搜档网
当前位置:搜档网 › 晶体管的开关介绍

晶体管的开关介绍

晶体管的开关介绍
晶体管的开关介绍

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

三极管开关电路工作原理解析

三极管开关电路工作原理解析 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(C utoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (VBE 亦趋近于0),C 极与E 极间约呈断路状态,IC = 0,VCE = VCC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,I B 的值适中(VBE = 0.7 V),I C =h F E I B 呈比例放大,Vce = Vcc -Rc I c = V cc - Rc hFE I B可被IB 操控。若三极管在饱和区,IB 很大,VBE = 0.8 V,VCE = 0.2 V,VBC = 0.6 V,B-C 与B -E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc ,I c 与IB 无关了,因此时的IB大过线性放大区的IB 值,Ic

图3、截止态如同断路线图图4、饱和态如同通路 实验:三极管的开关作用 简单三极管开关:电路如图5,电阻RC是LED限流用电阻,以防止电压过高烧坏LED(发光二极管),将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对的VOUT 以及LED 的亮度。当三极管开关为断路时,VOUT =VCC =12 V,LED 不亮。当三极管开关通路时,VOUT = 0.2V ,LED 会亮。改良三极管开关:因为三极管由截止区过度到饱和区需经过线性区,开关的效果不会有明确的界线。为使三极管开关的效果明确,可串接两三极管,电路如图六。同样将输入信号VIN 从0 调到最大(等分为约20 个间隔),观察并记录对应的VOUT 以及LED 的亮度。

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

三极管开关电路

三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的 回路上。 Vcc 團1基本的三极管开关 输入电压Vin则控制三极管开关的开启(open)与闭合(closed)动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off) 区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturati on) 。 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838 电子资源)当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为:

三极管开关电路分析及Rb计算13页word

1.输入电压Vin,输入电阻Rin,三极管导通电压取0.6V,三极管电流放大倍数是B,输出电阻(在C极的电阻)是Rout。这 样很好计算了: 5V / Rout = A, A / B = C,所以C是你最小的基极电流。 如果你的输入电压Vin也用5V,那么(5 - 0.6)/C = Rin,你就可以选Rin了,为使三极管可靠饱和,选(5 - 0.6)/Rin > C 就可以了。 2.先求I先求Ic=Vc/Rc Ib=Ic/B 基极电阻 Rb=(Vb-Vbe)/Ib c=Vc/Rc Ib=Ic/B 基极电阻 Rb=(Vb-Vbe)/Ib 举例: 已知条件:输入Vi=5V,电源电压Vcc=5V,三极管直流放大系数beta=10. 查规格书得,集-射饱和电压Vcesat=0.2V,此时集电极电流Ic=10mA(或其它值),则集电极电阻Rc=(Vcc-Vcesat)/Ic = (5-0.2)/10 = 480 欧。则Ib=Ic/beta=10/10=1 mA,基极限流电阻Rb=(Vi-Vbe)/Ib=(5-0.6)/1=4.4K,取为4.2K。 这时要注意,输入高电平为5V是理想情况,有可能在2.5V(输入的一半)以上就为高了,这时我们以5V输入而得到的基极电流很可能不够,因此要重新

计算。以2.5V为逻辑电平的阈值来计算,则Rb==(Vi-Vbe)/Ib=(2.5-0.6)/1=1.9K,取为1.8K,或2K。 如何使三极管工作于开关状态? 晶体三极管的实际开关特性决定于管子的工作状态。晶体三极管输出特性三个工作区,即截止区、放大区、饱和区,如图4.2.1(b)所示。 如果要使晶体三极管工作于开关的接通状态,就应该使之工作于饱和区; 要使晶体三极管工作于开关的断开状态,就应该使之工作于截止区,发射极电流iE=0,这时晶体三极管处于截止状态,相当于开关断开。集电结加有反向电压,集电极电流iC=ICBO,而基极电流iB=-ICBO。说明三极管截止时,iB并不是为0,而等于-ICBO。基极开路时,外加电源电压VCC使集电结反向偏置,发射结正向偏置晶体三极管基极电流iB=0时,晶体管并未进入截止状态,这时iE=iC =ICEO还是较大的。晶体管进入截止状态,晶体管基极与发射极之间加反向电压,这时只存在集电极反向饱和电流ICBO,iB =-ICBO,iE=0,为临界截止状态。进一步加大基极电压的绝对值,当大于VBO时,发射结处于反向偏置而截止,流过发射结的电流为反向饱和电流IEBO,这时晶体管进入截止状态iB = -(ICBO+ IEBO),iC= ICBO。发射结外加正向电压不断升高,集电极电流不断增加。同时基极电流也增加,随着基极电流iB 的增加基极电位vB升高,而随着集电极电流iC的增加,集电极电位vC却下降。

功率晶体管(GTR)的特性

功率晶体管(GTR)的特性 功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。 —、结构特性 1、结构原理 功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。 对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。目前常用的GTR器件有单管、达林顿管和模块三大系列。 三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。 图1、功率晶体管结构及符号 图2、达林顿GTR结构 (a)NPN-NPN型、(b)PNP-NPNxing 达林顿结构是提高电流增益的一种有效方式。达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。不难推得 IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2) 目前作为大功率开关应用最多的是GTR模块。它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。GTR模块结构紧凑、功能强,因而性能价格比大大提高。

三极管作为开关电路的设计及应用

第一节基本三极管开关基本电路设计 三极管除了可以当做交流信号放大器之外,也可以做为开关之用。严格说起来,三极管与一般的机械接点式开关在动作上并不完全相同,但是它却具有一些机械式开关所没有的特点。图1所示,即为三极管电子开关的基本电路图。由下图可知,负载电阻被直接跨接于三极管的集电极与电源之间,而位居三极管主电流的回路上, 图1 基本的三极管开关 输入电压Vin则控制三极管开关的开启(open) 与闭合(closed) 动作,当三极管呈开启状态时,负载电流便被阻断,反之,当三极管呈闭合状态时,电流便可以流通。详细的说,当Vin为低电压时,由于基极没有电流,因此集电极亦无电流,致使连接于集电极端的负载亦没有电流,而相当于开关的开启,此时三极管乃胜作于截止(cut off)区。 同理,当Vin为高电压时,由于有基极电流流动,因此使集电极流过更大的放大电流,因此负载回路便被导通,而相当于开关的闭合,此时三极管乃胜作于饱和区(saturation)。838电子 一、三极管开关电路的分析设计 由于对硅三极管而言,其基射极接面之正向偏压值约为0.6伏特,因此欲使三极管截止,Vin必须低于0.6伏特,以使三极管的基极电流为零。通常在设计时,为了可以更确定三极管必处于截止状态起见,往往使Vin值低于0.3伏特。(838电子资源) 当然输入电压愈接近零伏特便愈能保证三极管开关必处于截止状态。欲将电流传送到负载上,则三极管的集电极与射极必须短路,就像机械开关的闭合动作一样。欲如此就必须使Vin达到够高的准位,以驱动三极管使其进入饱和工作区工作,三极管呈饱和状态时,集电极电流相当大,几乎使得整个电源电压Vcc均跨在负载电阻上,如此则VcE便接近于0,而使三极管的集电极和射极几乎呈短路。在理想状况下,根据奥姆定律三极管呈饱和时,其集电极电流应该为﹕

晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师 二零一二年十月

晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A 系列),硅管多为NPN型(3D系列)。

晶体管开关电路设计报告

xxx大学 开放性实验报告 (A类) 项目名称:三极管开关电路设计实验室名称:创新实验室 学生姓名:xxxxxxxx

创新实验项目报告书 实验名称 三极管开关电路设计 日期 xxx 姓名 xxx 专业 xxx 一、实验目的(详细指明输入输出) 1.最大开关频率≥10KHz(不加输出负载); 2.其输出用以控制继电器的通断(输入信号1Hz); 3.有效输入控制电压Vin≤0.7V 或Vin≥ 4.3V; 4.设计两种开关电路:高电平饱和导通、低电平饱和导通。 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 晶体管开关电路可以有两种,分别是共射开关电路,共集电极开关电路。 共射开关电路的NPN 型晶体管电路如下图所示: 当V IN >V ON 时,晶体管基极-发射极导通,有电流流过集电极,又晶体管发射 级接地,晶体管工作在饱和区,流过集电极电流很大,V CE 很小,相当于把集电 极-发射极的一个“开关”闭合了一样,从而形成开关动作; 共集电极开关电路的NPN 型晶体管电路如下图所示: 当V BE >V ON 时,晶体管基极-发射极导通,有电流流过集电极和发射极,此时 将信号从发射极电阻取出,可以得到总比基极电压小0.7V 的电压值,于是,当基极输入标准的TTL 电平的时候,NPN 共集电极开关电路从集电极可以得到0.7V 和5V 的电压。还有一点,由于共集电极晶体管电路输出电压同输入电压同向,可以消除米勒效应的影响,因此共集电极开关电路的开关频率大大优于共射极

开关电路。 综上,我们本次试验选择共集电极开关电路作为实验电路。 三、实验过程(记录实验流程,提炼关键步骤)(尽可能详细) a)确定元件型号,查找相关资料,设计最初的设计原理图。 由于手头上只有8050和8550型晶体管,而此次开关电路设计要求对晶体管并不苛刻,因此直接拿8050和8550作为本次试验所用的晶体管。 原理图如下图所示: b)在仿真软件上进行仿真。 按照原理图搭建仿真电路,仿真结果如下图所示: 仿真结果中,输入5V正弦波给予2.5V偏置以便观察共集开关电路的特性。在仿真结果中可以看到,当输入电压大于4.4V时,管子基极-发射极关断,从射极电阻取出的电压直接为V ——在这里为5V。 CC c)按照电路原理图焊接电路板。

二极管三极管的开关特性(精)

第一节二极管的开关特性 一般而言,开关器件具有两种工作状态:第一种状态被称为接通 ,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。 在数字系统中, 晶体管基本上工作于开关状态。对开关特性的研究, 就是具体分析晶体管在导通和截止之间的转换问题。晶体管的开关速度可以很快, 可达每秒百万次数量级, 即开关转换在微秒甚至纳秒级的时间内完成。二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短, 一般可以忽略不计, 因此下面着重讨论二极管从正向导通到反向截止的转换过程。 一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t 1时间内, 输入为 +VF , 二极管导通, 电路中有电流流通。 设 V D 为二极管正向压降(硅管为 0.7V 左右,当 V F 远大于 V D 时, V D 可略去不计,则

在 t 1时, V 1突然从 +VF 变为 -V R 。在理想情况下 ,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是, 二极管并不立刻截止, 而是先由正向的 I F 变到一个很大的反向电流 I R =VR /R L , 这个电流维持一段时间 t S 后才开始逐渐下降,再经过 t t 后 ,下降到一个很小的数值 0.1I R ,这时二极管才进人反向截止状态,如下图所示。 通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中 t S 称为存储时间, t t 称为渡越时间, t re =ts +tt 称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压 V F 时,载流子不断扩散而存储的结果。当外加正向电压时 P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴 ,它们都是非平衡少数载流于,如下图所示。

三极管特性曲线分析

目录 一、三极管特性曲线分析 (1) 1.1三极管结构 (1) 1.2 三极管输入特性曲线 (2) 1.3 三极管输出特性曲线 (2) 二、三极管应用举例 (3) 2.1 三极管在放大状态下的应用 (3) 2.2 三极管在开关状态下的应用 (3) 三、线性电路和非线性电路 (4) 3.1线性电路理论 (4) 3.2 非线性电路理论 (5) 3.3 线性电路的分析应用举例 (6) 3.4 非线性电路的分析应用举例 (7) 四、数字电路和模拟电路 (8) 4.1 数字电路 (8) 4.2 模拟电路 (8) 4.3数字电路和模拟电路区别与联系 (9) 五、总结与体会 (9) 六、参考文献 (10)

三极管输入输出曲线分析 ——谈线性电路与非线性电路 摘要:三极管是电路分析中非常重要的一个元器件。本文主要分析了三极管输入输出特性曲线,介绍了线性电路和非线性电路的理论在分析工具的不同之处。同时,线性电路和非线性电路在分析电路时各有着不同的用处。最后,介绍了数字电路及模拟电路区别与联系。 关键词:三极管;数字电子技术;模拟电子技术 一、三极管特性曲线分析 1.1三极管结构 双极结型三极管是由两个PN结背靠背构成。三极管按结构不同一般可分为PNP和NPN 两种。 图1-1 三极管示意图及符号 PNP型三极管和NPN型三极管具有几乎等同的电流放大特性,以下讨论主要介绍NPN 型三极管工作原理。NPN型三极管其两边各位一块N型半导体,中间为一块很薄的P型半导体。这三个区域分别为发射区、集电区和基区,从三极管的三个区各引出一个电极,相应的称为发射极(E)、集电极(C)和基极(B)。虽然发射区和集电区都是N型半导体,但是发射区的掺杂浓度比集电区的掺杂浓度要高得多。另外在几何尺寸上,集电区的面积比发射区的面积要大。由此可见,发射区和集电区是不对称的。 双极型三极管有三个电极:发射极(E)、集电极(C)、基极(B),其中两个可以作为输入,两个可以作为输出,这样就有一个电极是公共电极。三种接法就有三种组态:共发射极接法(CE)、共基极接法(CC)、共集电极接法(CB)。这里只以共射接法为例分析其输入

三极管开关电路详解

一 三极管只做开关作用,不需要调整输出电压。驱动功率大的设备。也不是很大,1A就行。哪种方法能最大利用三极管效率,哪种方法三极管发热最小?用补充的驱动好不好?R选 多少合适?还有别的好办法吗?负载是电磁阀。 答:1、特点不同,要看前后级的关系,第一种是跟随输出,输入阻抗高,输出阻抗小, 当前级是高压小电流的时候好,并且输出电压是受控前级电压,可做限幅开关,输出是电 压源。第二种是反向共射集电极输出,适合前级是低压大电流,输出是阻抗高,也是电流源,当负载变化时,电流不变。如果前级是低阻,如TTL,适合第二种。补充的电路是二 者的结合,光耦的漏电流容易被放大,所以要加R大约2K左右(看光耦的参数),如是 继电器线圈,当释放电压低时,容易误动作,电流优点是可给线圈提快速建立电压。本例 中如是继电器,属电流驱动,最好用集电极输出,但也要有R。 补充:你是驱动电磁阀啊,又要晶体管功耗低,补充的驱动管子压降很大,只能是第二种,把阀接到集电极上,并且1A的驱动电流要再加一级组成复合管 2、第二种更好,这表现在两个方面: 首先,三极管的集电结比发射结更结实不易损坏,所以一般用集电极作为功率输出端; 其次,用共发射极放大器可以利用的电源电压幅度为电源电压-0.3V(集电结饱和电压),而用射极跟随器可以利用的电源电压幅度为电源电压-0.3V-0.7V(集电结饱和电压和发射 结导通电压),显然前者对电源利用的效率更高。 建议你采用第二种,集电器输出方式的电路负载特性好,很多自控图纸中多是把继电器的 线圈作为集电极负载。无基流时,集电极几乎无电流。再者,集电极输出的动态特性好

二 利用三极管饱和导通和截止的的特性,本身就可以实现接通和断开的功能,但由于它的带载功率有限,所以需配继电器扩流,并且可以扩充触点的数量,该电路是PNP三极管,所以采用集电极接低电平方式输出,P37为上拉电阻,当基极没有输入脉冲或电压时,基极为高电平,因为这是反极性三极管,所以平时是截止的,只有基极输入低电平,降低基极电压,这时三极管导通,继电器线圈得电吸合,原常闭触点断开,常开触点吸合,完成设备的接通与断开功能。图中二极管反向接在线圈两端,是保护线圈不受反峰电压的冲击,对继电器起到保护作用。

二极管和三极管的开关特性

第一节二极管的开关特性 一般而言,开关器件具有两种工作状态:第一种状态被称为接通,此时器件的阻抗很小,相当于短路;第二种状态是断开,此时器件的阻抗很大,相当于开路。 在数字系统中,晶体管基本上工作于开关状态。对开关特性的研究,就是具体分析晶体管在导通和截止之间的转换问题。晶体管的开关速度可以很快,可达每秒百万次数量级,即开关转换在微秒甚至纳秒级的时间内完成。 二极管的开关特性表现在正向导通与反向截止这样两种不同状态之间的转换过程。二极管从反向截止到正向导通与从正向导通到反向截止相比所需的时间很短,一般可以忽略不计,因此下面着重讨论二极管从正向导通到反向截止的转换过程。 一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+V F,二极管导通,电路中有电流流通。 设V D为二极管正向压降(硅管为0.7V左右),当V F远大于V D时,V D可略去不计,则 在t1时,V1突然从+V F变为-V R。在理想情况下,二极管将立刻转为截止,电路中应只有很小的反向电流。但实际情况是,二极管并不立刻截止,而是先由正向的I F变到一个很大的反向电流I R=V R/R L,这个电流维持一段时间t S后才开始逐渐下降,再经过t t后,下降到一个很小的数值0.1I R,这时二极管才进人反向截止状态,如下图所示。

通常把二极管从正向导通转为反向截止所经过的转换过程称为反向恢复过程。其中t S 称为存储时间,t t称为渡越时间,t re=t s+t t称为反向恢复时间。 由于反向恢复时间的存在,使二极管的开关速度受到限制。 二、产生反向恢复过程的原因——电荷存储效应 产生上述现象的原因是由于二极管外加正向电压V F时,载流子不断扩散而存储的结果。当外加正向电压时P区空穴向N区扩散,N区电子向P区扩散,这样,不仅使势垒区(耗尽区)变窄,而且使载流子有相当数量的存储,在P区内存储了电子,而在N区内存储了空穴,它们都是非平衡少数载流于,如下图所示。 空穴由P区扩散到N区后,并不是立即与N区中的电子复合而消失,而是在一定的路程L P(扩散长度)内,一方面继续扩散,一方面与电子复合消失,这样就会在L P范围内存储一定数量的空穴,并建立起一定空穴浓度分布,靠近结边缘的浓度最大,离结越远,浓度越小。正向电流越大,存储的空穴数目越多,浓度分布的梯度也越大。电子扩散到P区的情况也类似,下图为二极管中存储电荷的分布。 我们把正向导通时,非平衡少数载流子积累的现象叫做电荷存储效应。 当输入电压突然由+V F变为-V R时P区存储的电子和N区存储的空穴不会马上消失,但它

晶体管伏安特性与开关特性图文说明

晶体管伏安特性与开关特性图文说明 1. 晶体管伏安特性曲线 ⑴输入特性曲线 输入特性曲线是指当集电极与发射极之间电压U CE 为常数时, 输入回路中加在晶体管基极与发射极之间的发射结电压u BE 和基极电流i B 之间的关系曲线,如图2.7所示。用函数关系式表示为: 常数==CE BE B u u f i |)( ⑵输出特性曲线 输出特性曲线是在基极电流i B 一定的情况下,晶体管的集电极输出回路中,集电极与发射极之间的管压降u CE 和集电极电流i C 之间的关系曲线,如图2.8所示。用函数式表示为 常数==B CE C i u f i |)( 图2.7 晶体管的输入特性曲线 图2.7输出特性曲线 ①截止区 习惯上把i B ≤0的区域称为截止区,即i B =0的输出特性曲线和横坐标轴之间的区域。若要使i B ≤0,晶体管的发射结就必须在死区以内或反偏,为了使晶体管能够可靠截止,通常给晶体管的发射结加反偏电压。 ②放大区 在这个区域内,发射结正偏,集电结反偏i C 与i B 之间满足电流分配关系i C =βi B +I CEO , 输出特性曲线近似为水平线。 ③饱和区 如果发射结正偏时,出现管压降u CE <0.7V (对于硅管来说),也就是u CB <0 的情况,称晶体管进入饱和区。所以饱和区的发射结和集电结均处于正偏状态。饱和区中的i B 对i C 的

影响较小,放大区的β也不再适用于饱和区。 2.晶体管的开关特性 从上述可知,当U C >U B >U E 时,三极管集的电极电流与基极电流成C B I I β=关系,而且调整RX1电阻(集电极电阻),使U CE 从0-5V 变化,此时的I C 值已最大。即:当U C >U B >U E 时,集电极电流I C 最大值。 所谓晶体管的开关特性是指,当U C >U B >U E 时,集电极到发射极相当于有大电流流过,U CE =0V ,电源电压全部作用于集电极电阻上;当U C >U B =U E 时(或U C >U E >U B )时,集电极无电流流过,即I C =0A ,相当于晶体管的集电极与发射极断开,U CE 等于电源电压。所以,我们可以通过控制基极B 点电位,改变集电极与发射极U CE 的电位。例如,当U B =0.7V (或U B >0.7V )时,UCE=0V ,但此时流过的电流小于放大区电流;当U B =0V (或U B <0.7V )时,UCE=5V (电源电压)。 晶体管实现开关特性时,工作包河区。

实验二 晶体管特性的测量

实验二 晶体管特性的测量与晶体管的测试 一、实验目的 1. 了解晶体管图示仪的基本原理和晶体管的引脚及类型判别 2. 掌握用晶体管图示仪测量晶体管特性曲线的方法 3. 掌握运用特性曲线求晶体管特性参数的方法 二、实验内容 1. 测试2AP11正反向特性 ⑴ 正向特性 a . 慢慢增大峰值扫描电压,直至I D =10mA ,把曲线绘在绘图纸上。 b . 读测I DQ =5mA 时的正向压降V DQ ,计算直流电阻R D =V DQ /I DQ 、交流电阻 r D =△V D /△I D 。 ⑵ 反向特性 a . 逐渐增大峰值扫描电压至100V ,描下反向特性曲线。 b . 读测V R =100V 时的反向电流I'R 以及I R =20μA 时的反向电压V R 。 2. 测试2CW19稳压特性 a . 读测稳压值V ZQ 。 b . 在I EQ =50mA 时,求动态电阻R=△V Z /△I Z 。 c . 读测I Zmin 值 3. 测试晶体管共射输入输出特性 (1) 测量3DG12B 的共射输出特性 a . 描下输出特性曲线族。 b . 在V CEQ =5V ,I CQ =4~6mA 求 V V B C CE I I 5Q == β ,CE Q V V B C CE I I =??= β c . 按下”零电流”开关(或断开基极) I .在V CE =10V 时,读出I CEO II .调节峰值电压,使I C =100μ A 时,读取BV CEO (2) 测量3DG12 B 的共射输入特性 a . 描下输入特性曲线族。 b . 从输入特性曲线上求输入电阻 B BE be I V r ??= (3) 测量3AX31的共射输出特性 a . 描下输出特性曲线族。 b . 在V CEQ =5V ,I CQ =3~5mA 时,求,β c . 按下”零电流”开关(或断开基极)

晶体管开关电路详解

晶体管开关电路详解 图8.1是一例发射极接地放大电路,这种电路能够通过输入信号(电压)连续地———模拟地控制流过集电极发射极间电流,获得输出电压。但是开关电路,如图8.2所示是一种计数地接通/断开晶体管的集电极发射极间的电流作为开关使用的电路。 图8.3是电压增益(放大倍数)A v=10的发射极接地型放大电路。照片8.1是给这个电路输入1kHz、1VP-P信号时的输入输出波形。这时的输出波形不是通过介入耦合电容取出的,而是集电极电位。由于A V=10,所以输出应该是10VP-P。但是由于电源电压以及发射极电阻上电压降的缘故,如照片所示,波形的上下部分均被截去(输出饱和)。

输出波形的上半周被截去的情况是由于输出电平与电源电压相等,所以集电极电阻上没有了电压降,也就是说晶体管的集电极发射极间没有电流流过(集电极电流为零)。换句话说,晶体管处于截止状态。 相反,输出波形的下半周被截去的情况是因为输出电平处于更接近GND电平的电位(集电极电阻上的电压降非常大),晶体管的集电极电流处于最大值。也就是说,晶体管处于导通状态。 这样的开关电路只要利用输入信号使输出波形被限幅就可以实现(使晶体管处于接通/断开状态就可以),所以可以认为只要放大电路具有非常大的放大倍数,或者加上很大的输入信号就可以。但是,这样的开关电路必须是直流的接通/断开状态(这样的用途非常多),所以必须具有一定的直流的放大倍数。 8.1.2从放大电路到开关电路图 8.4是从发射极放大电路演变到开关电路的示意图。首先为了获得直流增益(放大倍数),从图8.4(a)的一般发射极放大电路中去掉输入输出的耦合电容C1、C2,得到图8.4(b)的电路。进一步为了提高放大倍数,去掉发射极电阻E,变成图8.4(c)的电路。这样一来,也就没有必要加基极偏置电压。当输入信号为0V时,晶体管处于截止状态,所以集电极就没有必要流过无用的电流———空载电流。因此,如图8.4(d)所示去掉偏置用的R1。

晶体管开关特性、限幅器与钳位器

实验二 晶体管开关特性、限幅器与钳位器 1.实验目的 (1)观察晶体二极管、三极管的开关特性,了解外电路参数变化对晶体管开关特性的影响 (2)掌握限幅器和钳位器的基本工作原理。 2.实验原理 (1)晶体二极管的开关特性 由于晶体二极管具有单向导电性,故其开关特性表现在正向导通与反向截止两种不同状态的转换过程。 如图2-1电路,输入端施加一方波激励信号V i ,由于二极管结电容的存在,因而有充电、放电和存贮电荷的建立与消散的过程。因此当加在二极管上的电压突然由正向偏置(+V 1)变为反向偏置(-V 2)时,二极管并不立即截止,而是出现一个较大的反向电流2 V R ,并维持一段时间t s (称为存贮时间)后,电流才开始减小,再经t f (称为下降时间)后,反向电流才等于静态特性上的反向电流I 0,将t rr =t s +t f 叫做反向恢复时间,t rr 与二极管的结构有关,PN 结面积小,结电容小,存贮电荷就少,t s 就短,同时也与正向导通电流和反向电流有关。 当管子选定后,减小正向导通电流和增大反向驱动电流,可加速电路的转换过程。 (2)晶体三极管的开关特性 晶体三极管的开关特性是指它从截止到饱和导通,或从饱和导通到截止的转换过程,而且这种转换都需要一定的时间才能完成。 如图2-2电路的输入端,施加一个足够幅度(在-V 2和+V 1之间变化)的矩形脉冲电压 V i 激励信号,就能使晶体管从截止状态进入饱和导通,再从饱和进入截止。可见晶体管T 的集电极电流 i c 和输出电压V o 的波形已不是一个理想的矩形波,其起始部分和平顶部分都延迟了一段时间,其上升沿和下降沿都变得缓慢了,如图2-2 波形所示,从V i 开始跃升到i c 上升到0.1I CS ,所需时间定义为延迟时间t d ,而i c 从0.1 I CS 增长到0.9 I CS 的时间为上升时间t r ,从V i 开始跃降到i c 下降到0.9I C S 的时间为存贮时间 t S ,而i C 从0.9I CS 下降到0.1I CS 的时间为下降时间t f ,通常称t on =t d +t r 为三极管开关的“接通时间”,t off =t S +t f 称为“断开时间”,形成上述开关特性的主要原因乃是晶体管结电容之故。

实验晶体管开关特性

实验一 晶体管开关特性、限幅器与钳位器 一、实验目的 1、观察晶体二极管、三极管的开关特性,了解外电路参数变化对晶体管开关特性的影响。 2、掌握限幅器和钳位器的基本工作原理。 二、实验原理 1、晶体二极管的开关特性 由于晶体二极管具有单向导电性,故其开关特性表现在正向导通与反向截止两种不同状态的转换过程。 如图1-1电路,输入端施加一方波激励信号v i ,由于二极管结电容的存在,因而有充电、放电和存贮电荷的建立与消散的过程。因此当加在二极管上的电压突然由正向偏置(+V 1)变为反向偏置(-V 2)时,二极管并不立即截止,而是出现一个较大的反向电流R V 2 ,并维持一段时间t s (称为存贮时间)后,电流才开 始减小,再经t f (称为下降时间)后,反向电流才等于静态特性上的反向电流I 0,将t rr =t s +t f 叫做反向恢复时间,t rr 与二极管的结构有关,PN 结面积小,结电容小,存贮电荷就少,t s 就短,同时也与正向导通电流和反向电流有关。 当管子选定后,减小正向导通电流和增大反向驱动电流,可加速电路的转换过程。 2、晶体三极管的开关特性 晶体三极管的开关特性是指它从截止到饱和导通,或从饱和导通到截止的转换过程,而且这种转换都需要一定的时间才能完成。 如图1-2电路的输入端,施加一个足够幅度(在-V 2和+V 1之间变化)的矩形脉冲电压v i 激励信号,就能使晶体管从截止状态进入饱和导通,再从饱和进入截止。可见晶体管T 的集电极电流 i c 和输出电压v o 的波形已不是一个理想的矩形波,其起始部分和平顶部分都延迟了一段时间,其上升沿和下降沿都变得缓慢了,如图1-2 波形所示,从v i 开始跃升到i C 上升到0.1I CS ,所需时间定义为延

如何理解晶体管的三种基本特性

如何理解晶体管的三种基本特性 电子线路中晶体三极管是一个核心知识点,对三极管的认识程度直接影响对电路的理解和应用。而对一个初学者来说,晶体三极管的基本特性又是一个学习的难点,因为三极管的工作原理十分复杂,涉及半导体微观层面的诸多概念与因素。如何有效地理解三极管的基本工作原理,是电子线路入门的一个必须解决的问题。 替换理解是对复杂整体认识的一个有效方法。所谓替换理解,是指用我们熟知的现象去理解我们难以根本认识的内容。例如光在镜面上的反射是一个十分复杂的问题,而且我们很难从微观的角度来认识它,牛顿则将光想象成由若干弹性小球组成,并将这些弹性小球叫做“光子”,于是光的反射就可以理解为弹性小球撞击到平面后被反弹回去,从而从一个方面解释了光在镜面上的反射。虽然光子并非弹性小球,但这光的反射这个现象中,这样理解却是合理的,这就是替换理解。 一.三极管的水流模型与三端电流的关系 在三极管基本特性的理解中,我们也可以用这样的方式来理解。为了详细地说明这一问题,我们先做一个小装置: 我们先用一根直径大一点的水管,我们把它叫做主管,在它的中央横断地开一个槽,但不要锯断它,并在这个槽中嵌入一块厚度与槽宽相等的闸板,即闸板,如图1所示: 图1 带有闸板的水管(剖面) 这样一来就形成了一个阀:将闸板推进去,阀就关小,推到底后阀就关死了;将闸板拉出来阀就开大,拉得越多就开得越大,全部拉出来后阀就完全打开了。我们将这根水管的上端(入水口)叫做“集电极”,用“C”表示,而将管的下端(出水口)叫做“发射极”,用“E”表示。 下面我们再找一根直径较小的水管,我们且叫它做支管,将它弯曲后焊在主管上,

如图2所示: 图2 增加一根小管(剖面) 显然,从支管也可以注入水,这些水也会从主管的下端流出,如果我们将支管的入口叫做“基极”,用“B ”来表示,应可以得出结论:E 端流出的水是C 端和B 端注入水的总和,如果我们用“I ”来表示水流,即为: B C E I I I += 下面我们再做一点复杂一些装置在上面:我们在支管上做一个水车,如果支管有水流I B 流过,水车就会逆时针旋转。我们再在水车的轴上固定上一根细绳,当水车旋转时就会将细绳缠绕在轴上,同时在细绳的另一头形成拉力。如果将细绳的另一头拴在闸板上,水车的转动就会将闸板拉出来,从而将阀打开。为了保证在没有水时阀是关闭的,可以用两根弹簧将闸板压进管槽内,如图3所示。

相关主题