搜档网
当前位置:搜档网 › 多维字符串数组的初始化-动态内存分配

多维字符串数组的初始化-动态内存分配

多维字符串数组的初始化-动态内存分配
多维字符串数组的初始化-动态内存分配

编程学习-二维字符串数组的初始化-动态内存分配

动态内存分配

1.堆内存分配:

C/C++定义了4个内存区间:代码区,全局变量与静态变量区,局部变量区即栈区,动态存储区,即堆

(heap)区或自由存储区(free store)。

堆的概念:

通常定义变量(或对象),编译器在编译时都可以根据该变量(或对象)的类型知道所需内存空间的

大小,从而系统在适当的时候为他们分配确定的存储空间。这种内存分配称为静态存储分配;

有些操作对象只在程序运行时才能确定,这样编译时就无法为他们预定存储空间,只能在程序运

行时,系统根据运行时的要求进行内存分配,这种方法称为动态存储分配。所有动态存储分配都在堆

区中进行。

当程序运行到需要一个动态分配的变量或对象时,必须向系统申请取得堆中的一块所需大小的存贮空

间,用于存贮该变量或对象。当不再使用该变量或对象时,也就是它的生命结束时,要显式释放它所

占用的存贮空间,这样系统就能对该堆空间进行再次分配,做到重复使用有限的资源。

2.堆内存的分配与释放

堆空间申请、释放的方法:

在C++中,申请和释放堆中分配的存贮空间,分别使用new和delete的两个运算符来完成, 指针变量名

=new 类型名(初始化式); delete 指针名;

例如:1、 int *pi=new int(0);

它与下列代码序列大体等价:

2、int ival=0, *pi=&ival;

区别:pi所指向的变量是由库操作符new()分配的,位于程序的堆区中,并且该对象未命名。

堆空间申请、释放说明:

⑴.new运算符返回的是一个指向所分配类型变量(对象)的指针。对所创建的变量或对象,都是通过

该指针来间接操作的,而且动态创建的对象本身没有名字。

⑵.一般定义变量和对象时要用标识符命名,称命名对象,而动态的称无名对象(请注意与栈区中的临

时对象的区别,两者完全不同:生命期不同,操作方法不同,临时变量对程序员是透明的)。

⑶.堆区是不会在分配时做自动初始化的(包括清零),所以必须用初始化式(initializer)来显式初

始化。new表达式的操作序列如下:从堆区分配对象,然后用括号中的值初始化该对象。

3.堆空间申请、释放演示:

⑴.用初始化式(initializer)来显式初始化

int *pi=new int(0);

⑵.当pi生命周期结束时,必须释放pi所指向的目标:

delete pi;

注意这时释放了pi所指的目标的内存空间,也就是撤销了该目标,称动态内存释放(dynamic memory

deallocation),但指针pi本身并没有撤销,它自己仍然存在,该指针所占内存空间并未释放。

4. 在堆中建立动态一维数组

①申请数组空间:

指针变量名=new 类型名[下标表达式];

注意:“下标表达式”不是常量表达式,即它的值不必在编译时确定,可以在运行时确定。

②释放数组空间:

delete [ ]指向该数组的指针变量名;

注意:方括号非常重要的,如果delete语句中少了方括号,因编译器认为该指针是指向数组第一个元

素的,会产生回收不彻底的问题(只回收了第一个元素所占空间),加了方括号后就转化为指向数组

的指针,回收整个数组。delete [ ]的方括号中不需要填数组元素数,系统自知。即使写了,编译器

也忽略。

#include

#include

void main(){

int n;

char *pc;

cout<<"请输入动态数组的元素个数"<

cin>>n; //n在运行时确定,可输入17

pc=new char[n]; //申请17个字符(可装8个汉字和一个结束符)的内存空间

strcpy(pc,“堆内存的动态分配”);//

cout<

delete []pc;//释放pc所指向的n个字符的内存空间

return ; }

5. 动态一维数组的说明

①变量n在编译时没有确定的值,而是在运行中输入,按运行时所需分配堆空间,这一点是动态分配

的优点,可克服数组“大开小用”的弊端,在表、排序与查找中的算法,若用动态数组,通用性更佳

。一定注意:delete []pc是将n个字符的空间释放,而用delete pc则只释放了一个字符的空间;

②如果有一个char *pc1,令pc1=p,同样可用delete [] pc1来释放该空间。尽管C++不对数组作边

界检查,但在堆空间分配时,对数组分配空间大小是纪录在案的。

③没有初始化式(initializer),不可对数组初始化。

6.指针数组和数组指针

指针类型:

(1)int *ptr;//指针所指向的类型是int

(2)char *ptr;//指针所指向的的类型是char

(3)int **ptr;//指针所指向的的类型是int* (也就是一个int * 型指针)

(4)int (*ptr)[3];//指针所指向的的类型是int()[3] //二维指针的声明

指针数组:

一个数组里存放的都是同一个类型的指针,通常我们把他叫做指针数组。

比如 int * a[2];它里边放了2个int * 型变量 .(指针数组)

int * a[2];

a[0]= new int[3];

a[1]=new int[3];

delete a[0];

delete a[1];

注意这里是一个数组,不能delete [] ;

数组指针:

一个指向一维或者多维数组的指针.

int * b=new int[10]; 指向一维数组的指针b ;

注意,这个时候释放空间一定要delete [] ,否则会造成内存泄露, b 就成为了空悬指针

int (*b2)[10]=new int[10][10]; 注意,这里的b2指向了一个二维int型数组的首地址. 注意:在这里,b2等效于二维数组名,但没有指出其边界,即最高维的元素数量,但是它的最低维数

的元素数量必须要指定!就像指向字符的指针,即等效一个字符串,不要把指向字符的指针说成指向

字符串的指针。

int(*b3) [30] [20]; //三级指针――>指向三维数组的指针;

int (*b2) [20]; //二级指针;――>指向二维数组的指针;

b3=new int [1] [20] [30];

b2=new int [30] [20];

删除这两个动态数组可用下式:

delete [] b3; //删除(释放)三维数组;

delete [] b2; //删除(释放)二维数组;在堆中建立动态多维数组

new 类型名[下标表达式1] [下标表达式2]……;

例如:建立loat (*cp)[30][20] ; //指向一个30行20列数组的指针,指向二维数组的指针

cp=new float [15] [30] [20]; //建立由15个30*20数组组成的数组;

注意:cp等效于三维数组名,但没有指出其边界,即最高维的元素数量,就像指向字符的指针即等效

一个字符串,不要把指向字符的指针,说成指向字符串的指针。这与数组的嵌套定义相一致。

总结如下方法:

指针对应关系为

char *a[6]<=>char **a //在函数传递参数时候很容易出错

char a[5][6]<=>char (*a)[6]

int a[50][100];

int *p=&a[0][0];

a[i][j]<=>*(p+100*i+j);

或:

int (*p)[100];

p=a;

a[i][i]<=>*(*(p+i)+j);

char *a[10]; //指针数组

for (i=0;i<10;i++)

a[i]=new char[10];

for(i=0;i<10;i++)

delete [] a[i];

#include

#include

int main()

{

int (*p)[3];

p= new int [2][3];

int i,j;

for(i=0;i<2;i++)

for(j=0;j<3;j++)

p[i][j]=rand()%100;

for(i=0;i<2;i++)

{

cout<

for(j=0;j<3;j++)

cout<

}

delete [] p;

return 0;

}

#include

#include

int main()

{

char **a; //或者用上面的指针数组的方法也可以a=new char *[2];

for(int i=0;i<2;i++)

a[i]=new char [10];

for(i=0;i<2;i++)

cin.getline(a[i],9);

for(i=0;i<2;i++)

cout<

for(i=0;i<2;i++)

delete [] a[i];

delete [] a; //不要忘了a=NULL;

return 0;

}

字符串可以用字符数组与字符串变量两种方式来存储

字符串可以用字符数组与字符串变量两种方式来存储,效果类似。 一、用字符数组来存储字符串: char st1[100],st2[100] ; //字符数组说明 cin>>st1>>st2; long a,b; 输入:hello, world 则st1={…h?,?e?,?l?,?l?,?o?,?,?,?\0?} st2={…w?,?o?,?r?,?l?,?d?,?\0} 字符?\0?为字符串结束标志 1. 字符数组长度 strlen(st1); //如a=strlen(st1);b=strlen(st2); 则a=6,b=5 2. 字符数组比较 不能直接比较,st1>st2是错误的,要用strcmp()函数 strcmp(st1,st2); //st1=st2相等则输出0,st1st2输出1 strncmp(st1,st2,n); 把st1,st2的前n个进行比较。 3. 连接字符数组 不能直接用st1=st1+st2;用strcat()函数 strcat(st1,st2); //将st1和st2连接后赋给st1,本例连接后st1为”hello,world” strncat(st1,st2,n); n表示连接上st2的前n个给st1,在最后不要加'\0'。 4. 替换 strcpy(st1,st2); //用st2的值替换st1的值,字符数组不能如此赋值st1=st2或st1[]=st2[]都是错误的 本例中st1值被替代为”world” strncpy(st1,st2,n); n表示复制st2的前n个给st1,在最后要加'\0'。 5. 其他函数 strchr(st1,ch) //ch为要找的字符。如strchr(st1,?e?);会截取出st1中以字母?e?开头的字符串,要用string类型的来存储,如string c1; c1=strchr(st1,?e?); 则c1为”ello” strspn(st1,st2); //返回st1起始部分匹配st2中任意字符的字符数。本例 中”hello,”中的第一个字符?h?不能在”world”中找到匹配字符,因此返回值为0。如st1=”rose”;st2=”worse”;则返回值为4,因为rose在worse中都能找到匹配字符。 strrev(); //颠倒字符串 二、用字符串来存储字符串 string str1,str2; cin>>str1>>str2; //如输入“hello, world”则str1=”hello,” str2=”world” 可直接赋值: str1=str2; 1. 字符串长度 len = str1.length(); 2. 字符串比较 可以直接比较,即str1>str2;str1==str2;等 3. 连接 可以直接连接,即str1 += str2;等

动态内存分配和回收

实验五可变分区存储管理方式的内存分配和回收 一.实验目的 通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解,熟悉可变分区存储管理的内存分配和回收。 二.实验属性 设计 三.实验内容 1.确定内存空间分配表; 2.采用最优适应算法完成内存空间的分配和回收; 3.编写主函数对所做工作进行测试。 四.实验背景材料 实现可变分区的分配和回收,主要考虑的问题有三个:第一,设计记录内存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计内存分配算法;第三,在设计的数据表格基础上设计内存回收算法。 首先,考虑第一个问题,设计记录内存使用情况的数据表格,用来记录空间区和作业占用的区域。 由于可变分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随内存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在内存中的起始地址和长度。由于分配时空闲区有时会变成两个分区:空闲区和已分分区,回收内存分区时,可能会合并空闲分区,这样如果整个内存采用一张表格记录己分分区和空闲区,就会使表格操作繁琐。分配内存时查找空闲区进行分配,然后填写己分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。由此可见,内存的分配和回收主要是对空闲区的操作。这样为了便于对内存空间的分配和回收,就建立两张分区表记录内存使用情况,一张表格记录作业占用分区的“己分分区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种:一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分分区表”还是“空闲区表”都必须事先确定长度。它们的长度必须是系统可能的最大项数。 “已分分区表”的结构定义 #define n 10 //假定系统允许的最大作业数量为n struct { float address; //已分分区起始地址 float length; //已分分区长度、单位为字节 int flag; //已分分区表登记栏标志,“0”表示空栏目,实验中只支持一个字符的作业名 }used_table[n]; //已分分区表 “空闲区表”的结构定义 #define m 10 //假定系统允许的空闲区最大为m struct

操作系统内存动态分配模拟算法

实验四存分配算法 1.实验目的 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请主存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现是与主存储器的管理方式有关的,通过本实验帮助学生理解在动态分区管理方式下应怎样实现主存空间的分配和回收。 背景知识: 可变分区方式是按作业需要的主存空间大小来分割分区的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入。随着作业的装入、撤离、主存空间被分成许多个分区,有的分区被作业占用,而有的分区是空闲的。 2.实验容 采用首次适应算法或循环首次算法或最佳适应算法分配主存空间。 由于本实验是模拟主存的分配,所以当把主存区分配给作业后并不实际启动装入程序装入作业,而用输出“分配情况”来代替。(即输出当时的空闲区说明表及其存分配表) 利用VC++6.0实现上述程序设计和调试操作。 3.实验代码 #include #include using namespace std; //定义存的大小 const int SIZE=64; //作业结构体,保存作业信息 struct Project{ int number; int length; }; //存块结构体,保存存块信息 struct Block{

C++中字符数组与string的相互转换及字符串拼接(字符串知识点总结)

【字符数组转化成string类型】 Char ch[]=”ABCDEFG” String str(ch);//也可string str=ch; 或者 Char ch[]=”ABCDEFG” String str; Str=ch;//在原有基础上添加可以用str+=ch; 【string类型转换为字符数组】 Char buf[10] String str(“ABCDEFG”); Length=str.copy(buf,9); Buf[length]=’\0’; 或者 Char buf[10]; String str1(“ABCDEFG”); strcpy(buf,str1.c_str());//strncpy(buf,str1.c_str(),10); 【字符串拼接】 一、string类字符串 重点:函数append的用法: (1)向s1-string的后面加s2-string (1个参数)

s.append(s2); 或s1+=s2; 也可直接将字符串拼接:如 string s=“hello”; s.append(" world");//“hello"后面拼接”world" (2)(2个参数) 1.向s1-string的后面加s2-string的一部分 s1.append(s2,n); // 把字符串s2的前n个字符连接到当前字符串结尾 2.向string后面加多个字符 string s1 = "hello "; s1.append(4,’!’); //在当前字符串结尾添加4个字符! s1 = “hello !!!”; (3).向string的后面加string的一部分(3个参数) 1.string s1 = "hello ", s2 = "beautiful world "; s1.append(s2, 11, 5); //把字符串s2中从11开始的5个字符连接到当前字符串的结尾得s1 = “hello world”; 2.string s1 = "hello ", s2 = “beautiful world”; s1.append(s2.begin()+11, s2.end()); //把s2的迭代器begin()+11和end()之间的部分连接到当前字符串的结尾得“hello world”; 二、char数组类字符串 重点:strcat()函数,该函数接受两个字符串作为参数,该函数把第2个字符串

动态内存分配

浅析动态内存分配及Malloc/free的实现2011-03-18 22:47一、概述: 动态内存分配,特别是开发者经常接触的Malloc/Free接口的实现,对许多开发者来说,是一个永远的话题,而且有时候也是一个比较迷惑的问题,本文根据自己的理解,尝试简单的探究一下在嵌入式系统中,两类典型系统中动态内存分配以及Malloc/Free的实现机制。 二、内存分配方式 Malloc/Free主要实现的是动态内存分配,要理解它们的工作机制,就必须先了解操作系统内存分配的基本原理。 在操作系统中,内存分配主要以下面三种方式存在: (1)静态存储区域分配。内存在程序编译的时候或者在操作系统初始化的时候就已经分配好,这块内存在程序的整个运行期间都存在,而且其大小不会改变,也不会被重新分配。例如全局变量,static变量等。 (2)栈上的内存分配。栈是系统数据结构,对于进程/线程是唯一的,它的分配与释放由操作系统来维护,不需要开发者来 [url=javascript:;]管理[/url] 。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时,这些存储单元会被自动释放。栈内存分配运算内置于处理器的指令集中,效率很高,不同的操作系统对栈都有一定的限制。 (3)堆上的内存分配,亦称动态内存分配。程序在运行的期间用malloc申请的内存,这部分内存由程序员自己负责管理,其生存期由开发者决定:在何时分配,分配多少,并在何时用free来释放该内存。这是唯一可以由开发者参与管理的内存。使用的好坏直接决定系统的性能和稳定。 三、动态内存分配概述 首先,对于支持虚拟内存的操作系统,动态内存分配(包括内核加载,用户进程加载,动态库加载等等)都是建立在操作系统的虚拟内存分配之上的,虚拟内存分配主要包括: 1、进程使用的内存地址是虚拟的(每个进程感觉自己拥有所有的内存资源),需要经过页表的映射才能最终指向系统实际的物理地址。 2、主内存和磁盘采用页交换的方式加载进程和相关数据,而且数据何时加载到主内存,何时缓存到磁盘是OS调度的,对应用程序是透明的。 3、虚拟存储器给用户程序提供了一个基于页面的内存大小,在32位系统中,用户可以页面大小为单位,分配到最大可以到4G(内核要使用1G或2G等内存地址)字节的虚拟内存。 4、对于虚拟内存的分配,操作系统一般先分配出应用要求大小的虚拟内存,只有当应用实际使用时,才会调用相应的操作系统接口,为此应用程序分配大小以页面为单位的实际物理内存。 5、不是所有计算机系统都有虚拟内存机制,一般在有MMU硬件支持的系统中才有虚拟内存的实现。许多嵌入式操作系统中是没有虚拟内存机制的,程序的动态分配实际是直接针对物理内存进行操作的。许多典型的实时嵌入式系统如Vxworks、Uc/OS 等就是这样。 四、动态内存分配的实现 由于频繁的进行动态内存分配会造成内存碎片的产生,影响系统性能,所以在不同的系统中,对于动态内存管理,开发了许多不同的算法(具体的算法实现不想在这里做详细的介绍,有兴趣的读者可以参考Glib C 的源代码和附录中的资料)。不同的操作系统有不同的实现方式,为了程序的可移植性,一般在开发语言的库中都提供了统一接口。对于C语言,在标准C库和Glib 中,都实现了以malloc/free为接口的动态内存分配功能。也就是说,malloc/free库函索包装了不同操作系统对动态内存管理的不同实现,为开发者提供了一个统一的开发环境。对于我们前面提到的一些嵌入式操作系统,因为实时系统的特殊要求(实

20-字符数组与字符串类型.

字符数组与字符串类型 字符型变量:VAR CH :CHAR ; 一、字符数组:数组基类型(元素的类型为字符型。 VAR A:ARRAY [ 1. . N ] OF CHAR ; 输入、输出也与普通数组一样,只能用循环结构,逐个元素地给它赋值,即: FOR I:= 1 TO N DO READ(A[ I ] ; 或者: A[I]:=‘ X ’ ; 不能用:A :=‘ IT IS A PEN ’ ; 例一:判断从键盘输入的字符串是否为回文(从左到右和从右到左读一串字符的值是一样的, 如 ABCDCBA , 1234321, 11, 1 ,串长 < 100 ,且以点号‘. ’结束。 2000年竞赛题:判断一个数是否为回文数。 VAR LETTER:ARRAY [ 1. . 100 ] OF CHAR ; I, J :0. . 100 ; CH:CHAR ; BEGIN WRITELN(‘ INPUT A STRING :’ ; I := O ; READ (CH ; WHILE CH < > ‘. ’ DO BEGIN

I:=I+1 ; LETTER[ I ] := CH ; READ (CH ; END ; J :=1 ; { I 指向数组的尾部, J 指向数组的头部 ,逐个比较 } WHILE (J < I AND (LETTER[ J ]= LETTER[ I ] DO BEGIN I:= I – 1 ; J :=J + 1 END ; IF J > = I THEN WRITELN(‘ YES ’ ELSE WRITELN(‘ NO ’ ; END . 二、字符串类型:针对 TURBO PASCAL 1、字符串常量:CONST STR=‘ THIS IS A BOOK。’ ; 我们经常在 WRITE 语句中用到字符串,也可以 WRITE (STR ;语句输出 STR 的值。 2、字符串类型:也是一种构造类型。 定义形式:TYPE 字符串类型名 = STRING[ N ];

《动态分配内存与数据结构》课后习题

《动态分配内存与数据结构》习题 学号姓名 一、选择题 1、是一种限制存取位置的线性表,元素的存取必须服从先进先出的规则。 A.顺序表B.链表C.栈D.队列 2、是一种限制存取位置的线性表,元素的存取必须服从先进后出的规则。 A.顺序表B.链表C.栈D.队列 3、与顺序表相比,链表不具有的特点是。 A.能够分散存储数据,无需连续内存空间 B.插入和删除无需移动数据 C.能够根据下标随机访问 D.只要内存足够,没有最大长度的限制 4、如果通过new运算符动态分配失败,返回结果是。 A.-1 B.0 C.1D.不确定 5、实现深复制中,不是必须自定义的。 A.构造函数B.复制构造函数 C.析构函数D.复制赋值操作符函数 6、分析下列代码是否存在问题,选择合适的选项:。 int main(void) { int *p = new int [10]; p = new int [10]; delete [] p; p = NULL; return 0; } A.没有问题 B.有内存泄漏 C.存在空悬指针 D.存在重复释放同一空间 7、通过new运算符动态分配的对象,存储于内存中的。 A.全局变量与静态变量区 B.代码区 C.栈区 D.堆区 8、下列函数中,可以是虚函数。 A.构造函数 B.析构函数 C.静态成员函数 D.友元函数 9、关于通过new运算符动态创建的对象数组,下列判断中是错误的。 A. 动态创建的对象数组只能调用默认构造函数 B. 动态创建的对象数组必须调用delete []动态撤销 C. 动态创建的对象数组的大小必须是常数或常变量 D. 动态创建的对象数组没有数组名 10、顺序表不具有的特点是 A. 元素的存储地址连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置有关 11、假设一个对象Ob1的数据成员是指向动态对象的指针,如果采用浅复制的方式复制该对象得到对象Ob2,那么在析构对象Ob1和对象Ob2时会的问题。 A. 有重复释放 B. 没有 C. 内存泄漏 D. 动态分配失败 12、假设对5个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCDE,则出栈的先后顺序不可能是。 A. ABCDE B. EDCBA C. EDBCA D. BCADE 13、假设对4个元素A、B、C、D、E进行压栈或出栈的操作,压栈的先后顺序是ABCD,则出栈的先后顺序不可能是。 A. ABCD B. DCBA C. BCAD D. DCAB 14、通过new运算符动态创建的对象的存放在中。 A. 代码区 B. 栈区 C. 自由存储区 D. 全局数据区 15、链表不具有的特点是。 A. 元素的存储地址可以不连续 B. 存储空间根据需要动态开辟,不会溢出 C. 可以直接随机访问元素 D. 插入和删除元素的时间开销与位置无关 16、有关内存分配和释放的说法,下面当中错误的是 A.new运算符的结果只能赋值给指针变量 B.动态创建的对象数组必须调用delete []动态撤销 C.用new分配的空间位置是在内存的栈区 D.动态创建的对象数组没有数组名 17、关于栈,下列哪项不是基本操作 A.删除栈顶元素 B.删除栈底元素 C.判断栈是否为空 D.把栈置空 18、关于链表,说法错误的是

字符数组和字符串的sizeof( )和strlen()

目录 一、数组或字符串的长度 1、sizeof()---求所占的字节数 (1)、对于整型字符型数组 (2)、对于整型或字符型指针 2、strlen()---字符数组或字符串所占的字节数 (1)、针对字符数组 (2)、针对字符指针 3、sizeof()与strlen()区别 4、c++中的字符串string的长度 一、数组或字符串的长度 1、sizeof()---求所占的字节数 (1)、对于整型字符型数组 int A[]={1,4,5,2,8,6,0}; //求整型数组A所占的字节数 int i=sizeof(A); //i表示整型数组A所占的总空间的字节数 cout<<” i=sizeof(A)= ”<

字符串和字符数组之间的转换

字符串和字符数组之间的转换 2010-11-02 16:53:00| 分类: |举报|字号订阅 字符串类提供了一个void ToCharArray() 方法,该方法可以实现字符串到字符数组的转换。如下例: private void TestStringChars() { string str = "mytest"; char[] chars = (); = ""; "Length of \"mytest\" is " + + "\n"); "Length of char array is " + + "\n"); "char[2] = " + chars[2] + "\n"); } 例中以对转换转换到的字符数组长度和它的一个元素进行了测试,结果如下: Length of "mytest" is 6 Length of char array is 6 char[2] = t 可以看出,结果完全正确,这说明转换成功。那么反过来,要把字符数组转换成字符串又该如何呢? 我们可以使用类的构造函数来解决这个问题。类有两个构造函数是通过字符数组来构造的,即 String(char[]) 和String[char[], int, int)。后者之所以多两个参数,是因为可以指定用字符数组中的哪一部分来构造字符串。而前者则是用字符数组的全部元素来构造字符串。我们以前者为例, 在 TestStringChars() 函数中输入如下语句: char[] tcs = {'t', 'e', 's', 't', ' ', 'm', 'e'}; string tstr = new String(tcs); "tstr = \"" + tstr + "\"\n"); 运行结果输入 tstr = "test me",测试说明转换成功。 实际上,我们在很多时候需要把字符串转换成字符数组只是为了得到该字符串中的某个字符。如果只是为了这个目的,那大可不必兴师动众的去进行转换,我们

C语言中字符变量字符串和字符数组应用

C语言中字符变量字符串和字符数组应用 字符变量(type`char`?字符串(string)和字符数组(type`char`arrary)是C语言中非常重要的结构成分,也是应用编程中常发生混淆?导致错误发生的成分?一?注意区别字符数组中的字符和字符串C语言中无字符串变量,但提供了字符数组character arrary) 用于存储字符串,例如: char str[]="Hello"; 同时,字符数组亦用于存储字符或字符变量,例如: /*存放字符例*/ char Chars[]={`H``e`,`1``1`,`o`}; /*存放字符变量例*/ char ch=getch(); char CharVar[]=ch; str和Chars的内容尽管由相同字母构成,但前者是字符串(str)后者为一列字符(Chars)?两者在内存中的结构不同,即字符串结尾有NULL 0(字符串终止符)?在应用编程实践中,常常需要从键盘获取字符,依次存入字符数组中,再以字符串输出函数输出到屏幕等,譬如,在中文环境?图形模式下中文字符的键盘输入和屏幕显示?如混淆字符数组中字符组与字符串的差别,则可能得到奇怪的结果?如例: CharStr() { int i,CharNum=5; unsigned char str[80]; for(i=0;i

c语言字符数组与字符串总结

字符数组与字符串 <1>定义 Char数组名[常量表达式] 数组中每一个元素的值为一个字符。 系统在内存为字符数组分配若干连续的存储单元,每个储存单元为一个字节。 <2>初始化 逐个元素初始化,如char c[8]={‘b’,’o’,’y’};(要记得加单引号) 用字符串初始化,如char c[11]={“I am a boy”};初始化后在末尾自动添加’0’ 如果初值个数<数组长度,则只将这些字符赋给数组中前面元素,其余元素自动定为空字符(即’0’) <3>输入输出 ①用格式”%c”逐个输入输出,如scanf(“%c”,&a[0]); ②用格式符”%s”整个字符串输入输出,如scanf(“%s”,a) 用”%s”格式输出字符数组时,遇’\0’结束输出,且输出字符中不含’\0’,用scanf及”%s”输入时,数组名前不能再加”&”符号。 字符串的末尾必须有’\0’字符,且字符串只能存放在字符数组中。 scanf中%s输入时遇空格或回车结束。 ③用函数gets实现输入 gets(字符数组),如gets(a) 调用函数时,回车键作为输入结束标志;然后将接收到的字符依

次赋给数组各个元素,并自动在字符串末尾加字符串结束标记’\0’ ④用字符串输出函数puts实现输出 puts(字符串/字符数组),如puts(a); 输出一个字符串,并在输出后自动换行。 <4>字符串处理函数 ①字符串拷贝函数 格式strcpy(字符数组1,字符串2) 将字符串2拷贝到字符数组1中去,要求字符数组1必须足够大,拷贝时’\0’一同拷贝,不能使用赋值语句为一个字符数组赋值。字符数组1应写成数组名的形式,比如char a[0]; strcpy(a,…) ②字符串连接函数 格式strcat(字符数组1,字符数组2) 将字符数组2连到字符数组1后面,要求字符数组1必须足够大,连接前,两串均以’\0’结束;连接后,串1的’0’取消,新串最后加’\0’。 ③计算字符串长度的函数 strlen(字符数组); 求出字符串或字符数组中实际字符个数,不包括’\0’,并且遇到’\0’结束。 ④字符串比较函数 格式strcmp(字符数组1,字符数组2)

A)字符型数组中可以存放字符串

9.为了判断两个字符串s1和s2是否相等,应当使用_______________ A)if(s1==s2) B)if(s1=s2) C)if(strcpy(s1,s2)) D)if(strcmp(s1,s2)==0) 10.C 语言对嵌套if 语句的规定是:else 总是与______________配对 A)其之前的if B)第一个if C)缩进位置相同的if D)其之前最近的且尚未配对的if 11.表达式“x==0&&y!=0||x!=0&&y==0”等价于____________。 A) x*y==0&&x+y!=0 B) x*y==0&&(x+y==0) C) x==0||y==0 D) x*y=0||x+y=0 12.以下错误的描述是_____________ A)使用while 和do-while 循环时,循环变量初始化的操作应在循环语句之前完成 B)while 循环是先判断表达式,后执行循环体语句 C)do-while 和for 循环均是先执行循环体语句,后判断表达式 D)for 、while 和do-while 循环中的循环体均可以由空语句构成 13.以下说法中正确的是__________________ A)C 语言程序总是从第一个定义的函数开始执行 B)在C 语言程序中,要调用的函数必须在main()函数中定义 C)C 语言程序总是从main()函数开始执行 D)C 语言程序中的main()函数必须放在程序的开始部分 14.以下程序执行后输出的值是___________。 main( ) { int i , sum=0; for(i=1;i<4;i++) sum*=i ; printf(“%d,%d\n”,sum ,i); } A) 6 ,3 B) 6 ,4 C) 0 ,3 D )0 ,4 15.已知: int a[3][4]={0};则下面正确的叙述是 ______ A)只有元素a[0][0]可得到初值0 B)此说明语句是错误的 C)数组a 中每个元素都可得到初值,但其值不一定为0 D)数组a 中每个元素均可得到初值0

动态内存分配(C语言)

实验报告 实验课程名称:动态内存分配算法 年12月1日

实验报告 一、实验内容与要求 动态分区分配又称为可变分区分配,它是根据进程的实际需要,动态地为之分配内存空间。在实验中运用了三种基于顺序搜索的动态分区分配算法,分别是1.首次适应算法2.循环首次适应算法3.最佳适应法3.最坏适应法分配主存空间。 二、需求分析 本次实验通过C语言进行编程并调试、运行,显示出动态分区的分配方式,直观的展示了首次适应算法循环首次适应算法、最佳适应算法和最坏适应算法对内存的释放和回收方式之间的区别。 首次适应算法 要求空闲分区链以地址递增的次序链接,在分配内存时,从链首开始顺序查找,直至找到一个大小能满足要求的空闲分区为止,然后在按照作业的大小,从该分区中划出一块内存空间,分配给请求者,余下的空余分区仍留在空链中。 优点:优先利用内存中低址部分的空闲分区,从而保留了高址部分的大空闲区,为以后到达的大作业分配大的内存空间创造了条件。 缺点:低址部分不断被划分,会留下许多难以利用的、很小的空闲分区即碎片。而每次查找又都是从低址部分开始的,这无疑又会增加查找可用空闲分区时的开销。

循环首次适应算法 在为进程分配内存空间时,不是每次都从链首开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直到找到一个能满足要求的空闲分区。 优点:该算法能使内存中的空闲分区分布得更均匀,从而减少了查找空闲分区时的开销。 最佳适应算法 该算法总是把能满足要求、又是最小的空闲分区分配给作业,避免大材小用,该算法要求将所有的空闲分区按其容量以从小到大的顺序形成一空闲分区链。 缺点:每次分配后所切割下来的剩余部分总是最小的,这样,在存储器中会留下许多难以利用的碎片。 最坏适应算法 最坏适应算法选择空闲分区的策略正好与最佳适应算法相反:它在扫描整个空闲分区或链表时,总会挑选一个最大的空闲区,从中切割一部分存储空间给作业使用。该算法要求,将所有的空闲分区,按其容量以大到小的顺序形成一空闲分区链。查找时,只要看第一个分区能否满足作业要求即可。 优点:可使剩下的空闲区不至于太小,产生碎片的可能性最小,对中小作业有利,同时,最坏适应算法查找效率很高。 缺点:导致存储器中缺乏大的空闲分区 三、数据结构 为了实现动态分区分配算法,系统中配置了相应的数据结构,用以描述空闲分区和已分配分区的情况,常用的数据结构有空闲分区表和空闲分区链 流程图

第七章字符数组与指针练习题参考答案

第七章字符数组与字符串 【题7.29】下面是对s的初始化,其中不正确的是。 A)char s[5]={“abc”};B)char s[5]={‘a’,‘b’,‘c’}; C)char s[5]=“”;D)char s[5]=“abcdef”; 【题7.30】下面程序段的运行结果是。 char c[5]={‘a’,‘b’,‘\0’,‘c’,‘\0’}; printf(“%s”,c); A)‘a’‘b’ B)ab C)ab c 【题7.31】对两个数组a和b进行如下初始化 char a[]=“ABCDEF”; char b[]={‘A’, ‘B’,‘C’,‘D’,‘E’,‘F’}; 则以下叙述正确的是。 A)a与b数组完全相同B)a与b长度相同 C)a和b中都存放字符串D)a数组比b数组长度长 提示:‘\0’是字符串结束的标志 【题7.32】有两个字符数组a、b,则以下正确的输入格式是。 A)gets(a,b); B)scanf(“%s %s”,a,b); C)scanf(“%s %s”,&a,&b);D)gets(“a”),get(“b”); 【题7.33】有字符数组a[80]和b[80],则正确的输出形式是。 A)puts(a,b); B)printf(“%s %s”,a[],b[]); C)putchar(a,b); D)puts(a),puts(b); 【题7.34】下面程序段的运行结果是。 char a[7]=“abcdef”; char b[4]=“ABC”; strcpy(a,b); printf(“%c”,a[5]); A)空格B)\0 C)e D)f 提示:复制后a[0]=‘A’,a[1]=‘B’,a[2]=‘C’,a[3]=‘\0’, a[4]=‘e’,a[5]=‘f’, a[6]=‘\0’,

关于C语言中的字符串数组输入输出控制符的若干问题

关于C语言中的字符串数组输入输出控制符的若干问题 示例一: #include void main() { int i; int a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%d",&(a[i])); } printf("%d,%d,%d,%d,%d,%d",a[0],a[1],a[2],a[3],a[4],a[5]); //printf("%d",a); 这是错误做法,没有输出若干个实数的控制符,只能一个个输出。 } 实例二: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%s",&(a[i])); //只可从键盘输入一个字符,否则输出将每次输入多余的部分丢弃。 //不可写成:scanf("%c",&(a[i])); } printf("%c%c%c%c%c%c",a[0],a[1],a[2],a[3],a[4],a[5]); //不可用%s%s%s%s%s%s //也可以这样写:printf("%s",a); } 示例三: #include void main() { int i; char a[6]; for(i=0;i<6;i++) { printf("please enter a number:\n" ); scanf("%c",&(a[i])); getchar(); //如果用%c作为输入一个字符控制符用,后面必须加此句;

动态内存分配

动态内存分配 一、实验目的 动态分区分配是根据进程的实际需要,动态地为之分配内存空间,而在分配时,须按照一定的分配算法,从空闲分区表或空闲分区链中选出一分区分配给该作业。在本实验中运用了四种分配算法,分别是1.首次适应算法,2.循环首次适应算法,3.最坏适应算法4.最佳适应算法。 二、实验要求及功能介绍 1.实验要求 1.在实现关于内存管理的内存首选适应算法和最佳适用算法。 2.实现关于内存管理的内存动态分区分配布局初始化。 3.实现关于内存管理的内存动态分区分配申请分配。 4.实现关于内存管理的内存回收等基本功能操作函数。 2.功能介绍 (1)首次适应算法 在首次适应算法中,是从已建立好的数组中顺序查找,直至找到第一个大小能满足要求的空闲分区为止,然后再按照作业大小,从该分区中划出一块内存空间分配给请求者,余下的空间令开辟一块新的地址,大小为原来的大小减去作业大小,若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 (2)循环首次适应算法 该算法是由首次适应算法演变而成,在为进程分配内存空间时,不再是每次都从第一个空间开始查找,而是从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,从中划出一块与请求大小相等的内存空间分配给作业,为实现本算法,设置一个全局变量f,来控制循环查找,当f%N==0时,f=0;若查找结束都不能找到一个满足要求的分区,则此次内存分配失败。 (3)最坏适应算法 最坏适应分配算法是每次为作业分配内存时,扫描整个数组,总是把能满足条件的,又是最大的空闲分区分配给作业。 (4)最佳适应算法 最坏适应分配算法是每次为作业分配内存时,扫描整个数组,总是把能满足条件的,又是最小的空闲分区分配给作业。 三、实验流程图

字符串和字符数组之间的转换

字符串和字符数组之间地转换 分类:工具举报字号订阅 字符串类提供了一个 () 方法,该方法可以实现字符串到字符数组地转换.如下例: () { ""; [] (); ""; (" \"\" ""\"); (" ""\"); ("[] "[] "\"); } b5E2R。 例中以对转换转换到地字符数组长度和它地一个元素进行了测试,结果如下: "" [] 可以看出,结果完全正确,这说明转换成功.那么反过来,要把字符数组转换成字符串又该如何呢?我们可以使用类地构造函数来解决这个问题.类有两 个构造函数是通过字符数组来构造地,即 ([]) 和[[], , ).后者之所以多两个参数,是因为可以指定用字符数组中地哪一部分来构造字符串.而前者则是用字符数组地全部元素来构造字符串.我们以前者为例,在 () 函数中输入如下语句: p1Ean。 [] {'', '', '', '', ' ', '', ''}; (); (" \"" "\"\");DXDiT。 运行结果输入" ",测试说明转换成功.实际上,我们在很多时候需要把 字符串转换成字符数组只是为了得到该字符串中地某个字符.如果只是为了这个目地,那大可不必兴师动众地去进行转换,我们只需要使用地 [] 运算符就可 以达到目地.请看下例,再在() 函数中加入如如下语名:RTCrp。 []; ("\"" "\"[] "()); 正确地输出是 " "[] ,经测试,输出正确.

. 字符串和字节数组之间地转换 如果还想从类中找到方法进行字符串和字节数组之间地转换,恐怕你会失望了.为了进行这样地转换,我们不得不借助另一个类:.该类提供了 [] () 方法将字符串转换成字节数组,还提供了([]) 方法将字节数组转换成字符串.5PCzV。类似乎没有可用地构造函数,但我们可以找到几个默认地,即 (获取系统地当前代码页地编码)、(获取位字符集地编码)、(获取采用字节顺序地格式地编码)、(获取格式地编码)、(获取格式地编码) 等.这里主要说说和用于转换地区别.jLBHr。 在字符串转换到字节数组地过程中,会将每个单字节字符,如半角英文,转换成个字节,而把每个双字节字符,如汉字,转换成个字节.而则会将它们都转换成两个字节.我们可以通过下列简单地了解一下转换地方法,以及使 用和地区别:xHAQX。 () { "语言"; [] (); [] (); "", ""; ( ) { ("") " "; } ( ) { ("") " "; } ""; (" ""\"); ( "\"); (" ""\"); ( "\"); } LDAYt。 运行结果如下,不说详述,相信大家已经明白了.

动态分配内存管理源代码及讲解

动态分配内存算法以及源程序讲解 整体思路: 动态分区管理方式将内存除操作系统占用区域外的空间看成一个大的空闲区。当作业要求装入内存时,根据作业需要内存空间的大小查询内存中的各个空闲区,当从内存空间中找到一个大于或等于该作业大小的内存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装人该作业,作业执行完后,其所占的内存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 设计所采用的算法: 采用最优适应算法,每次为作业分配内存时,总是把既能满足要求、又是最小的空闲分区分配给作业。但最优适应算法容易出现找到的一个分区可能只比作业所需求的长度略大一点的情行,这时,空闲区分割后剩下的空闲区就很小以致很难再使用,降低了内存的使用率。为解决此问题,设定一个限值minsize,如果空闲区的大小减去作业需求长度得到的值小于等于minsize,不再将空闲区分成己分分区和空闲区两部分,而是将整个空闲区都分配给作业。 内存分配与回收所使用的结构体: 为便于对内存的分配和回收,建立两张表记录内存的使用情况。一张为记录作业占用分区的“内存分配表”,内容包括分区起始地址、长度、作业名/标志(为0时作为标志位表示空栏目);一张为记录空闲区的“空闲分区表”,内容包括分区起始地址、长度、标志(0表空栏目,1表未分配)。两张表都采用顺序表形式。 关于分配留下的内存小碎片问题: 当要装入一个作业时,从“空闲分区表”中查找标志为“1”(未分配)且满足作业所需内存大小的最小空闲区,若空闲区的大小与作业所需大小的差值小于或等于minsize,把该分区全部分配给作业,并把该空闲区的标志改为“0”(空栏目)。同时,在已分配区表中找到一个标志为“0”的栏目登记新装人作业所占用分区的起始地址,长度和作业名。若空闲区的大小与作业所需大小的差值大于minsize。则把空闲区分成两部分,一部分用来装入作业,另外一部分仍为空闲区。这时只要修改原空闲区的长度,且把新装人的作业登记到已分配区表中。 内存的回收: 在动态分区方式下回收内存空间时,先检查是否有与归还区相邻的空闲区(上邻空闲区,

C,C++字符串和字符数组的本质

1、常量字符串 在代码里直接出现的”abcdef”这种字符串,在程序执行的时候,系统会将它们放在常量区,所谓常量区就是一直存在的,只读的,不可更改的数据区域,并且一个字符串只会有一份。假设你在程序里有两行代码 char* p1 = “agcd” ; char* p2 = “agcd” ; 无论你这两个行代码隔了多远,如果你想知道p1和p2所指向的字符串在内存中是不是同一个,那答案是肯定的,p1和p2的值完全一样。”agcd”这是一个存在于内存中的常量字符串,它从程序一开始就在那里,一直到程序结束读不会改变。在内存中,”agcd”是以如下 ’\0’。在种字符串的名字叫“以空字符为结束标志的字符串”。 char* p1 = “agcd” ; 如果你这时候想改变第一个字符的值,用p[0] =’b’,系统会报一个错,常量字符不能更改。(这里为什么指针可以当数组用,下面再解释)。 2、字符数组 如果你定义一个char a[10],那么系统会“只分配”10个char这么长的内存区域,一个char是一个字节,那么系统会分配十个字节的内存控件,并且将这一片连续的内存空间的首地址赋值给a。也就是说“数组名的值是数组所在内存区域的首地址”换句话说“数组名是一个指针,指向数组第一个值的地址”。 如果你定义一个char a[] = “abcdefg”;这句代码就复杂点了。定义一个数组,数组长度未知,那么系统会根据等号后面的值来“初始化”这个数组,等号后面是什么?前面说过,它是一个常量字符串。在内存中占8个字节,7个字符加上一个结束标志。这时候在内存中就有两个”abcdefg”的字符串了,一个是常量区域的,另一个是根据前者复制了一份的。这句代码的意思就是复制一个常量区域的字符串,将复制后的字符串的首字母的地址赋值给a。也就是说,最后a所指向的内存区域,已经不是常量里的”abcdefg”了,这里为什么要复制一份呢?原因是因为常量是不允许更改的,而数组一般都意味着需要修改,所以就复制了一份数据,放在非常量区域,就可以更改了。下面的测试程序可证明上述结论:char* p1 = "abcdef" ; char* p2 = "abcdef" ; char a[]= "abcdef" ; unsigned long dwP1 = (unsigned long)p1 ; //32位系统里的指针就是4个字节的整数,这样可以具体查看指针的值。 unsigned long dwP2 = (unsigned long)p2 ; unsigned long dwA = (unsigned long)a ; printf("p1的值(32位地址) = 0x%X\n",dwP1); //%X是打印十六进制,X是大写,x是小写 printf("p2的值(32位地址) = 0x%X\n",dwP2); printf("a的值(32位地址) = 0x%X\n",dwA);

相关主题