搜档网
当前位置:搜档网 › sap2000中虚功图应用及解释

sap2000中虚功图应用及解释

sap2000中虚功图应用及解释
sap2000中虚功图应用及解释

虚功图

虚功图显示相比于整个结构的平衡一个单元的虚功所占的比重.它被用于辅助确定哪个单元将被加强以最有效地控制结构侧向位移的能量图.

点击显示菜单>虚功图打开虚功图对话框。

在对话框中, 选择所要显示的内力, 位移, 和数值类型.

点击确定显示相比于整个结构的平衡一个单元的虚功所占的比重

例: 如果用户目的是减小风荷载作用下顶层的层间位移, 一个风荷载工况将被选择为内力. 对于位移, 一个荷载工况将被使用只在结构的顶层添加水平荷载,虽然风荷载是作用在每一个楼层.然后结构将显示了由于荷载工况和位移荷载工况产生的位移所带来的应力对该构件虚功能量百分比. 本质上, 这意味着当占有较高比重的单元刚度进行修改时, 对结构变形的影响将大于当占有较低比重的单元刚度进行修改时.

基于虚功原理的结构构件敏感性分析

HiStruct

复杂或不规则的建筑结构设计在方案和初步设计阶段,需要投入大量的时间和人力用于研究结构体系的有效性,复杂平面布置的合理性和主要构件对于某一控制指标的敏感性等。比如高层建筑需要研究采用何种在符合建筑设计和其他专业要求的基础上,相对经济合理的水平和竖向的结构体系,以及在确定结构体系之后的构件对侧向力做用下的平动和扭转的敏感性分析,从而根据具体的设计条件认识和优化结构体系。对于工程设计而言,结构构件的敏感性分析一般比理论的优化分析更有现实意义。

首先,需要定义一下敏感性指数,所谓的构件敏感性指数,可以定义为不同的种类,比如常用的是重量敏感性。简单的说,它的意义是对相同的一单位重量而言,构件能贡献出多大的虚功。

根据HiStruct所编写的程序将构件的虚功和敏感性进行计算,并与SAP2000程序显示的结果进行比较,其中一个算例结果如图1,图2所示。

图1 sap2000显示的构件虚功

图2 本文计算的构件重量敏感性指数

理论计算的在真实荷载条件下监控点的位移与10个单元的各自贡献如下:

1.661x10-4 =

6.23x10-6*2+6.85x10-6*2+2.14x10-5*2+1.92x10-5*2+3.26x10-2+1.33x10-1)/1000,其中1000为事先设定的虚力放大系数,可见理论计算结果正确。虽然理论计算与程序输出的具体数值不一致,但是他们之间的比例关系是固定。对比分析表明SAP2000程序中显示的虚功已具有重量敏感性的性质,可以应用其显示的虚功相对值指导结构重量优化的大致方向。

HiStruct所探讨的方法是将程序的内力和变形通过SAP2000输出,然后利用理论方法求解每个单元的虚功,因此可以自由设定各种力和变形工况,敏感性指数的类型等,并且不受结构体系限制,具有更广泛的适用性。

举个例子

这是一个12层的住宅,标准层平面如图3所示,本案例为HiStruct修改自网络上某个结构布置方案。

图3标准层平面布置

利用虚功显示出在确定平面布置之后构件的敏感性指数,图4为研究结构扭转刚度时候的构件敏感性。通过这个云图可以看出L型平面最远端的下部墙肢的部分及其连梁对于整体结构的抗扭最敏感,而各端部墙肢的下部及其连梁也较为敏感。柱和中上部墙肢的敏感性指数很小。

图4主要构件对结构抗扭刚度的敏感性

图5和图6表示侧向力作用下,控制中部楼层层间变形时的各构件敏感性指数图,由此可见,与X向平行的联肢墙对于X向的变形最为敏感;与Y向平行的联肢墙对于Y向的变形最为敏感,其中又以连梁的敏感性指数最高,其余构件的敏感性指数均很小。

图5主要构件对X向层间变形的敏感性

图6主要构件对Y向层间变形的敏感性

由上述例子可知,虚功原理对于构件敏感性分析的重要作用,它可以帮助设计人员,高效的区分结构构件对于特定研究对象的敏感性程度。比如研究主要构件对整体结构抗扭刚度贡献的敏感性可以了解结构的抗扭特性,指导复杂结构平面布置的方向,而研究侧向力作用下监控楼层层间变形时主要构件的敏感性指数可以用于了解结构的侧向刚度分布和相关的扭转问题,掌握结构受力的关键构件和部位,从而指导后续的构件优化和结构设计。

实际上,虚功原理不仅可以完成结构静力特性的分析,也可以通过设定基于振型的力和变形用于优化结构的周期等动力特性。通过编程计算和分析每根构件的虚功及敏感性指数主要目的是帮助结构工程师更直接和高效的认识结构体系的真实特性,从而指导优化设计。

基于虚功原理的结构敏感性分析和优化设计

HiStruct

案例研究

一结构敏感性分析

通过一个10层的平面框架剪力墙,层高3米,并在顶部带有桁架加强层的结构作为构件敏感性分析的研究对象,监控的目标是第7层的层间位移。SAP2000模型如图1所示,构件截面布置如表1所示。

图1 sap2000 模型

图2 真实侧向力时结构监控点的位移

采用理论方法计算的所有构件虚功和重量敏感性指数如表2所示,其中为了避免有限元数值计算误差,已将虚外力放大1000倍,计算的总虚功为8.513,将总虚功除以放大系数1000,即为图2所示SAP2000模型在第7层的层间变形,从而验证理论方法总虚功计算的正确性。

表2 本文方法计算的所有构件虚功和重量敏感性指数

借助表2的虚功和敏感性分析结果,可以帮助我们深入的认识结构的真实作用和

各构件对于抗侧力体系的贡献情况,由表2可见原结构:

(1)顶部支撑最对控制位移最敏感,因为顶部支撑相当于起到了一个加强层的作用,改变了整个框架剪力墙结构体系的等效抗侧刚度。

(2)柱的敏感性指数也很大,它的贡献主要是通过轴向的虚功来体现,并且沿着楼高均匀变化,这是因为顶部支撑连接墙和柱子形成的刚性加强层的力臂作用,使外柱两边产生很大的轴向拉压力,可以分担结构很大部分的倾覆弯矩,相反的却减小了柱分担的剪力和弯矩。

(3)中部及以下墙体对于控制第7层的层间位移也有效,顶部部分墙体的贡献很小甚至为负数,但是剪力墙的相对敏感性指数较小。

(4)楼面梁的的作用很小,这是因为由于外框柱主要通过轴向拉压形成的弯矩为抗侧力体系提供贡献,不会在梁柱节点处产生大的转动,相应的对梁刚度要求也就大大降低。

(5)从结构优化设计的角度看,假如第7层的层间位移不满足,并且构件尺寸均较合理时,可以调整顶部斜撑或者外框柱尺寸,即增加同样的重量,顶部斜撑和外框柱可以更有效地减小层间位移;假如层间位移富余,可以采用减小墙体的厚度;将梁采用铰接的构造,只需要让其承受竖向力等措施。但是这些优化措施,必须满足构件尺寸上下限的要求,承载力以及施工技术的要求。

(6)表2中的构件虚功在代数值上(需除以放大系数1000)等于构件在监控点中所占的绝对量,因此利用这些数值,结构设计人员可以很快的估计出构件调整之后的位移变化情况,大大减小人工反复计算的工作量。

二结构优化

在完成结构敏感性分析之后,根据敏感性和虚功即可对结构的真实状况有一个整体上的把握,为接下来的结构优化提供了指导性的方向。一般接下来可以人工手工修改构件,叠代计算几次,找到合适的结果或者通过建立优化分析的数学模型,借助编程完成构件优化。HiStruct 在这里向大家展示一下上述案例的构件尺寸优化过程,供大家参考。具体的内容如下:

1. 读取SAP2000的计算结果,完成构件虚功和敏感性指数计算,整理数据供构件优化使用。如图3所示。

图3 虚功计算程序界面

2. 设计构件的虚功调整系数上下限,由于不同的构件尺寸一般不能无限制的放大或者缩小,因此需要预先定义好一个可供调整的范围,然后运行截面优化,如

图4所示。根据本文的案例,假如要优化层间虚功从8.513到6.0,即对应层间位移为0.006,层间位移角为1/500。由图4可见,自动优化通过增大柱和支撑截面截面,部分增加墙的尺寸,而相应的减小敏感性指数很小的梁和结构上部的墙肢厚度,这与上一节敏感性分析的结论吻合,总重量增加约1.13倍。

图4 截面优化界面

3. 将以上调整系数反应到SAP2000的计算模型中,计算结果显示层间位移为0.0056,与设定的目标0.006的差别,主要是因为墙肢在厚度调整的时候向上归并为50mm模数的缘故。由此可见基于虚功原理的结构优化程序非常有效。

4. 在此做一个假想分析,假如继续放宽构件的尺寸限制,调整系数从0-10,那么自动优化的结果如图5所示。由此可见调整之后的结构总重量,在大大减小位移的同时甚至可以比原结构重量更轻。

图5 假想的截面优化

三小结

通过实例分析了虚功原理在建筑结构敏感性分析和优化设计上的应用,实际上虚功原理不仅可以完成结构静力特性的分析优化,也可以用于优化结构的周期等动力特性。

注:放大图片和更多讨论见高层建筑网站论坛:

https://www.sodocs.net/doc/8113818684.html,/bbs/redirect.php?tid=720&goto=lastpost#lastpo st

通过虚功原理来认识和分析结构

HiStruct

最近有个结构方案的构件尺寸要做优化,一般情况下主要有两种方式来做结构尺寸的优化:一是通过具备优化算法的高级有限元分析程序,比如ansys,marc 等;二是通过对结构体系的深入认识,人工的修改模型,叠代几次,找到相对合理的解。第一种方法的好处是只要前处理花时间,剩下的叠代计算由计算机完成,缺点是理论最优化的结果并不一定就是设计实践可以采用的解;而第二种方法的优点是所有的解都是工程可以接受的解,但是可能不是最优化的解。事实上无论

如何,清晰的结构体系概念和深入认识我们要分析的结构,是结构设计优化的必须条件。HiStruct 在这里介绍一种通过虚功原理来认识目标结构的方法,供各位朋友交流。

为什么虚功原理可以用来认识结构,并帮助我们做结构优化呢?解释如下:

The principle of Virtual work is based on the energy in a system, with the idea that in equilibrium that there is no change in energy, or the total potential energy is at a minimum. If there is no change in total energy, the external energy put into the system equals the energy in the system. Each member in the system has its own energy,this energy can be isolated and from there that member’s contribution to displacement can be determined. Once the member’s contributions have been calculated, these can be used to understand structural behavior. This behavior can be examined from a macro scale where the structure as a whole is examined or a micro scale where individual components such as frame elements can be explored. With this insight into the behavior of the structure, the information can be used for optimization.

举个简单的实例:

一个普通的框架剪力墙结构,10层高,如图1所示:

侧向力作用下,监控顶部位移时,竖向构件的贡献率,如图2所示。

侧向力作用下,监控顶层层间位移时,竖向构件的贡献率,如图3所示。

侧向力作用下,监控第5层层间位移时,竖向构件的贡献率,如图4所示。

由以上图可见,竖向构件对某种控制指标的相对贡献程度,可以通过构件虚功高效的表达出来,从而指导我们的结构优化设计方向,适用于复杂或者大型的空间结构,高层建筑等。但是需要注意的是最高效率构件并非越增加越好,比如框架剪力墙结构还涉及到双重体系的二道防线问题等。

SAP2000做索结构分析小结[更新]

2009-02-08 1:05

HiStruct 曾于05年的时候写过一篇用sap2000来做索结构分析设计的小文章,那时候主要还是应用sap2000 v8,9版本,如今sap2000程序已经升级到了v12版本,sap2000软件升级好快。今天帮一位朋友解决一个空间索结构的分析计算问题,于是重翻旧文,顺便做一些更正和补充。正文如下:

一,sap2000中索单元的通用模拟方法

1.可以用hook单元来模拟

hook的属性应该很容易理解,它就是一个只拉的杆件单元,可以用它来模拟一些受力情况类似的索单元,比如可以忽略索自重引起的挠度变形的情况,这里强调的是用hook的时候,相关参数的设置比较重要,不过没有什么特殊要注意的,根据实际情况来就可以了。

2.可以用frame来模拟索

索单元与sap2000采用的frame单元,存在一些属性上的差距,但是可以通过sap2000的属性修改功能来弥补。首先分析一下索的特性:比较柔,相当于不承受弯矩,可以设置截面的抗弯刚度为0来实现(这是sap 参考推荐的桁架模拟方式,此时不需要释放单元两端弯矩),也有一些人推荐采用设置抗弯刚度有极小值的方式来模拟,原理类似。空间索结构在实际操作中经常出现解无法收敛的情况,曾经有位朋友找我帮忙计算一个很难收敛的大型桅塔结构,后来经过大量测试在设置frame单元的抗弯刚度为0,非线性参数自定义时,得到合理的,收敛的分析结果。其实,只要结构模型建得正确合理,frame单元的抗弯刚度对于计算结果的影响可以忽略。至于索的其他参数,比如弹性模量,等效截面面积和直径等,根据实际情况来就可以了。注:这种方法近似模拟出来的索结构在自重不可忽略的情况下,还是有弯矩存在的。

3.在v9.0的版本以后,索单元已经独立出来了,即cable单元,使用cable 单元最重要的就是要理解cable Geometry的意义,如图1所示,这里非常重要的一个概念就是deformed geometry是什么意思,它是指通过解析法,理论计算出来的索的垂度,默认的荷载为索的自重状态,当然用户可以增加或者减小,一般来说deformed geometry来建立模型的话就不需要在模型中计算恒载的局部垂度了,但是对于空间结构而言,建议采用undeformed geometry,并且分析恒载。有人对tendon单元比较疑惑,其实tendon单元就是以前版本中的prestress

的升级,主要用于混凝土结构或者钢结构体外预应力时的预应力筋的模拟。

图1 cable Geometry

二,其它几个问题

1.预应力的模拟

对于所有的sap2000版本通常可采用降温的方法,道理很简单。首先,杆件的弹性模量E和应变比ε有如下关系:N=ε*E*A 其中ε=△L/L,温度和应变比也有如下关系:△L=α*L*△T即△L/L=α*△T;联立上两式,得N=α*E*A*T。举例如:已知需要预加给索的内力N,求△T。因为△T=N/(α*E*A),只要按已知的N算出来的温度值给杆件加上,计算后就可以在杆件内产生大小一样的N。对于对于v9 版本以后可以用温度和初始应变来模拟初始预应力,而且可以考虑了预应力的损失。关于温度,轴力和初始应变之间的转换关系,可以用HiStruct 以前的这张表格计算。注,v12以前可能有某些版本中有p-delta力,这个可以参考sap2000的分析参考,不过一般不推荐采用。

2.非线性分析工况的设置

索结构通常要用到大变形,而且按照sap2000中推荐的做法,最好各种非线性分析工况要采用相同的非线性参数设置,比如都用p-delta和大变形等。而其他的荷载工况最好是在预应力非线性工况的基础上做分析,因为预应力形成结构刚度有利于其他分析工况的收敛。

举个例子:比如一个简单的索结构,荷载:Dead,live,wind,temp(用来模拟预应力)。那么在分析工况里,应该是先设置temp为非线性,从0初始状态开始,设置大变形等,接着其它非线性工况的刚度可以从temp开始,设置大变形等,Sap2000特别提示不仅是刚度,前一种分析工况的荷载将也会自动被包含在当前分析工况中,所以最后一个分析工况里包含了前面分析的所有结果,基于这个原因,HiStruct建议将非线性分析的荷载组合,在分析工况中采用接龙的方式定义,但是要注意荷载组合和分项系数。其他非线性分析的参数涉及到一些理论知识,在非线性计算无法完成或者不收敛的时候,需要通过修改它们来实现计算收敛,得到合理结果,这里就不具体展开了。

3.关于索结构的解

很多朋友和我一开始学sap的时候一样总是不太注意查看分析过程,这是很重要的,因为对于非线性分析来说不收敛的解就是错误的,等于无解,通常遇到这种情况的时候,首先要检查的是结构的模型,其次是各种单元,节点的模拟,比如铰接的模拟是否合适,然后是调整总步数,子步大小等非线性分析参数。

SAP2000入门常见问题整理 [精华]

一、建模方面

1、柱子的偏心在sap2000里如何输入?

可以利用插入点命令来实现,assign>frame/cable/tendon>insert point

2、在PKPM等软件可以将梁置于柱边,SAP200中如何设置?

设置梁端刚域比较合理( End offset)。

3、SAP2000设置的截面如果需要转个90度,请问在哪设置?

选择构件,菜单-指定-框架/索/筋—局部坐标—90度,即可。

4、如何选择楼板单元类型?

“壳”具有平面内以及平面外刚度,一般用于定义墙单元。“膜”仅具有平面内刚度,一般用于定义楼板单元,起传递荷载的作用。“板”仅具有平面外刚度,仅存在平面外变形。对

于面截面类型的选择,一定程度上要根据工程情况作出选择。

5、编辑菜单下的“分割面”和指定菜单下“面对象剖分选项”有什么区别?什么情况下要设定面对象剖分?

“分割面”是把一个面对象分割为若干更小的面对象,可以再对其中某个面对象进行编辑(比如开洞、施加荷载等等)。“面对象剖分”是对面对象的有限元划分,形成有限元分析的单元和节点。对于膜属性的单元可以自动根据梁、墙位置进行剖分。对于壳和板,需要人工设定剖分。

6、从Autocad导入SAP2000注意的问题

(1)在SAP2000中输入曲线构件,可以用一段段短线组成,分的足够多,就达到曲线的效果。方法:画曲线,用内接正多边形逼近。

(2)在cad中绘图时,不能把图素放在0图层。

(3)导入DXF文件,请注意用line绘制直线模拟弧线轴线,不能使用Polyline命令。(4)在CAD中画图应该定义一个画图的原点,这个原点要与CAD中的(0,0,0)重合,这样导入到SAP中时图形原点才会在SAP中的原点。

7、网架建模时,螺栓球的质量如何考虑?

设计网架时,螺栓球节点自重一般按照杆件重量的一定比例考虑,在SFCAD中一般考虑杆件重量的30%,MSTCAD中考虑25%,3D3S中可以调整比例。在sap中可以在定义静荷载工况时,把此部分重量考虑进去,当考虑30%杆件重量时,可以定义静荷载的自重系数设为1.30(默认为1)。

二、设计方面

1、如何修改杆件容许长细比?

目前还不能直接修改控制长细比,可以通过设计覆盖项中的“Unbraced length ratio”选项来进行转化,不过只能一根一根的修改。

2、SAP2000中如何实现SATWE的梁刚度放大?

目前SAP2000还没有提供类似于Satwe这么方便的功能。所以,只能选中杆件然后修改刚度。操作上可以将需要放大刚度的楼面梁选中,并设置为一个组,以后需要考虑刚度放大时可以较为方便的进行修改。

3、SAP2000中文版都贯入了哪些设计规范?

chiness2002包含的中国规范主要有:

《建筑结构荷载规范》(GB50009-2001)

《混凝土结构设计规范》(GB50010-2002)

《建筑抗震设计规范》(GB50011-2001)

《钢结构设计规范》(GB50017-2003)

《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)

《高层民用建筑钢结构技术规程》(JGJ99-98)等。

4、钢结构设计覆盖项中各个参数的含义:

(1) 无支撑长度比(主)/ 无支撑长度比(次,LT

此项功能主要是用于钢梁设计。由于钢梁强轴(major axis)受弯时,一侧的翼板受压,另一侧受拉。受压侧的翼板可能发生LTB(Lateral torsional buckling),故有必要将其束制,降低钢梁此类破坏。程序所提及的minor LTB指的就是计算钢梁强度时的侧向无支撑长度系数,计算侧向无支撑长度时,是以杆件全长为基准,再乘以LTB系数。)

至于LTB系数的大小取值必须视钢梁受压侧束制条件而定,一般钢梁(次梁)若与RC楼板或Deck板由shear stud 接合一起时,由于此类钢梁一般是剪力接头,故受压侧于上缘,

因此shear stud的设置将可有效避免LTB,所以在程序中可设一个合理值,一般可以取

0.1~0.2。但若是主梁,则必须视次梁配置的状况而定,程序中主梁的LTB系数是其支撑的次梁最大间距与主梁全长的比值。

(2) 有效长度系数(Mue主)/ 有效长度系数(Mue次)

该参数用于确定构件的计算长度系数,由于程序自动计算的计算长度系数有时候不太准确,因此需要我们自己根据钢结构设计规范中附录D手算计算长度系数,作以调整。

(3) ignore b/t slenderness?

该参数用于验算构件局部稳定的构造要求。

(4) 轧制截面、翼缘焰切、两端铰接、净截面与全截面比可以根据自己的实际情况输入。

(5) 弯矩系数(beta_m主)、弯矩系数(beta_m次):

该系数按弯矩作用平面内稳定的有关规定采用(等效弯矩系数),部分说明如下:

有端弯矩和横向荷载同时作用时,使构件产生同向曲率时,该系数为1.0,使构件产生反向曲率时,该系数为0.85。程序默认0.85。

弯矩系数(beta_t主)、弯矩系数(beta_t次):

该系数按弯矩作用平面外稳定时采用的等效弯矩系数(等效弯矩系数)。

所考虑的构件断内有端弯矩和横向荷载同时作用时,使构件产生同向曲率时,该系数为1.0,使构件产生反向曲率时,该系数为0.85。程序默认1.0

抽油机井示功图口诀

示功图口诀 1、四边平行泵正常,左右斜率最重要,高产稳产有保障;井筒提产有潜力。 2、充满不好象菜刀,供液原因及时找,调整制度不能忘;调层压裂是方向。 3、油杆断脱黄瓜状,电流变化失平衡,井口无液载荷降;验泵对扣再检泵。 4、砂卡出现锯齿样,砂阻卡死不一样,油层井筒把砂防;防砂方案要得当。 5、图形斜直杆拉伸,活塞卡死不做功,解卡无效速上修;原因查明措施订。 6、双阀漏失象鸭蛋,漏失原因多方面,碰泵洗井是手段;漏失严重要换泵。 7、上阀漏失抛物线,增载缓慢卸载快,漏失严重不出油;及时检泵莫耽误。 8、下阀漏失泵效减,卸载缓慢增载快,曲线上翘两边圆;洗井无效就检泵。 9、油井结蜡图肥胖,上下行程波峰大,峰点对乘有规律;热洗加药快清蜡。 10、油稠图形变肥胖,磨阻增大呈凸圆,冲程速度中间快;电流正常不管它。 11、油管漏失图形窄,容易隐藏不好辨,憋压计量问题现;细查漏点换油管。 12、碰泵左下出圆圈,及时调整防冲踞,上提高度图中显;调后测图再核实。 13、上阀失灵图偏下,此图复杂难度大,多方分析细排查;措施一般要检泵。 14、下阀失灵图偏上,负荷提住不下降,液面变化查现象;措施洗井再检泵。 15、图形增胖曲线平,管堵闸门没改通,措施解堵查流程;热洗管线找原因。 16、图形右上少一块,行程未完突卸载,活塞脱出工作筒;计算下放问题无。 17、上死点处长犄角,光杆驴头有碰挂,井下碰挂要分清;管串数据重调配。 18、增载正常卸载快,左右曲线不对称,上行程处泵已漏;及时下放或换泵。 19、上下左右不平行,泵已磨损间隙松,疲劳磨损超周期;据情适时要换泵。 20、玻璃钢杆图形怪,增程取决冲次快,弹性较大图变形;搞清原理需提高。 21、气体影响卸载慢,泵内进气产量减,调小余隙参数改;控套加深多方面。 22、气锁出现双曲线,泵已不出气充满,加深防止泡沫段;气油比高查油层。 23、图形倾斜不要怕,这是惯性载荷大,保持生产防断杆;合理泵深与冲次。 24、图形出现阻尼线,波峰由大到平缓,冲次过大是因缘;未曾断杆属正常。 25、修后完井不出液,此图出现原因多,井口疑点要搞清;综合分析下结论。 26、上下死点出圆圈,二级震动冲次快,合理冲次防杆断,保持泵效防断脱。 27、抽喷图型有特点,增载卸载不明显,产液较高憋压缓;制度调整再挖潜。

典型示功图具体分析

典型示功图具体分析 1.泵工作正常时的示功图 和理论示功图的差异不大,均为一近似的平行四边形,除 了由于抽油机设备的轻微振动引起的一些微小波纹外,其它因 素影响在图上显示不明显。 2.气体影响时的示功图 由点到面在下冲程末余隙内还存在一定数量的溶解气和压缩 气,上冲程开始后泵内压力因气体的膨胀而不能很快降低,使吸入 凡尔打开滞后,加载变慢,余隙越大,残存的气量越多,泵进口压 力越低,则吸入凡尔打开滞后的越多。 特点: 下冲程时,气体受压缩,泵内压力不能迅速提高,使排出凡尔滞后打开,卸载变慢,泵的余隙 越大,进入泵内的气量越多,卸载线越长“示功图”的刀把越明显。 3.气锁现象时的示功图 是指大量气体进入泵内后,引起游动凡尔、固定凡尔均失效,活 塞对气体起压缩和膨胀的作用,泵排不出油。 4.供液不足时的示功图 沉没度小,供油不足,使液体不能充满工作筒。 下冲程中悬点载荷不能立即减小,只有当活塞遇到液面时,才 迅速卸载,所以,卸载线较气体影响的卸载线陡而直。 5.油井出砂时的示功图 油井大量出砂,油流携带着砂子冲刺,载荷受砂卡原因呈不规则 毛刺现象;致使工作筒、活塞、凡尔等磨损,导致泵效降低,严重时 固定凡尔或游动凡尔砂卡或砂埋,直接影响泵效。 6.油井结蜡时的示功图 由于活塞上行时,泵内压力下降,在泵的入口处及泵内极易结 蜡,使油流阻力增大,光杆负荷增大,引起凡尔失灵或卡死凡尔、 活塞,堵死油管等现象。

7.抽油杆断脱时的示功图 抽油杆断脱后的悬点载荷实际上是断脱点以上的抽油杆柱重 量,只是由于摩擦力才使载荷线不重合。 8.连抽带喷时的示功图 具有一定自喷能力的抽油井,抽汲实际上只起诱喷和助喷作用。 特点: 在抽汲过程中,游动凡尔和固定凡尔处于同时打开状态,液柱载荷 基本上加不到悬点,示功图的位置和载荷变化的大小取决于喷势的强弱 及抽汲流体的粘度。 9.固定凡尔漏失时的示功图 固定凡尔球和凡尔座配合不严,凡尔座锥体装配不紧,凡尔罩内落 入脏物或蜡卡着凡尔球等而造成的漏失,典型表现为加载和减载缓慢, 呈弧形,减载更严重。 10.游动凡尔漏失时的示功图 游动凡尔漏失时,活塞上冲程的有效冲程长度将减少,而下冲程 有效冲程长度将增加,漏失越严重,上冲程的有效冲程长度的减少和 下冲程长度的增加越厉害。 特点: 增载线的倾角比泵工作正常时为小,既左上角圆滑,漏失量越大,其圆滑程度愈厉害,增载线成为一圆弧线,卸载线比增载线陡。 11.双凡尔漏失时的示功图 在上冲程过程中,游动凡尔漏失起主导作用,使图形左上角和 右上角变圆,但负荷线能达到理论上负荷线。 在下冲程过程中,固定凡尔漏失起主导作用,使图形左下角和 右下角变圆,但下负荷线能降到理论下负荷线处,所以,示功图变 成两头尖圆。 12.油管漏失时的示功图 油管的丝扣连接未上紧,油管被磨损、腐蚀而产生破裂和孔洞时进入油管中的液体就会从这些裂缝、孔洞及未上紧处重新漏入油套环行空间。

抽油机井典型示功图分析

抽油机井典型示功图分析 学习目的:抽油机井典型示功图是采油技术人员在多年的生产实践中总结出来的,大多数具有一定的特征,一看就可直接定性的示功图。把这些具有典型图形特征的例子作为生产现场初步判断抽油机井泵况的参考依据,也是综合分析实测示功图的第一步。通过对本节的学习,使分析者能以此为参考,对具有典型特征的示功图做出准确的定性判断。 一、准备工作 1、准备具有典型特征的示功图若干; 2、纸,笔,尺,计算器。 二、操作步骤 1、把给定的示功图逐一过一遍,按所理解的先初步给示功图定性定类。 第一类:图形较大,除去某一个角外就近似于平行四边形的示功图——即抽油泵是在工作的示功图; 第二类是图形上下幅度很小,两侧较尖的示功图——即抽油泵基本不工作的示功图; 第三类示功图:特征不明显的示功图——即最难直接定性的示功图。 2、按定类详细分析判断。 三、实测示功图分析解释 为了便于分析,我们先从图形受单一因素影响的典型示功图着手。所谓典型示功图:就是指某一个因素的影响十分明显,其形状代表了该因素影响下示功图的基本特征。然后把典型示功图与实测示功图对比分析,以阐明分析方法和各类图形的特征。最后提出相应的整改措施。用对比相面法把实测示功图与理论示功图形状进行对比,看图形变化,分析泵的工作状况。 1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。

图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图

油井实测示功图解释大全

六、解释抽油机井理论示功图 A-驴头位于下死点 D点卸载终止点 C-驴头位于上死点AB-增载线 CD-卸载线 B-吸入凡尔打开,游动凡尔关闭点增载终止点 λ+λ-冲程损失(抽油杆伸长及油管缩短之和) D-固定凡尔关闭,游动凡尔打开点 BC-活塞冲程上行程线也是最大负荷线 AD- 下行程线也是最小负荷线 B1C-光杆冲程 OA-抽油杆在液体中重量 AB1-活塞以上液柱重量ABCD-抽油泵所做的功

七、实测示功图的解释 (1) 图1为其它因素影响不大,深井泵工作正常时测得的示功图。这类图形共同特点是和理论示功图的差异不大,均为一近似的平行四边形。 (2) 图2为供液不足的典型示功图。理论根据:活塞下行时,由于泵内没有完全充满,游动凡尔打不开,当活塞下行撞击到液面游动凡尔才打开,光杆突然卸载。该图的增载线和卸载线相互平行。 (3) 图3为供液极差的典型示功图。理论根据:活塞行至接近下死点时,才能接触到液面,使光杆卸载,但由于活塞刚接触到液面,上冲程又开始,液体来不及进入活塞以上,所以泵效极低。 (4) 图4为气体影响的典型示功图。理论根据:在活塞上行时,泵内压力降低,溶解气从石油中分离出来,由于气体膨胀,给活塞一个推动力,使增载过程变缓。当活塞下行时,活塞压缩泵内气体,使泵内压力逐渐增大,直到被压缩的气体压力大于活塞以上液柱压力时,游动凡尔才能打开。因此,光杆卸载较正常卸载缓慢。卸载线成为一条弯曲的弧线。

(5) 图5为“气锁”的典型示功图。所谓“气锁”是指大量气体进入泵内后,引起游动凡尔、固定凡尔均失效,活塞只是上下往复压缩气体,泵不排液。 (6) 图6为游动凡尔漏失的典型示功图。当光杆开始上行时,由于游动凡尔漏失泵筒内压力升高,给活塞一个向上的顶托力,使光杆负荷不能迅速增加到最大理论值,使增载迟缓,增载线是一条斜率较小的曲线。卸载线变陡,两上角变圆。 (7) 图7为游动凡尔失灵,油井不出油的典型示功图。图形呈窄条状,整个图形靠近下负荷线。 (8) 图8为固定凡尔漏失的典型示功图。示功图的特点:反应在卸载时,右下角变圆,卸载线与理论负荷线夹角变小,漏失越严重夹角越小。图形左下角变圆,漏失越严重,此角越圆滑。 (9) 图9为固定凡尔严重漏失,油井不出油的典型示功图。图形呈窄条状,且接近理论上负荷线。

抽油机典型示功图

抽油机示功图是将抽油机井光杆悬点载荷变化所作的功简化成直观封闭的几何图形,是光杆悬点载荷在动态生产过程中的直观反映,是油田开发技术人员必须掌握的分析方法。通过示功图的正确分析评价,可诊断抽油机井是否正常生产。本文将通过典型示功图示例阐述,结合现场实际,对井下生产情况进行解释分析,应用地面示功图解决现场实际问题,为油田开发现场分析诊断提供可借鉴性依据。 1、泵正常工作 图像分析:供液充足、泵的沉没度大、泵阀基本不漏 失,泵效高,游动阀尔和固定阀尔能够及时开、闭,柱塞 能够迅速加载和卸载。 管理措施:此类井供液充足,沉没度大,仍有生产潜 力可挖,可以将机抽参数调整到最大,以求得最大产量, 发挥井筒应有的产能水平。 2、振动影响 图形分析:泵深超过800m时抽油杆会发生有规律的振动,一 般不会影响泵效,振动引起悬点载荷叠加在正常工作产生的曲 线上,由于抽油杆柱的振动为阻尼振动,所以出现逐渐减弱 的波浪线。 管理措施:一般不考虑振动影响,如果冲次加大后,振动幅度 变大,就导致功图失真,上下死点有小尾巴出现,泵效低,这 时需要对油井进行综合评估,减小冲次建立合理制度。 3、供液不足 图形分析:供液不足为油田常见工况,当泵充满系数小于0.6 时,可以认为深井泵的工作制度不合理,泵的排出能力大于油 层的供液能力,造成沉没度太小,液体充满不了泵筒。 管理措施;主要进行油层改造,改善供液条件,机抽参数,对于 泵挂较深井可采取长冲程,小泵径、慢冲次,泵挂相对较浅的 井,在井况及抽油设备允许情况下,加深泵挂深度,以求得最 大泵效。 4、泵工作正常,油稠时的情况。 图像分析:油稠,使摩擦等附加阻力变大,造成上负荷线 偏高,下负荷线偏低,同时,油稠可能使得凡尔开关比6B63 常时滞后,凡尔和凡尔座配合不严密,造成较大漏失。 管理措施:对于稠油井,主要对进泵液体降粘,定期地向 油田区块注入降粘剂,采取环空加热措施,并采用反馈抽 稠泵机抽。

示功图分析原理

1、泵工作正常时的示功图 所谓泵的工作正常,指的是泵工作参数选用合理,使泵的生产能力与油层供油能力基本相适应。其图形特点:接近理论示功图,近似的平行四边形。这类井其泵效一般在60%以上。 图中虚线是人为根据油井抽汲参数绘制的理论负载线,上边一条为最大理论负载线,下边一条为最小理论负载线。现场常常把增载线和减载线省略了。 2、惯性载荷影响的示功图 在惯性载荷的作用下,示功图不仅扭转了一个角度,而且冲程损失减少了,有利于提高泵效。示功图基本上与理论示功图形状相符。影响的原因是:由于下泵深度大,光杆负荷大,抽汲速度快等原因在抽油过程中产生较大的惯性载荷。在上冲程时,因惯性力向下,悬点载荷受惯性影响很大,下死点A上升到A′,AA′即是惯性力的影响增加的悬点载荷,直到B′点才增载完毕;在下冲程时因惯性力向上使悬点载荷减小,下死点由C降低到C′,直到D′才卸载完毕。这样一来使整个示功图较理论示功图沿顺时针方向偏转一个角度,活塞冲程由S活增大到S′活,实际上,惯性载荷的存在将增加最大载荷和减少最小载荷,从而使抽油杆受力条件变坏,容易引起抽油杆折断现象。 整改措施: 1、减小泵挂深度,以减轻光杆负荷。 2、降低抽油机的抽汲参数,减小惯性力。 3、振动载荷影响的示功图 分析理论示功图可知,液柱载荷是周期性作用在活塞上。当上冲程变化结束后,液体由静止到运动,液柱的载荷突然作用于抽油杆下端,于是引起抽油杆柱的振动。在下冲程,由于抽油杆柱突然卸载也会发生类似现象。 振动载荷的影响是由抽油机抽汲参数过快,使抽油杆柱突然发生载荷变化而引起的振动,而使载荷线发生波动。 整改措施: 降低抽油机的抽汲参数,减小惯性力。 4、泵受气体影响的示功图 由于在下冲程末余隙容积内还残存一定数量的气体,上冲程开始后,泵内压力因气体膨胀而不能很快降低,使固定凡尔打开滞后,增载变慢,下冲程时气体受压缩,泵内压力不能迅速提高,使游动凡尔打开滞后,卸载变慢。 其图形特点:卸载线过程缓慢,卸载线CDˊ向右下方变曲的弧线,增载过程也变慢,增载线较理论的增载线平缓。DDˊ线越长,泵受气体

典型示功图分析及解决措施讲义

幻灯片1 幻灯片2 幻灯片3 各位观众大家好,如果您刚刚打 开电视机,现在正为您直播的是 《典型示功图分析及解决措施》, 我是主持人韩伟,和大家开个小 玩笑。 很高兴认识大家,今天这堂课我 们将学习因为单一因素影响而形 成的典型示功图的分析及解决措 施。 通过这次课程,将使大家能够快 速准确的分析判断生产中党见示 功图,并提出相应解决措施。

幻灯片4 众所周知,示功图是日党管理中 一项必不可少的动态资料,通过 示功图,我们可以判断深井泵及 地层的工作状况。 然而抽油井在生产过程中使深井 泵受到:制造质量、安装质量以 及砂、蜡、水气、稠油和腐蚀等 多种因素影响,因此出现了各种 各样的示功图。今天我们主要学 习由某种单一因素影响形成的典 型示功图。 在讲解前我们先来熟悉一个概 念:弹性变形。 幻灯片5 弹性变形指材料在受到外力作用 时产生变形或尺寸的变化,而且 能够恢复的变形叫做弹性变形。 弹性变形的重要特征是其可逆 性,即受力作用后产生变形,卸 除载荷后,变形消失。 生产中抽油杆柱所承受的弹性变 形主要是:轴向拉伸变形和轴向 压缩变形。 幻灯片6 下面我们通过动画了解弹性变形 在深井泵工作过程中的影响及作 用。 深井泵工作原理分为两大部分, 也就是上行程和下行程。 上行程开始时,驴头上行,游动 阀、固定阀均关闭,杆柱承受光 杆向上拉伸及活塞上部液柱重力 作用在活塞上对杆柱的拉伸而伸 长,同时油管柱缩短,悬点载荷 逐步增加,达到拉伸极限时变形 结束,载荷达到理论最大值,但 是活塞未移动,加载过程AB段 形成光杆冲程损失BB1 随着驴头继续上移,活塞开始向 上移动,泵筒内压力降低,当压 力低于油套环空压力时,油套环

抽油井示功图图谱

抽油井示功图图谱 1、考虑弹性的理论示功图 2、冲程损失 增载线越长,冲程损失越大,它与泵挂深度有关系。 3、考虑惯性和振动的理论示功图 ①实际上抽油杆是有弹性会“形变”的。 ②ab 段为增载线(是受力后伸长);bc 段为上行过程。 ③cd 段为卸载线(卸载后缩短);da 为下行过程 ④ab 和cd 都是倾斜着上下,与位移过程成线性的线段。 ⑤理论示功图的特征:ab ∥cd 、 bc ∥ da

3.2振动大后产生下倾现象。冲数越快,动载也越大。 3.3地面平衡轻,下冲程平衡块向下运动,井下负荷轻,动载增大,下行程曲线阻尼特征较明显,振幅大;平衡重后与之相反。 3.4二级振动示功图图形 抽油杆上、下运动时就会发生二级振动。这种示功图图形在左下方和右上方(即在冲程:下死点和上死点处)经图形的右上方会有一个“结”出现。这是抽油杆杆柱受力换向与杆柱弹性作用下造成的。由于弹性振动传递快,而杆柱与油管和液体摩擦等因素造成滞后,影响曲线的形状而产生扭结。 冲次:4-6 冲次:4-5 平衡轻示功图 平衡轻示功图

4、抽油机所承受最大载荷主要为抽油杆自重+液柱载荷+振动惯性载荷。对同一口井杆柱自重与振动载荷是相同的,液体由于含气不同,井液密度不同,因此含气量越大,液柱载荷越小,相对最大悬点载荷越小,功图上下行程线相距越窄,功图面积越小。反之越大。 功图a 相对密度为0.4 功图b 相对密度为0.6 功图c 相对密度为0.9 功图d 相对密度为1.1 4.1

5、抽喷理论功图 由于抽喷井井液梯度小,上下行程距离短。图形特征为近于水平状,很少有大的振动波,图形两端曲线近于平行(有增载和卸载特征),喷势较大的井,两端还有圆形面积,属于抽油过程中接近上,下死点时速度慢,喷势容易顶开游动阀球,相当于阀常开,也给下行柱塞以托力而减载。 6、有气体影响的理论示功图 含气井由于抽油泵筒内存在大量气体,抽油杆下行时没有立刻卸载,而是首先压缩泵筒内气体,造成缓慢卸载特征,下行曲线为凸圆弧曲线特征。气体影响越大,圆弧的曲率半径越大。 该曲线特征为上、下曲线没有明显的“阻尼”状,而是呈“小牙齿”状的不规则、不重复的示功图

油井示功图分析

二零一零年二零一零年八八月月工艺研究所抽油机井示功图,可以真实反映油井生产工况。随着高含水区块杆管偏磨,地层出砂严重,油井失效频繁,典型示功图可作为生产现场初步判断抽油机井泵况的参考依据。因此,应通过示功图分析方法研究,对油井作业和实测功图进行对比,总结典型示功图特征,以正确指导油井工况分析和管理。 三、现场油井失效功图分析一、理论示功图分析二、典型示功图分析理论示功图:就是认为光杆只承受抽油杆柱与活塞截面积以上液柱的静载荷时,理论上所得到的示功图ABC为上冲程静载变化线: 上冲程A:下死点,静载W rl , 开关,关。AB:加载线,加载过程,关,关。B:加载完毕,,关,关开。BC:吸入过程,BC=S p ,关,开。C:上死点。 ' BB 游动阀固定阀CDA为下冲程静载变化线:下冲程C:上死点,静载,关,开关;CD:卸载线,卸载过程,关,关;D:卸载完毕,,关开,关;DA:排出过程,DA=Sp, 开,关(相对位移);A:下死点。 ' DD l r W W 游动阀固定阀*若不计杆管弹性,静载作用下理论示功图为矩形。静载荷作用的理论示功图为一平行四边形。三、现场油井失效功图分析一、理论示功图分析二、典型示功图分析P S A B D 由于在下冲程末余隙内还残存一定数量压缩的溶解气,上冲程开始后泵内压力因气体的膨胀而不能很快降低,加载变

慢,使吸入阀打开滞后(B'点)B ’ C 残存的气量越多,泵口压力越低,则吸入阀打开滞后的越多,即B B'线越长B' C 为上冲程柱塞有效冲程1、气体影响示功图P S A B D 下冲程时,气体受压缩,泵内压力不能迅速提高,卸载变慢,使排出阀滞后打开(D' )B ’ C 泵的余隙越大,进入泵内的气量越多,则DD '线越长D'A为下冲程柱塞有效冲程D' 1、气体影响示功图P S A B D 而当进泵气量很大而沉没压力很低时,泵内气体处于反复压缩和膨胀状态,吸入和排出阀处于关闭状态,出现“气锁” 现象。B ’ C 如图中点画线所示: D ’ 1、气体影响示功图S 气体使泵效降低的数值可使用下式近似计算: P A B D B ' C D' 充满系数: ' AD AD ' ' DD g S 式中:S—光杆冲程1、气体影响示功图P S A B D 当沉没度过小或供液不足使液体不能充满工作筒时,均会影响示功图的形状。 C 供液不足不影响示功图的上冲程,与理论示功图相近。下冲程由于泵筒中液体充不满,悬点载荷不能立即减小,只有当柱塞遇到液面时,才迅速卸载,卸载线与增载线平行,卸载点较理论示功图卸载点左移(如图中D '点) D ' 2、充不满影响的示功图充不满程度越严重,则卸载线越往左移。(如图中2、3线所示)有时,当柱塞碰到液面时,由于振动,最小载荷线会出现波浪线。 1 2 3 P S A B D C D?0?7 2、充不满影响的示功图P S A B D (1)排出部分漏失 C 上冲程时,泵

理论示功图的分析和解释

示功图的分析和解释 前言 抽油机井采油是目前油田开发中普遍应用的方式,抽油机井的管理水平的好坏,关系到油田整体经济效益的高低。要做好抽油机井的生产管理工作,必须取准取全各项生产资料,制定抽油机井合理的工作制度,不断进行分析,适应不断变化的油藏动态,加强并提高抽油机井的日常管理水平。 分析和解释示功图,就是直接了解深井泵工作状况好坏的一个主要手段,不但深井泵工作中的一切异常现象可以在示功图上比较直观的反映出来,而且,还可以结合有关资料,来分析判断油井工作制度是否合理,抽油设备与油层和原油性质是否适应,还可以通过“示功图法”对低产、低能井制定出合理的开关井时间,减少设备的磨损和电能的浪费等。 由于抽油井的情况复杂,在生产过程中,深井泵不但要受到抽油设备制造质量和安装质量的影响,而且要受到油层中的砂、蜡、气等多种因素的影响。致使实测示功图形状多变,各不相同。尤其是在深井上,这种情况就更为突出。因此,在分析示功图时,既要全面地了解油井的生产情况、设备状况和测试仪器的好坏程度,根据多方面的资料综合分析,又要善于从各种因素中,找出引起示功图变异的主要因素,这样,才能做出正确的判断。 一、示功图的基础知识 1、示功图的概念:

示功图的概念:反映深井泵工作状况好坏,由专门的仪器测出,画在坐标图上,被封闭的线段所围成的面积表示驴头在一次往复运动中抽油机所做的功,称为示功图。 动力仪力比:示功图上每毫米横坐标长度所代表的负荷值。 减程比:示功图上每毫米横坐标长度所代表的位移值。 2、计算驴头最大负荷、最小负荷 计算公式: (1)根据油井生产资料,绘制该井理论示功图. (2)根据油井生产参数,计算并画出驴头最大负荷、最小负荷在图中理论负荷线上的位置。 两种较简便的计算公式: ①最大载荷: P1大=P液/+P杆[b+sn2/1440] P2大=P液/+P杆[b+sn2/1790] ②最小载荷: P1小=P杆[b-sn2/1440] P2小=P杆[b-sn2/1790] 式中: P1大------悬点最大载荷(第一种计算方法); P2大------悬点最大载荷(第二种计算方法); P1小------悬点最小载荷(第一种计算方法); P2小------悬点最小载荷(第二种计算方法);

典型示功图分析及其在实际生产中的应用

典型示功图分析及其在实际生产中的应用 摘要:在当前世界石油生产中,特别是油田开发后期,有杆泵抽油方式占有很大比重,油田生产的特殊性导致抽油机的故障诊断一直是油田生产领域的一个难题。及时分析抽油机工况,给出可靠的故障诊断结果和建议,对提高油田生产效率和经济效益有着及其重要的意义。示功图能够直接反映抽油机的工作状态,是进一步分析抽油泵工作状态的主要依据。本文通过对各类典型示功图进行分析, 总结出抽油井试井存在的问题, 提出有针对性的技术管理措施,为选择合理的采油工作制度和修井检泵措施, 保证油井长期稳产、高效提供依据。 关键词:抽油机示功图分析应用 Analysis of typical indicator card and the application in practice Abstract:The sucker-rod pumping accounts for a large proportion of the current oil extraction, especially in the late field life. The bad condition of the oil-field development makes the diagnosis of sucker-rod pumping being a difficult problem in the oil production field for a long time.Therefore,it is very important to diagnose the fault of the pumping units timely and provide operation advices reliably,which means lot to for improving the production efficiency and economical operation in oil field. The indicator card obtained by direct measurement intuitively reflects the working condition of sucker-rod pumping unit,which is the basis of the analysis of the down hole condition.This paper through some kinds of typical indicator card analysis, summarizes for the problems in pumping unit testing, put forward some technology management measures, for choosing reasonable recovery work system and well conditioning measures to ensure that the oil well have a long period of stabilized and efficiency production. Keywords: Pumping units; Indicator card; Analysis;Application

示功图分析

示功图分析 目前生产油井多是抽油机井,泵挂1000-2200米之间,想要真正对油井的生产有有个深入、细致的了解,必须采取很多手段,如:测示功图、动液面、电流、量油等。抽油机井的管理水平,关系到油田的整体经济效益。要做好抽油机井的管理工作,必须取全取准各项生产资料,并作出正确的分析,制定抽油机井的合理工作制度,采取切实有效的合理措施,加强和提高抽油机井的日常管理水平。 示功图的测试是对抽油机井的管、杆、泵的工作状况的很好的诊断。通过对负荷和图形的变化,正确的示功图分析,可以判断油井的工作制度是否合理,影响泵效和不出油的原因,确定合理的采油工艺措施和检泵周期。 一.示功图的测试 基准示功图: 1.基准示功图的意义:就是分析模板。 在油井新的状态下建立的基准示功图对以后的采油管理和测试会起到很大的作用,通过载荷的变化可以观察摩擦力的变化和液面的变化,对井筒和地层精细管理起到很大的作用,特别是在目前高含水阶段的采油生产。 基准示功图还可以指导动液面的测试。动液面的准确测试是目前的局级技术难题。动液面是油套环空的,油套环空很小,只要有很小的东西就会阻碍声波的传播,液面的确定不能光看液面曲线,必须与示功图对比分析。 基准示功图最重要的作用是资料的互相验证,保证了所出资料的准确率,同时也提高测试人员的工作水平。精准的资料保证了技术人员的分析地准确,采取措施对症。 2.如何建立基准示功图 油井作业后待生产正常测得合格的示功图和动液面做为基准,以后的示功图和动液面与其对比。 一般是在作业5-7天后测得示功图和动液面作为基准。在作业后建基准示功图的原因是:作业后管杆泵都经过清洗和更换,管柱深度都会发生变化,油井的生产状态与以前发生了变化,主要是摩擦力变化,因为示功图反映的是力的变化,所以作业对示功图的影响很大,

相关主题