品(-55℃~+125℃)。 该器件的主要技术指标为: ●基准电压温漂小:≤±50p pm /℃; ●基准电压精度高:2.5V±1%; ●输出噪声电压低:≤100μVpp ; ●稳压范围宽:(2.5~36)V 连续可调; ●负载电流范围大:(1.0~100)mA 。 4 典型应用实例 4.1 稳压基准 许多稳压基准的负载能力都很小,端电压调节也不方便,而由TL431构成的稳压基准温漂小,又有相当的负载能力,且输出电压连续可调,电路简单。其典型接线如图3所示,输出电压由下式确定: U0=[1+(R1/R2)]·VR (VR=2.5V) 其电压调节范围为2.5V ~36V ,当R1短路或R2断路时,Uo=VR=2.5V ;电流动态范围为0~[(Ui -Uo)/R0-1]mA 。该电路还可以很方便地加入一只扩流管即构成一个性能优良的稳压电源。

TL431应用电路图集

文章编 100816163121 文章分类:电路>电子元件 号: 点击:... 关键词:TL431文章来源:互联网 摘要: 1、tl431用做音频放大器 下图是tl431用作电压比较器:它是巧妙的运用了Vref=2.5v这个临界电压。当ViVref时,Vo=2V由于TL431内阻小,因而输入输出波形跟踪良好。当比较电压大于2.5V时候可以采取电阻分压然后再比较,(但是显然这对输入阻抗有一定的影响);同样当比较电压低于2.5V时候可以采用1.24V的tl432。

(400mW单声道功率放大电路) 2、tl431大电流电源 3、tl431用做上下限检测器

4、tl431用作延时器 5、tl431用作电流源(恒流源)

6、基于TL431的精密5V稳压器

7、TL431开关电源上的应用 在过去的普通开关电源设计中,通常采用将输出电压经过误差放大后直接反馈到输入端的模式。这种电压控制的模式在某些应用中也能较好地发挥作用,但随着技术的发展,当今世界的电源制造业大多已采用一种有类似拓扑结构的方案。此类结构的开关电源有以下特点:输出经过TL431(可控分流基准)反馈并

将误差放大,TL431的沉流端驱动一个光耦的发光部分,而处在电源高压主边的光耦感光部分得到的反馈电压,用来调整一个电流模式的PWM控制器的开关时间,从而得到一个稳定的直流电压输出。上图是一个实用的4W开关型5V直流稳压电源的电路。该电路采用了此种拓扑结构并同时使用了TOPSwitch技术。图中C1、L1、C8和C9构成EMI滤波器,BR1和C2对输入交流电压整流滤波,D1和D2用于消除因变压器漏感引起的尖峰电压,U1是一个内置MOSFET的电流模式PWM控制器芯片,它接受反馈并控制整个电路的工作。D3、C3是次极整流滤波电路,L2和C4组成低通滤波以降低输出纹波电压。R2和R3是输出取样电阻,两者对输出的分压通过TL431的REF端来控制该器件从阴极到阳极的分流。这个电流又是直接驱动光耦U2的发光部分的。那么当输出电压有变大趋势时,Vref随之增大导致流过 TL431的电流增大,于是光耦发光加强,感光端得到的反馈电压也就越大。U1在接受这个变大反馈电压后将改变MOSFET的开关时间,输出电压随改变而回落。事实上,上面讲述的过程在极短的时间内就会达到平衡,平衡时Vref=2.5V,又有R2=R3,所以输出为稳定的5V。这里要注意的是,不再能通过简单地改变取样电阻R2、R3的值来改变输出电压,因为在开关电源中每个元件的参数对整个电路工作状态的影响都会很大。按图中所示参数时,电路可在90VAC~264VAC(50/60Hz)输入范围内,输出+5V,精度优于±3%,输出功率为4W,最大输出电流可达0.8A,典型变换效率为70%。

TL431典型电路应用

TL431的几种基本用法 TL431的几种基本用法 作者:Panic2006年10月9日 TL431作为一个高性价比的常用分流式电压基准,有很广泛的用途。这里简单介绍一下TL431常见的和不常见的几种接法。 图(1)是TL431的典型接法,输出一个固定电压值,计算公式是:Vout = (R1 +R2)*2.5/R2, 同时R3的数值应该满足1mA < (Vcc-Vout)/R3 < 500mA 当R1取值为0的时候,R2可以省略,这时候电路变成图(2)的形式,TL431在这里相当于一个2.5V稳压管。 利用TL431还可以组成鉴幅器,如图(3),这个电路在输入电压Vin < (R1+R2) *2.5/R2 的时候输出Vout为高电平,反之输出接近2V的电平。需要注意的是当Vin在(R1+R2)*2.5/R2附近以微小幅度波动的时候,电路会输出不稳定的值。

TL431可以用来提升一个近地电压,并且将其反相。如图(4),输出计算公式为:Vout = ( (R1+R2)*2.5 - R1*Vin )/R2 特别的,当R1 = R2的时候,Vout = 5 - Vin。这个电路可以用来把一个接近地的电压提升到一个可以预先设定的范围内,唯一需要注意的是TL431的输出范围不是满幅的。 TL431自身有相当高的增益(我在仿真中粗略测试,有大概46db),所以可以用作放大器。 图(5)显示了一个用TL431组成的直流电压放大器,这个电路的放大倍数由R1和Rin决定,相当于运放的负反馈回路,而其静态输出电压由R1和R2决定。这个电路的优点在于,它结构简单,精度也不错,能够提供稳定的静态特性。缺点是输入阻抗较小,Vout的摆幅有限。

TL431的工作原理和典型应用电路

TL431的工作原理和典型应用电路TL431精密可调基准电源有如下特点:稳压值从2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。 典型应用电路如下: 1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。但在连接 容性负载时,应特别注意CL的取值,以免自激。 2:可调稳压电源(附图2)V o可在2.5~36V之间调节。 V0=Vref(1+R1/R2) (Vref=2.5v),由于承受电压与(Vi –V o)有关,因此压差很大时,R的功耗随之增加。使用时注意。 3:过电压保护电路(附图3)当Vi超过一定电压时,TL431触发,使晶闸管导通,产生瞬间大电流,将保险丝熔断,从而保护后极电路。V保护点=(1+R1/R2)Vref. 4:恒流源电路(附图4----拉电流负载)(附图5---灌电流负载)恒流值与Vref和 外加电阻有关,功率晶体管选用时要考虑余量。该恒流源如与稳压线路配接,可做 电流限制器用。 5:比较器(附图6)它是巧妙的运用了Vref=2.5v这个临界电压。当ViVref 时,V o=2V由于TL431内阻小,因而输入输出波形跟踪良好。

6:电压监视器(附图7)利用TL431的转移特性,组成实用电压监视器。当电压处于 上下限电压之间,LED电量,上下限电压分别为(1+R1/R2)Vref和(1+R3/R4)Vref

1 2 3 4 A B C D 4 321D C B A Title Num ber Revision Size A4Date:25-Jan-2005She et of File : C:\Progra m File s\Design Explorer 99 SE \Librar y\Pcb\Gener ic Footprints\MyDesign.ddb Dra wn By: R CL TL431 Vi Vo 1 R R1 R2 TL431 CL vi Vo 2 FUSE1 R2 R1 TL431 R Q?TRI AC Vi Vo 3R RS RL D? DIODE TUNNE L VT 4 R RS RL TL431 VT 5TL431 R2 R1 Vo Vi V+ 6 R1 R4 R3 R2 LED TL431 Vi Vo 7

TL431中文资料

TL431中文资料简介 TL431中文资料简介 介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 特点: ?可编程输出电压为36V ?电压参考误差:±0.4%,典型值@25℃(TL431B) ?低动态输出阻抗,典型0.22Ω ?负载电流能力1.0mA to 100mA ?等效全范围温度系数50 ppm/℃典型 ? 温度补偿操作全额定工作温度范围 ?低输出噪声电压 图1 TO92封装引脚图

图2 8脚封装引脚功能 图3 SOP-8 贴片封装引脚图

图4 TL431符号及内部方框图 图5 TL431内部电路图 MAXIMUM RATINGS (Full operating ambient temperature range applies, un less otherwise noted.)最大额定值(环境温度范围适用,除非另有说明。)

RECOMMENDED OPERATING CONDITIONS建议操作条件 ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃ ,除非另有说明。)

ELECTRICAL CHARACTERISTICS (TA = 25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。)

TL431 和PC817在开关电源中的应用电路设计

TL431 和PC817在开关电源中的应用电路设计 开关电源的稳压反馈通常都使用TL431 和PC817,如输出电压要求不高,也可以使用稳压二极管和PC817,下面我来通过以下典型应用电路来说明TL431,PC817 的配合问题。电路图如下: R13 的取值,R13 的值不是任意取的,要考虑两个因素: 1)TL431 参考输入端的电流,一般此电流为2uA 左右,为了避免此端电流影响分压比和避免噪音的影响,一般取流过电阻R13 的电流为参考段电流的100 倍以上,所以此电阻要小于2.5V/200uA=12.5K. 2)待机功耗的要求,如有此要求,在满足《12.5K的情况下尽量取大值。 TL431 的死区电流为1mA,也就是R6 的电流接近于零时,也要保证431 有1mA,所以R3<=1.2V/1mA=1.2K 即可。除此以外也是功耗方面的考虑,R17 是为了保证死区电流的大小,R17可要也可不要,当输出电压小于7.5v 时应该考虑必须使用,原因是这里的R17 既然是提供TL431死区电流的,那么在发光二极管导通电压不足时才有用,如果发光二极管能够导通,就可以提供TL431 足够的死区电流,如果V o 很低的时候,计算方法就改为R17=(V o-Vk)/1mA(这里Vk=Vr-0.7=1.8v);当V o=3.3V 时R17 从死区电流的角度看临界最大值R17=(3.3-1.8)/1mA=1.5k,从TL431 限流保护的角度看临界最小值为R17=(3.3-1.8)/100mA=15Ω。当V o 较高的时候,也就是V o 大于Vk+Vd 的时候,也就是差不多7.5v 以上时,TL431 所需的死区电流可以通过发光二极管的导通提供,所以这是可以不用R17。 R6 的取值要保证高压控制端取得所需要的电流,假设用PC817(U1-B),其CTR=0.8-1.6,取低限0.8,要求流过光二极管的最大电流=6/0.8=7.5mA,所以R6 的值<=(15-2.5-1.2)/7.5=1.5K,光二极管能承受的最大电流在50mA 左右,TL431 为100mA,所以我们取流过R6 的最大电流为50mA,R6>(15-2.5-1.3)/50=226 欧姆。要同时满足这两个条件:226<R6。 有的电路设计中增加提升低频增益电路,用一个电阻和一个电容串接于控制端和输出端,来压制低频(100Hz)纹波和提高输出调整率,即静态误差,牡电就是提升相位,要放在带宽频率的前面来增加相位裕度,具体位置要看其余功率部分在设计带宽处的相位是多少,电阻和电容的频率越低,其提升的相位越高,当然最大只有90 度,但其频率很低时低频增益也会减低,一般放在带宽的1/5 初,约提升相位78 度。

TL431 技术应用资料

TL431 技术应用资料 学好,用好 TL431,可以让产品设计事半功倍而且更加优秀---bjxsdz整理 采用TL431构成的基准电源: 如图是采用TL431构成的基准电源电路。电路中,外接电阻RP1和R1设定输出电压,使输出电压在+2.5~+5V之间连.. TL431的基本应用: TL431的基本应用电路如下图所示:(a)并联稳压电路; (b)串联稳压电路; (c)采用VTH的过电压保护电路 .. TL431误差检测放大集: TL431是一块精密参考电压集成电路,广泛应用于大屏幕彩电、彩显、DVD、VCD等影碟机,变频空调、计算机等备种.. 采用TL431的并联稳压: 如图a、b是采用TL431的并联稳压电路。如图(a)所示稳压电路的最小电流为200μA,最大电流可达8A,动态范围为.. 由TL431等构成的比较器: 如图a、b、c是由TL431等构成的比较器等电路。如图(a)是由TL431等构成的比较器电路,当输入电压Ui≥2.5V时,.. 由TL431等构成的电源保护: 如图a、b、c、d是由TL431等构成的电源保护电路。如图(a)是由TL431等构成的恒流源电路,恒定电流I。=UREF/R2.. 由TL431等构成的比较器 如图a、b、c是由TL431等构成的比较器等电路。如图(a)是由TL431等构成的比较器电路,当输入电压Ui≥2.5V时,输出U。=2V;Ui<2.5V 时,输出U。=Ucc。 如图(b)是由TL431等构成的过压保护电路,当输入电压Ui超过(1+RRP1/R1)UREF时,VS触发导通便输出短路,较大电流流经熔断丝FU便其熔断,从而达到电压保护的目的。如图(c)是由TL431等构成的延时电路,加上输入电压Ui时,C1上电压为零,TL431截止,LED不发光。随着C1的充电电压的升高,达到UREF时,TL431导通,LED发光显示。从加上输入电压到LED发光的延迟时间为R1C1ln[Ui/(Ui-UREF)]。S1为复位开关,接通时,C1经此放电并为下次延时作准备。

tl431详细解读及典型电路资料

TL431 德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE(元件符号像二极管的正极.3脚(K)CATHODE (类似二极管的负极) 介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。该器件的典型动态阻抗为

0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 特点: ?可编程输出电压为36V ?电压参考误差:±0.4%,典型值25℃(TL431B) ?低动态输出阻抗,典型0.22Ω ?负载电流能力1.0mA to 100mA ?等效全范围温度系数50 ppm/℃典型 ?温度补偿操作全额定工作温度范围 ?低输出噪声电压 图1 TO92封装引脚图

图2 8脚封装引脚功能 图3 SOP-8 贴片封装引脚图

图4 TL431符号及内部方框图

图5 TL431内部电路图 MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)最大额定值(环境温度范围适用,除非另有说明。)

TL431可调电压基准的接法

TL431可调电压基准的接法 时间:2007-02-27 来源: 作者:林水潮点击:846 字体大小:【大中小】 TL431是一个小个头(如同普通小三极管封装)而又便宜的可调电压基准芯片。具体的参数大家可以参考其pdf文档说明,这里给出其两种最常用的接法。 1.这种接法提供 2.5V基准电压,简单适用。 2.该接法可以提供一个可以调节的基准电压。电压输出为2.5×(1+R2/R1)。

TL431特性与应用 时间:2006-08-10 来源: 作者: 点击:1479 字体大小:【大中小】 德州仪器公司(TI)生产的TL431是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref (2.5V)到36V的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。 下图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。 TL431的具体功能可以用下图的功能模块示意。 图1:TL431的器件符号和功能示意图 由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管的电流将从1到100mA

变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮组的,本文的一些分析也将基于此模块展开。 1、恒压电路应用 图2:恒压电路 前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如上图所示,当R1和R2的阻值确定后,两者对Vo的分压引入反馈,若Vo增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意范围电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1mA。 当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4

相关主题