搜档网
当前位置:搜档网 › COMSOL Multiphysics对锂离子电池的热失控模拟

COMSOL Multiphysics对锂离子电池的热失控模拟

COMSOL Multiphysics对锂离子电池的热失控模拟
COMSOL Multiphysics对锂离子电池的热失控模拟

COMSOL Multiphysics对锂离子电池的热失控模拟

仿真揭示了,放热条件可能导致热引燃。

在锂离子电池的开发过程中,安全设计与评估在预防热失控引起的着火等问题中发挥着重要的作用。我们使用模拟技术,如COMSOL Multiphysics来了解各种现象对锂离子电池的影响,评估电池的安全性。本文介绍了一种建模的方法来测试在锂电池里的化学反应放热的安全性。

―如果释放的热量比由内部和外部放热产生的热量大,电池将会是热稳定的状态。如果释放的热量少,温度就会稳步上升并导致热失控。‖

我们的模拟着眼于使用热分析来评估热失控条件。考虑了三种放热形式:

使用加热箱和加速量热仪(ARC)的外部加热

化学反应(热降解反应,燃烧等)产生的内部热量,和

热(热传导、辐射)。

如果释放的热量比由内部和外部放热产生的热量大,电池将会是热稳定的状态;如果释放的热量少,温度就会稳步上升,并将导致热失控。在加热试验的模拟中,外部热源使用加热箱供热。

图1.活性材料的热化学反应DSC测量

一种反应热模型

当模拟化学反应产生的内部热时,有几个物理现象必须考虑。首先,分离膜和电解质的热降解,这将影响电导率。其次,负极的电解质反应,涉及多种反应,不能用单一反应来描述。本研究中,反应分两步进行:固体电解质接触面(SEI)和通过SEI的负极电解质反应。最后,在模型中也包含了正极电解质反应。―COMSOL Multiphysics是电池分析的理想平台。‖

表1.分析条件(18650圆柱形电池)

我们进行了一系列在匀速升温的化学反应的差示扫描量热仪分析(DSC)来获得参数拟合的反应热模型。图1显示的是一个DSC测量的例子,一个1小时温度升高的过程(5°C/分钟),其中正电极是LiCoO2,负电极是碳,电解液是一种碳酸乙烯(EC)和碳酸二乙酯(DEC)的混合物。从图一中DSC测量的结果看出,生热率系数——单位时间单位体积产生的热量——随温度变化的曲线。

图2. 利用反应速率公式计算的在升温过程中(5°C/min)的反应比率分析

图二显示了各种材料在升温过程中的反应率,分析使用了由实验得来的峰值拟合反应率计算公式。第一个发生的反应是在SEI和负极之间,紧随其后的是在温度范围100°---200°C 下的电极电解液反应。SEI膜的厚度抑制负极的反应率,但是这个反应率由于反应的进行

(150°C to 200°C)仍然是增长的,这里反应和然后直接参与电解液的反应是迅速增长的(200°C – 250°C)。

安全试验模拟

通过反应速率公式,我们进行了参数拟合。分析了一种18650圆柱形电池,它有一个LiCoO2正电极,碳负电极,EC和DEC混合的电解液。这些模拟,材料属性的密度,比热,在电极表面传热系数和其他材料等,都采用正极板,负极板和阻隔膜测量值的平均值。对于垂直于电极表面的区域,我们使用复合薄膜的热扩散系数。我们将从电池表面的热释放表示为热传导和热辐射的总和。传热系数依赖于通风条件,热辐射依赖于表面材料。我们通过拟合加热箱实验测得的表面温度变化来确定热传导和热辐射系数。表1列出了分析条件。

图3. 电池表面温度随时间在目标温度:145°C, 153°C和155°C下加热测试模拟的变化

图3显示了加热测试模拟的结果。气温上升并且维持在不同的温度点。在一个145°C的目标温度,我们观测到一些自加热效应,但是温度是稳定的,没有产生热失控。然而,在155°C 时,热失控发生,表面温度急剧上升。在153°C的目标温度下,表面温度上升然后又稳定下来了。然而,随着化学反应的进行,表面温度上升到超过100°C,这即是我们用来判断有效地形成了热失控的依据。

图4.在目标温度为155°C(上图)热失控开始时内部温度和负电极的反应比的等值面(下

图)

图4显示了在热失控发生于155°C的目标温度时的内部温度分布和负电极反应率分布。电池的中央部分是最热的,在电池两端和中间的温差达到了80°C。来自ARC的使用同类型电池测试的结果显示自加热在温度高于73°C后被观测到,热失控开始于150°C。这些结果表明通过模拟得到的热失控的温度预测是正确的。

图5. 一个内部短路产生热量20W(上派)和100W(下排)的热失控引起的随时间变化的温度分布(颜色等高线)和负电极反应率的等值面

图5展示了一个延伸的安全研究,这里我们研究由于内部短路引起的灾难。显示在热失控下经过一段时间的温度分布和在内部各自短路产生的热源为20W以及100W下时负电极反应率的等值面。几十秒钟后,一个宽的反应区被观测到从中芯附近向电池两端移动。

延伸的电池分析

COMSOL Multiphysics是一款理想的电池分析平台,可以考虑在不同的尺度下的多物理场耦合分析,比如对化学反应模型公式的修改,为电流分布分析的积分边界条件的使用,对不同区域不同物理现象的分析。通过正确地模拟所有与锂离子电池加热和冷却相关的物理现象,我们能够将研究范围扩展到锂电池可能引起的灾难。

COMSOL在中国,COMSOL Multiphysics是一款业界领先的科学仿真软件,中仿科技公司(CnTechCo.,Ltd)凭借个性化的解决方案、成熟的CAE产品线、专业的市场推广能力以及强有力的技术支持服务赢得了国内众多科研院所以及企业的一致认可,目前国内几乎所有知名大学以及中国科学院旗下各研究所都已选择使用COMSOL Multiphysics作为其科研分析的CAE主要工具。随着中仿科技公司(CnTechCo.,Ltd)在全国的各分公司、CAE技术联合中心,CAE培训中心的成立,提供更专业的更周到的本地化技术服务,目前众多企业也纷纷选用COMSOL Multiphysics作为企业的分析工具,应用全球最先进制造技术,最终增强企业的核心竞争力,保证了企业持续发展。

关于COMSOL

COMSOL公司在1986年成立于瑞典的斯德哥尔摩,目前已在比利时、丹麦、芬兰、法国、德国、挪威、瑞士、英国和美国麻州、加州等成立分公司。COMSOL公司是全球多物理场建模与仿真解决方案的开拓者和领导者,它的旗舰产品COMSOL Multiphysics,使工程师和科学家们可以通过模拟,赋予设计理念以生命。它有无与伦比的能力,使所有的物理现象可以在计算机上完美重现。COMSOL的用户利用它提高了手机的接收性能,利用它改进医疗设备的性能并提供更准确的诊断,利用它使汽车和飞机变得更加安全和节能,利用它寻找新能源,利用它探索宇宙,甚至利用它去培养下一代的科学家。关于公司的其他信息可以参见https://www.sodocs.net/doc/8e1309194.html,

关于中仿科技

中仿科技(CnTech)是中国区领先的仿真分析软件和项目咨询解决方案的供应商。作为国内仿真技术行业的领跑者,中仿科技一直致力于仿真技术领域最专业的软件系统集成与实施和项目咨询,协助用户提高产品技术附加值、提升核心竞争力。在融合世界一流数值仿真技术的同时,中仿科技依靠自主创新研发拥有自主知识产权的中仿CAE系列产品。总部在上海,目前在北京、武汉和深圳设有分公司。

除了强大的销售和技术支持网络之外,中仿科技还设有专业的售后服务团队和培训中心。为了更好的服务广大客户,公司将陆续在全国各大城市设置业务分支机构。凭借多年来广大客户的支持和信任以及中仿员工的奉献精神和责任心,已为国内外数百家企业、高校及科研院所提供了专业的软件系统及项目咨询等服务,服务领域涉及教学科研、机械工业、土木工程、生物医学、航空航天、材料科学、化学化工、冶金科学、汽车工业、电子电器、气象环保、采矿和石油工程等行业。更详细的信息请参考https://www.sodocs.net/doc/8e1309194.html,

锂离子电池或电池组热失控综合检测系统的制作流程

本技术新型属于锂离子电池技术领域,特别是一种锂离子电池或电池组热失控综合检测系统。系统包括防爆试验室、模拟电池箱、热失控引发装置、电池热解气体采集装置、电池箱内温度与压力在线测量与记录系统、电池热失控视频记录装置;热失控引发装置通过导电柱与模拟电池箱相连,电池热解气体采集装置与模拟电池箱相连,电池箱内温度与压力在线测量与记录系统与模拟电池箱相连。本申请的系统能够观察记录不同环境氛围、不同热失控引发条件下锂离子电池组失控效应参数变化,以及对气体产物的收集,能够探索电池组内某块电池发生热失控后对电池组内其他电池的影响等。 技术要求 1.一种锂离子电池或电池组热失控综合检测系统,其特征在于,所述系统包括防爆试验室(1)、模拟电池箱(2)、热失控引发装置、电池热解气体采集装置、电池箱内温度与压力在线测量与记录系统、电池热失控视频记录装置; 其中,所述热失控引发装置通过导电柱(19)与所述的模拟电池箱(2)相连,所述导电柱(19)与模拟电池箱(2)的密封盖通过密封结构实现密封,所述的电池热解气体采集装置与所述 模拟电池箱(2)相连,所述的电池箱内温度与压力在线测量与记录系统与所述的模拟电池 箱(2)相连,所述模拟电池箱(2)、电池热解气体采集装置、电池箱内温度与压力在线测量与记录系统中的测量部分、电池热失控视频记录装置放置在防爆试验室(1)内。

2.根据权利要求1所述的系统,其特征在于,所述导电柱(19)与模拟电池箱(2)的密封盖之间实现密封连接的密封结构包括两个梯形绝缘块和两个螺母,两个梯形绝缘块的截面呈等腰梯形,两个绝缘梯形块为等腰梯形较短的上底相邻的布置,且上下套装在导电柱(19)的外周,密封盖上设置有形状与绝缘梯形块相匹配的通孔,两个梯形绝缘块等腰梯形较长的下底通过螺母紧固,导电柱(19)上设置有与螺母相匹配的螺纹。 3.根据权利要求1所述的系统,其特征在于,所述模拟电池箱(2)由满足材料强度和可燃性要求的材料制备,模拟电池箱(2)包括样品池和密封盖,样品池和密封盖之间设置橡胶垫片,样品池和密封盖由均布在四周的螺栓组实现夹紧密封;所述样品池其中之一的侧面设有圆形防爆玻璃窗,所述密封盖上还设置有温度传感器接口和多个气孔,电池或电池组放置在模拟电池箱(2)内。 4.根据权利要求3所述的系统,其特征在于,所述热失控引发装置为过热式,包括调压仪(16)、导电柱(19)和加热带(17);所述加热带(17)包裹在电池或电池组的外周,加热带(17)与导电柱(19)的下端相连,导电柱(19)的上端与调压仪相连,通过调压仪(16)调整加热带(17)的加热速率,对电池或电池组进行加热。 5.根据权利要求3所述的系统,其特征在于,所述热失控引发装置为过充式,包括充放电循环测试仪(18)和导电柱(19),所述充放电循环测试仪(18)与整个系统的控制系统(13)相连,所述导电柱为两个,两个导电柱(19)下端分别通过电线与电池的正、负极相连,两个导电柱(19)的上端通过导线与充放电循环测试仪(18)上的测试通道相连,通过充放电循环测试仪(18)对电池进行过充直至电池发生热失控。 6.根据权利要求4或5所述的系统,其特征在于,电池热解气体采集装置包括过滤装置(7)、单向阀(8)、气体采集袋(9)、球阀Ⅱ(10)和真空泵(11); 电池热解气体采集装置通过连接管路和密封盖上的气孔相连,气孔通过连接管路与三通Ⅱ的一端相连,气孔和三通Ⅱ之间依次设置过滤装置(7)和单向阀(8),三通Ⅱ的另一端连接气体采集袋(9),三通Ⅱ的第三端通过球阀Ⅱ(10)连接真空泵(11)。 7.根据权利要求6所述的系统,其特征在于,采用红外气体分析仪代替气体采集袋(9),实现气体的在线分析。

锂离子电池热失控原因及对策研究进展

锂离子电池热失控原因及对策研究进展 程 琦,兰倩,赵金星,刘畅,曹元成* (江汉大学光电化学材料与器件教育部重点实验室,化学与环境工程学院,柔性显示材料与技术湖北省协同创新中心,湖北 武汉430056)摘要:综述了高安全型锂离子电池研究的最新进展和发展前景。主要从电解质和电极的高温稳定性方面 介绍了锂离子电池热不稳定性产生原因及其机制,阐明了现有商用锂离子电池体系在高温时的不足,提出开 发高温电解质、正负极修饰以及外部电池管理等来设计高安全型锂离子电池。对开发安全型锂电池的技术前 景进行了展望。 关键词:锂离子电池;热稳定;安全性;阻燃添加剂;固态电解质 中图分类号:TQ152文献标志码:A 文章编号:1673-0143(2018)01-0011-06 DOI :10.16389/https://www.sodocs.net/doc/8e1309194.html,42-1737/n.2018.01.002 Research Progress of Causes and Countermeasures on Thermal Runaway of Lithium Ion Battery CHEN Qi ,LAN Qian ,ZHAO Jinxing ,LIU Chang ,CAO Yuancheng * (Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education ,School of Chemistry and Environmental Engineering ,Flexible Display Materials and Technology Co-Innovation Centre of Hubei Province , Jianghan University ,Wuhan 430056,Hubei ,China )Abstract :The recent progress and development prospects of high safety lithium ion batteries were re?viewed in this paper.The writer mainly introduced the reasons and mechanism of lithium ion battery′s thermal instability from the aspects of high temperature stability of electrode and electrolyte.The deficiency of the existing commercial lithium ion battery system at high temperature was explained.The development of high temperature electrolyte ,positive and negative electrode′s modification and external battery management were proposed to design a high security lithium ion battery.Finally ,the writer discussed the expectation of the safety lithium ion battery.Key words :lithium ion battery ;thermal stability ;security ;flame retardant additive ;solid electrolyte 0引言 锂离子电池因其低成本、高性能、大功率、绿环境等诸多优势,成为一种新型能源的典型代表,广泛应用于3C 数码产品、移动电源以及电动工具等领域。近年来,因环境污染加剧以及国家政策引导, 收稿日期:2017-09-26 基金项目:国家863柔性显示技术(2015AA033406);湖北省高等学校优秀中青年科技创新团队计划项目(T201318); 武汉市应用基础研究项目(2015011701011593);武汉市第4批黄鹤英才计划以及江汉大学科研启动基金 项目(08010001);江汉大学武汉研究院开放项目(IWSH2016348) 作者简介:程琦(1989—),男,硕士生,研究方向:锂离子电池。 ?通讯作者:曹元成(1979—),男,教授,博士,研究方向:功能材料与器件。E-mail :yuancheng.cao@https://www.sodocs.net/doc/8e1309194.html, 第46卷第1期2018年2月江汉大学学报(自然科学版)J.Jianghan Univ.(Nat.Sci.Ed.)Vol.46No.1Feb.2018

重点讲解锂离子电池热失控分析

锂离子电池热失控分析 锂离子电池因其低成本、高性能、大功率、绿环境等诸多优势,现已成为新能源的典型代表,广泛应用于3C数码产品、移动电源以及电动汽车等领域。随着锂离子电池的不断推广,锂离子电池的安全性越来越受到人们的关注,由于电池本身技术原因或是使用不当等问题都可能会造成锂离子电池爆炸,引起火灾等安全事故。尤其近几年以电动汽车为主的电动交通工具市场对锂离子电池的需求不断加大,在发展大功率锂离子电池体系过程中,电池安全问题引起了广泛重视,存在的问题急需进一步解决。 锂离子电池热失控过程 近几年出现的电池热失控引起的火灾的案例中,都是由于电池的生热速率远高于散热速率,且热量大量累积而未及时散发出去所引起的。从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热后温度升高,又反过来让系统变得更热。

锂离子电池热失控过程图 第1阶段:电池内部热失控阶段 电池在80~90℃时是安全的,温度升高到90~120℃之间时 SEI 膜开始分解,释放热量,温度升高。但是当温度达到120~130℃时保护层SEI膜遭到破坏,负极与溶剂、粘结剂反应,温度升高,隔膜融化关闭。温度继续升高至150℃之上后,内部电解质开始进行分解,继续释放热量,进一步加热电池。 第2阶段:电池鼓包阶段 电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。250-350℃嵌锂态负极开始与电解

液发生反应。 第3阶段:电池热失控,爆炸失效阶段 在反应发生过程中,电解液与正极反应产生的氧气剧烈反应并进一步使电池发生热失控。 锂离子电池热失控成因 其实一般电池内短路在电子产品中出现的概率是千万分之一,也就是说平时生活中用到的单个电池安全性相对较高。但是在电动汽车中,一辆电动汽车的电池组需要几千个电池组成,这样发生热失控的概率就由千万分之一上升到千分之一。而且电动汽车的电池一旦发生危险,后果将非常严重,研究电池热失控的成因变得尤为重要。 1生产过程

锂离子电池内短路诱发热失控机制研究

锂离子电池凭借其优良的性能已广泛应用于电子产品、电动汽车和储能系统等领域,然而由于锂离子电池主要由易燃电解液和活性电极材料组成,在滥用条件下很容易引发电池自放热反应从而导致电池热失控甚至起火爆炸,这正是锂离子电池安全事故时有发生而不能杜绝的根本原因。内短路是一种常见的锂离子电池热失控成因,与过充、过热和外短路等电池热失控的成因相比,内短路造成的危害更大、监测和预防难度更大且更易发。 锂离子电池内短路的常见诱因有机械滥用(针刺、挤压和重物冲击等)、生产缺陷和锂枝晶生长。为了进一步揭示锂离子电池的内短路机理,本文采用实验手段和有限元数值模拟方法对针刺和锂枝晶导致的锂离子电池内短路过程进行了研究。 本文首先使用实验和数值模拟对传统钢针针刺导致的锂离子电池内短路过程进行了研究,分析了电池荷电状态、刺针直径和针刺速度等参数对电池温升的影响,并对电池内部各热源产热功率和刺针散热功率进行了研究。结果显示传统钢针导致的锂离子电池内短路过程中,刺针扮演两方面的作用,决定短路电流和散热。 一方面,刺针直径越大则短路电流和焦耳产热功率愈大;另一方面,刺针直径越大其从短路点散热的能力也越大。针刺时电池极耳电压随时间呈指数衰减,电压的波动和回升是由短路电流突降导致的过电势造成的。 未热失控情况下电池内部的总产热量主要由短路点的焦耳产热贡献。基于对传统钢针导致电池内短路过程的研究结果,本文提出了一种用低导热系数和低电导率的聚甲醛材料制作的电池针刺测试刺针,并采用针刺实验和数值模拟相结合的方法分析了聚甲醛刺针和传统的钨钢针触发电池内短路时电池电热响应的区

别,比较了这两种刺针在电池内短路过程中所扮演角色的差异。

锂电池的热失控

锂电池的“热失控” 锂离子电池发生事故多因短路而起,短路后可能引起燃烧,严重的会导致爆炸。短路之所以会引致更严重后果与“热失控”现象有关。 从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热升高温度,这又反过来又让系统变得更热。热失控是很常见的现象,从混凝土养护到恒星爆炸,都有可能会出现热失控。 锂离子电池出现热失控的原因有如下几种。 1、隔离锂离子电池负极和正极的隔膜出现的撕裂会导致短路,而短路往往又会引起热崩溃。 2、环境温度超过60°C。 3、经常过充。 4、未经授权改装外壳。 参与“热失控”反应的是锂电池中的氧化钴化学物。加热这种化学物达到一定温度,它就开始自发热,然后发展成起火和爆炸。在某些情况下,这种有机电解液释放压力会导致电池破裂。如果暴露在高温环境下,或者是遇到火花,它也有可能会燃烧。 热失控发生的概率与锂电池基数有关,中日韩三国锂电池产量都是逐年增长的,特别是在应用较广的手机/笔记本电脑领域,电池事故发生好象更多一些。2006年到2011年间多家大型电子企业都发生过相关事件,自进入2012年之后,小型电子产品中发生较少,但是在大型应用,比如飞机上的事故却常见报道,这说明了以下现象。 “热失控”现象及其强度与锂电池的大小、配置和电池单元的数量有关。小型电池组只有几个锂电池单元,所以热失控从有问题的电池单元传播到其他单元的机会相对较低。而波音787巨大的电池组就是另外一回事了:它们装在密封的金属盒里,不能排放余热,当一个电池单元热到足以点燃电解质时,其余的电池单元就会迅速跟进。 无论大小锂电池组都需要定期保养以延长其寿命,所有的锂离子电池组通常都应该每36个月左右就更换一次。而且,每当电量降到20%的时候,你就应该对它进行充电,过度放电会损坏锂电池,从而增加“热失控”及其他事故的可能性。

0081.锂电池“热失控”的原因

锂电池“热失控”的原因 锂离子电池发生事故80%是因短路而起,短路后引起电池起火、爆炸事故频现报端 动力锂电池安全问题再次被推至舆论的风口浪尖。短路之所以会引致更严重后果与“热失控”现象有关。 电池材料的热稳定性一直是动力锂电池安全性的重要因素 和负极材料相比正极材料能量密度和功率密度低 其与电解液的热反应也被认为是电池热失控发展的主要诱因。因此寻找热稳定性较好的正极材料成为动力锂电池的关键。 从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热升高温度,这又反过来又让系统变得更热。热失控是很常见的现象,从混凝土养护到恒星爆炸,都有可能会出现热失控。 锂离子电池出现热失控的原因有如下几种: 1、经常过充。 2、未经授权改装外壳。 3、环境温度超过60°C。 4、隔离锂离子电池负极和正极的隔膜出现的撕裂会导致短路,而短路往往又会引起热崩溃。 参与“热失控”反应的是锂电池中的氧化钴化学物。加热这种化学物达到一定温度,它就开始自发热,然后发展成起火和爆炸。在某些情况下,这种有机电解液释放压力会导致电池破裂。如果暴露在高温环境下,或者是遇到火花,它也有可能会燃烧。 热失控发生的概率与锂电池基数有关,中日韩三国锂电池产量都是逐年增长的,特别是在应用较广的手机/笔记本电脑领域,电池事故发生好象更多一些。2006年到2011年间多家大型电子企业都发生过相关事件,自进入2012年之后,小型电子产品中发生较少,但是在大型应用,比如飞机上的事故却常见报道,这说明了以下现象。 热失控现象及其强度与锂电池的大小、配置和电池单元的数量有关。小型锂电池组只有几个锂电池单元,所以热失控从有问题的电池单元传播到其他单元的机会相对较低。而波音787巨大的电池组就是另外一回事了:它们装在密封的金属盒里,不能排放余热,当一个电池单元热到足以点燃电解质时,其余的电池单元就会迅速跟进。 电池充电时,金属锂的表面沉积非常容易聚结成枝杈状锂枝晶,从而刺穿隔膜,造成正负极直接短路。而且,金属锂非常活泼,可直接和电解液反应放热,其熔点又很低,即

【CN109959579A】锂离子电池热失控过程产气量测量及气体收集装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910236575.6 (22)申请日 2019.03.27 (71)申请人 中国北方车辆研究所 地址 100072 北京市丰台区槐树岭4号院 (72)发明人 田君 陈亚东 王一拓 赵鼎  陈芬 田崔钧 高申 胡道中  王发成 佟蕾 张跃强 高洪波  (74)专利代理机构 中国兵器工业集团公司专利 中心 11011 代理人 周恒 (51)Int.Cl. G01N 7/16(2006.01) G01R 31/382(2019.01) (54)发明名称 锂离子电池热失控过程产气量测量及气体 收集装置 (57)摘要 本发明属于安全控制技术领域,具体涉及一 种锂离子电池热失控过程产气量测量及气体收 集装置。所述装置包括:压力防爆容器;加热装 置;电池悬吊装置;惰性气体循环装置;电池充放 电模块;检测装置;防爆泄压模块;控制系统;气 体收集模块。与现有技术相比较,本发明具备如 下有益效果:对锂离子电池由高温、过充电、过放 电触发热失控产生的气体均可进行产气量测量 和气体收集;可实时监测锂离子电池热失控过程 的温度和电压变化情况,可为锂离子电池热失控 的分析提供可靠的数据支撑。权利要求书1页 说明书6页 附图1页CN 109959579 A 2019.07.02 C N 109959579 A

权 利 要 求 书1/1页CN 109959579 A 1.一种锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述装置包括: 压力防爆容器,其包括容器壁、顶盖、底座,形成封闭的空间; 加热装置,其包括容器壁中部圆周上均匀分布的多个加热模块、置于顶盖上的1个加热模块、置于底座上的1个加热模块和置于电池上的1个加热模块; 电池悬吊装置,其置于压力防爆容器内部,其包括网兜,上端悬吊于容器顶盖; 惰性气体循环装置,所述惰性气体循环装置与压力防爆容器连通,并具有惰性气体进入通道和惰性气体排出通道,惰性气体进入通道和惰性气体排出通道分别连通压力防爆容器内腔; 电池充放电模块,其包括置于容器壁上的2个接线柱和充放电设备,2个接线柱在容器内的部分分别连接电池正负极;容器壁外侧部分接充放电设备,充放电设备的电压采集线连接在容器壁外部的接线柱上; 检测装置,其包括多个温度检测模块,1个气压检测模块,多个气体流量检测模块;所述多个温度检测模块分别一一置于多个加热模块附近,分别采集对应加热模块附近的温度,其中电池上的加热模块附近的温度检测模块置于电池上,用于检测电池的温度;所述1个气压检测模块置于容器顶盖;所述多个气体流量检测模块分别置于惰性气体进入通道、惰性气体排出通道上; 控制系统,其包括功率调节器和控制模块,所述控制模块与功率调节器电连接; 所述控制系统与加热装置、电池充放电模块和检测装置电连接。 2.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述容器壁中部圆周上均匀分布的加热模块的数量为3个。 3.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述网兜为耐高温网兜。 4.如权利要求3所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述耐高温网兜为绝缘网兜。 5.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述惰性气体进入通道和惰性气体排出通道在同一水平线上。 6.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述温度检测模块的数量与加热模块相同。 7.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述装置还包括防爆泄压模块,其与压力防爆容器连通。 8.如权利要求7所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述防爆泄压模块包括防爆泄压通道、安全阀与防爆泄压容器。 9.如权利要求1所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述装置还包括气体收集模块,其与压力防爆容器连通。 10.如权利要求9所述的锂离子电池热失控过程产气量测量及气体收集装置,其特征在于,所述气体收集模块包括气体收集阀门、气体收集通道、冷凝器、气体收集钢瓶和真空泵; 所述检测装置所包含的气体流量检测模块中,包括设置于气体收集通道上的气体流量检测模块。 2

锂电池热失控

安全性问题安全性问题一直是动力锂离子电池研发生产的头号难题,随着电池起火、爆炸事故频现报端,动力锂电池安全问题再次被推至舆论的风口浪尖。 有人认为,在动力锂电池安全性问题中,电极材料中的正极材料是关键,也是引发锂离子动力电池安全隐患的主要原因;也有人指出,动力锂电池发展到今天,正极材料已经足够满足其安全性需求了,首要问题可能还不是材料,而是电池的设计。 一位锂电池行业的资深从业者告诉记者,“正极材料和电解液的热反应是电池热失控发生的主要原因。” 正极材料尤为关键 “电池应用在汽车上其实有很多需要考量的安全问题,磷酸铁锂可以解决电池由于材料所造成的安全性问题。”立凯亚以士总经理杨智伟表示。 记者了解到,在动力锂电池的安全性问题中,电极材料中正极材料尤为关键,也是引发动力锂电池安全隐患的主要原因。 电池材料的热稳定性一直是动力锂电池安全性的重要因素,和负极材料相比,正极材料能量密度和功率密度低,其与电解液的热反应也被认为是电池热失控发展的主要诱因。因此,寻找热稳定性较好的正极材料成为动力锂电池的关键。 一位从业多年的正极材料生产商告诉记者,衡量正极材料的安全性主要在于两个方面:一是看其是否容易在充电时形成枝晶;二是看其发生氧化还原放热反应的温度。 电池充电时,金属锂的表面沉积非常容易聚结成枝杈状锂枝晶,从而刺穿隔膜,造成正负极直接短路。而且,金属锂非常活泼,可直接和电解液反应放热,其熔点又很低,即使表面金属锂枝晶没有刺穿隔膜,只要温度稍高,金属锂就会溶解,从而引发短路。材料发生氧化还原热反应的温度越高,表明其氧化能力越弱,正极材料的氧化能力越强,发生反应就越剧烈,也越容易引发安全事故。 高工锂电产业研究所数据显示,钴酸锂和三元材料具有较强的氧化性,用于动力电池的安全隐患较大,一般不作为动力电池正极材料使用;锰酸锂和磷酸铁锂的氧化性弱,热稳定性远优于钴酸锂和三元材料,被认为是目前最适合用于动力锂电池的正极材料。 中信国安盟固利技术人员安洪力表示,“锰酸锂和磷酸铁锂应用在动力电池的安全系数比较高,两者相较,磷酸铁锂对原材料的一致性要求又更高一点,工艺也更复杂,锰酸锂相对来说,原材料控制得更好一些,所以做电池的工艺相对磷酸铁锂容易一点。” 有业内人士认为,磷酸铁锂能量密度低,重量体积功率低,很难满足动力电池用在汽车上的可持续发展。

COMSOL Multiphysics对锂离子电池的热失控模拟

COMSOL Multiphysics对锂离子电池的热失控模拟 newmaker 仿真揭示了,放热条件可能导致热引燃。 在锂离子电池的开发过程中,安全设计与评估在预防热失控引起的着火等问题中发挥着重要的作用。我们使用模拟技术,如COMSOL Multiphysics来了解各种现象对锂离子电池的影响,评估电池的安全性。本文介绍了一种建模的方法来测试在锂电池里的化学反应放热的安全性。 ―如果释放的热量比由内部和外部放热产生的热量大,电池将会是热稳定的状态。如果释放的热量少,温度就会稳步上升并导致热失控。‖ 我们的模拟着眼于使用热分析来评估热失控条件。考虑了三种放热形式: 使用加热箱和加速量热仪(ARC)的外部加热 化学反应(热降解反应,燃烧等)产生的内部热量,和 热(热传导、辐射)。 如果释放的热量比由内部和外部放热产生的热量大,电池将会是热稳定的状态;如果释放的热量少,温度就会稳步上升,并将导致热失控。在加热试验的模拟中,外部热源使用加热箱供热。

图1.活性材料的热化学反应DSC测量 一种反应热模型 当模拟化学反应产生的内部热时,有几个物理现象必须考虑。首先,分离膜和电解质的热降解,这将影响电导率。其次,负极的电解质反应,涉及多种反应,不能用单一反应来描述。本研究中,反应分两步进行:固体电解质接触面(SEI)和通过SEI的负极电解质反应。最后,在模型中也包含了正极电解质反应。―COMSOL Multiphysics是电池分析的理想平台。‖ 表1.分析条件(18650圆柱形电池) 我们进行了一系列在匀速升温的化学反应的差示扫描量热仪分析(DSC)来获得参数拟合的反应热模型。图1显示的是一个DSC测量的例子,一个1小时温度升高的过程(5°C/分钟),其中正电极是LiCoO2,负电极是碳,电解液是一种碳酸乙烯(EC)和碳酸二乙酯(DEC)的混合物。从图一中DSC测量的结果看出,生热率系数——单位时间单位体积产生的热量——随温度变化的曲线。

锂电池的热失控及技术分析

锂电池的热失控及技术分析

电池过热恶性循环 不同温度下电池的放电效率不同,通常18℃~45℃下磷酸铁锂电池的效率能在80%以上,温度越高,效率越低,浪费的效率形成更多的产热,导致恶性循环——越低的功率,越高的温度。 高温对电池极为有害,不仅影响电池使用寿命,还可能危及电池安全。

热失控事件 1.2013年1月,美国发生两起波音787充电锂电池过热冒烟事故。 2.2013年10月,西雅图一辆高速行驶的特斯拉,被路面硬物刺中电池组,车主 提前20分钟收到感应器的警报而弃车。这是由于电池被刺穿短路而引起的热失控。 3.2015年4月,深圳湾口岸加电站内,一辆深圳电动大巴起火。这是由于电池 高倍率充电而引起的热失控。 4.2015年7月,厦门港务大厦旁的东渡公交停车场内,有11辆公交车遭到火烧。 5.2015年10月,美国出现10多起扭扭车起火爆炸事件。这是由于电池过充引起 的热失控。 6.挪威一辆特斯拉在超级充电站充电时突然起火。这是由于低温、高倍率充电 引起的热失控。

热失控给行业的困扰 1.安全隐患:这些事故给行业造成很大的困扰。 2.大势所趋: ①有些专家解释称电动汽车取代燃油车是大势所趋,不能因为几次意外而 否定新能源车。 ②特斯拉Elon Musk也引用了这样一组数据解释:美国每年有15 万起汽车 3 2000 着火事件,而美国人每年的驾驶总里程是万亿英里,即每万英里 就有一辆车起火。特斯拉的总驾驶里程为1 亿英里,有了第一起起火事 件,燃油车遭遇起火的概率5 倍于特斯拉。而累计6 次起火后,特斯拉 的起火概率似乎与燃油车扯平。似乎也能说的过去。 ③但是为了长久新能源车的发展,更好的保障电动汽车和生命财产的安全, 电池的热失控已经当下成了一个研究热点。

蓄电池热失控的原因

GFM电池热失控的原因(摘录) GMF电池是引进美国GNB技术制造的固定型密封电池,正极板采用低锑的专利合金,负极板采用铅钙系列合金.电池使用过几年以后.正极板的锑的成分迁移到负极板表面,降低了负极板析氢电位,导致负极板也容易出现析氢而失水. 由于电池有处在高温环境的工作条件,浮充电压没有跟随降低,也形成失水. 由于电池部分失水,改善了电池的氧循环通道,在高温状态,正极板析氧,负极板吸收形成氧复合发热.这样的恶性循环形成热失控而电池鼓胀. 电池热失控的原因我的见解. 由于电池酸度过高,电瓶相对电压就较高,为了要充足电,就要采用较高电压充电,由于现在的充电机都是大电流恒流加恒压制,电瓶的电压波动对充电电流有较大影响. 由于某种原因,(电池硫化,酸度变化,温度变化,充电机电压变化,电池轻度老化等)使充电电流过大,大于电瓶吸收能力时,正极就有氧析出,被负极板吸收,发热,生成水,生成的水分降低了负极板的酸度,导至电瓶端电压下降,又由于充电后期是恒压制,所以充电电流上升,电解氧越多,负极生成水越多,电瓶电压越低,充电电流就越大,造成恶性循环,电池发热起鼓而烧毁. 要克服此现象,就不能用恒流恒压型充电机.

蓄电池在充放电过程中一般都产生热量。充电时正极产生的氧到达负极,与负极的绒面铅反应时会产生大量的热,如不及时导走就会使蓄电池温度升高。蓄电池若在高温环境下工作,其内部积累的热量就难以散发出去,就可能导致蓄电池产生过热、水损失加剧,内阻增大,更加发热,产生恶性循环,逐步发展为热失控,最终导致蓄电池失效。 VRLA铅酸蓄电池由于采用了贫液式紧装配设计,隔板中保持着10%的孔隙酸液不能进入,因而电池内部的导热性极差,热容量极小。VRLA铅酸蓄电池之所以在高温环境下易发生热失控,是由于安全阀排出的气体量太少,难以带走电池内部积累的热量。热失控的巨热将使蓄电池壳体发生严重变形、胀裂、蓄电池彻底失效。 2.4 热失控 热失控是指蓄电池在恒压充电时,充电电流和电池温度发生一种累积性的增强作用,并逐步 损坏蓄电池。造成热失控的根本原因是: 普通富液型铅酸蓄电池由于在正负极板间充满了液体,无间隙,所以在充电过程中正极产生 的氧气不能到达负极,从而负极未去极化,较易产生氢气,随同氧气逸出电池。 因为不能通过失水的方式散发热量,VRLAB电池过充电过程中产生的热量多于富液型铅酸蓄电 池。较易发生热失控。 浮充电压应合理选择。浮充电压是蓄电池长期使用的充电电压,是影

相关主题