搜档网
当前位置:搜档网 › 材料物理概论

材料物理概论

材料物理概论
材料物理概论

华东理工大学2008 – 2009学年第一学期

《材料物理专业概论》课程期终考试试卷 2008.12.

导电高分子材料及其应用

有机高分子材料通常属于绝缘体的范畴。但在1973年有科学家发现四硫富瓦烯-7,

7,8,8-四氰二次甲基苯醌电荷转移复合物具有吵到涨落现象;1974年日本筑波大学的白川英树研究室在意外的情况下于高催化剂浓度下合成出具有交替单键和双键结构的高顺式聚乙炔。随后,美国高分子化学家黑格与麦克迪尔米德等和百川英树合作研究,发现此聚聚乙炔薄膜经过AsF5或I2掺杂后,呈现明显的金属特征和独特的光、电、磁及热电动势性能。如其电导率由绝缘体的10-9S·cm-1转变成为金属导体的103 S·cm-1,而且伴随着掺杂过程聚乙炔报名的颜色也有银灰色的转变成为具有金属光泽的金黄色。由此提出了一个新的概念“合成金属”,并诞生了导电高分子这一自成体系的多个学科交叉的新的研究领域,并迅速发展成为世界范围内的化学、电化学、固体物理与半导体物理等学科的研究热点。

导电高分子材料的出现不仅打破了高分子材料为绝缘体的传统观念,而且为底维固体电子学和分子电子学的建立和发展打下了基础,具有重要的科学意义。有人预言,有机高分子材料在21实际奖状分子和光电子工业中获得广泛的应用,发展成为“有机电子”工业。

导电高分子材料也称导电聚合物,即具有明显的聚合物特征,如果在材料的两端加上一定的电压,材料中即有电流通过,即具有导电体的性质,同时具有以上两种性质的材料我们成为导电高分子材料。其包括结构性导电高分子材和复合型导电高分子。一般情况下,结构型导电高分子是由具有共轭π键的高分子经过化学或者电化学“掺杂”,使其由绝缘体转变为导体的一类高分子材料。而复合型导电高分子是由导电填料与通用高分子材料复合而成。通常将高分子半导体和高分子导体,统一称为导电高分子,也称导电高分子材料。从广义上说。导电高分子材料属于功能材料范畴。

导电高分子是一种性能优良的新型功能材料,其研究在20世纪80-90年代进展迅速,成为材料科学的研究中心之一。

Ⅰ.导电高分子材料的分类

按照材料的结构及组成,可将导电高分子分成三大类,即结构性(本征型)导电高分子、复合型导电高分子和超导电高分子。

一、结构型(本征型)导电高分子的结构与性能特点

结构型导电高分子不同于由经书或者碳粉墨与高分子共混而制成的导电材料,通常这类导电高分子的结构特征是由高分子链结构和与链非键合的一价阴离子或阳离子共同组成。即在导电高分子结构中,除了具有高分子链外,黑油由“掺杂”而引入的一价对阴离子(p型掺杂)或对阳离子(n型掺杂)。因此结构型导电高分子不仅具有由于掺杂而带来的金属(高导电率)和半导体(p型和n型)的特性之外,还具有高分子结构的可设计性、可加工性和低密度等特点。

自身可提供载流子,经掺杂可以大幅提高电导率。除聚苯胺外,多数在空气中不稳定,加工性差,可通过改进掺杂剂品种和掺杂技术、工具或共混等方法改进。

二、复合型导电高分子

复合型导电高分子是以通用电绝缘性高分子为主要基质(也称为成型物质),加入特定的导电填料、添加剂,采用分散、成绩符合或原位聚合等方法使其表面形成导电膜或者整体形成导电体,所制的符合材料称为复合型导电高分子,其外观、自卑方法和导电机理完全不等同于掺杂行结构导电高分子。在实际应用中,综合考虑产品的使用要求、制备工艺、生产成本等因素。选择合适的高分子材料和添加剂(包括抗氧化剂、固化剂、溶剂、润滑剂等)。在目前结构性导电高分子品种中少有达到实际应用水平的情况下,由于复合型导电高分子具有较好的导电性能、成型加工方便,制备工艺简单,无需特殊设备,且性能稳定、安全可靠和生产成本低等特点,符合导电高分子作为一类较为经济使用的材料已得到广泛的应用。

三、高分子超导体

在一定条件下,处于无阻值状态的高分子材料。超导态时没有电阻,电流流经导体时不发生热能损耗,超导临界温度低于金属合金。

Ⅱ.导电高分子材料的用途

一、高分子在抗静电材料中的应用

随着高科技、高精密化产业的蓬勃发展,电子产品的小型化即高速运算的电

子组件的需求怎家,对于静电放电的防护也日益重要。小型化、高密度的电子组件最易受到静电的破坏,因此需要进行静电防护处理,并且电子组件在制造、贮藏、运输到最终产品的使用,均需要静电防护材料,以及各各种操作行为产生的静电电压损害电子组件正常运作。

抗静电需求方面,在电子工业及制药工业的快速发展下,刺激了抗静电材料的需求,例如:电子产品的制造、运输、包装、贮存等均需要做好静电的防护。在这电子厂或制药厂无尘室内室内用的地板、工作台面、操作工具防尘口罩、手套、无尘衣等,以及在其他工业如食品包装及化学工厂的原料贮存运送等,如果有抗静电材料的帮助,不仅可以增加作业的方便性,更可避免重大灾害造成的损失。

抗静电产品的最大用途为抗静电包装上,抗静电包装材料使用的种类以PE及PVC 为主,主要因为其易加工处理成薄膜及成本低。导电性性包装制品在国内市场主要用在IC晶体圆、IC封装、测试、光电等电子唱片零件的包装上。目的都是为了避免其他电荷物品与其接触。主要包装有晶圆盒、IC盘、IC管、自动包装卷带以及泡沫等产品。

二、高分子在防电磁干扰材料中的应用

电磁干扰及电线电波干扰是一种非游离辐射,与一般辐射所产生的游离辐射不同。游离辐射会残留在人体并产生病变,电磁干扰只是电子在导体内移动的现象,虽然不会残留在人体内部,但是也不能忽视。其影响包括精密电子仪器设备、医院仪器、飞机导航设备、汽车控制系统,甚至心率调节器等都会受到影响,近年在飞机上禁止打手机,也是顾虑无线电波影响飞航安全。为了避免电磁干扰的影响,创造电磁相容(EMC)环

境,可降低电磁产品的电磁干扰或提高电子电器产品的电磁耐受性。

在小型化组件的趋势下,EMI/RFI屏蔽性非常重要。无论如何只要表面固定及其他技术能减少电路路径的长度,就可以减少杂讯产生的可能。一般EMI/RFI产生的波长范围在10kHz~10GHz之间,这些电磁波干扰来自于电路截断器、电子计算机、汽车的点火装置、汽车通讯系统、微波、遥控器、电视、手机等。要做好EMI/RFI屏蔽,可以使用高导电率的材料,如导电性高分子材料。可采用表面金属化、无电解电镀、涂布、填充导电纤维等方式制造EMI/RFI屏蔽的导电高分子材料。

三、微波吸收材料与自控发热材料

导电高分子作为微波吸收材料,其薄膜重量轻、柔性好,可作任何设备的蒙皮。由于可以对导电高分子的厚度、密度和导电性进行调整,从而可以调整微反射系数、吸收系数。

材料的电阻值随温度的升高而极具增大的现象称为PTC特性。一些导电高分子材料具有这种特性,用于制作温度补偿和测量,过热以及过电流保护元件等等。在民用方面如电视机屏幕的消磁系统、电热毯及做点等也得到越来越多的开发和应用。

四、二次电池及传感器

二次电池是利用伴随着电化学掺杂、去掺杂而产生化学势变化而工作。导电高分子特别是聚苯胺,由于具有可逆的电化学氧化还原性能而是以作电极材料,将一对导电高分子与另一个金属电极插入电解液制成的可反复充电的二次电池。导电高分子随着微量掺杂而发生各种性质的变化,可用在制作有效掺杂物质的传感器。如制作气体传感器、检测pH值的传感器、温度传感器等。用于制作各种生物传感器的研究正在进行之中,如只有在加压部位显示导电性,未加压部位保持绝缘性,因此可以用作压敏传感器,被广泛用于防爆开关、音量可变元件、高级自动把柄、以用电极、加热元件等方面。

Ⅲ.导电高分子材料存在的问题

尽管导电高分子向世界预示了一个美好的未来,但研究开发过程中还存在着许多有待解决的问题。

(1)导电高分子至今还没有解决规模化问题;

(2)综合性能特别是电性能与合成金属的要求还有差距;

(3)导电高分子在理论上还不完善基本上沿用无机半导体理论和掺杂理论,需要从分子设计的角度重新实现合成金属的途径;

(4)在分子水平上,导电高分子的自构筑、自组装分子期间的研究还存在着不少问题。

Ⅳ.未来的技术发展

抗静电材料的添加剂一般以胺类、铵盐类、聚乙烯醇类最为普遍,主要说的抗电机理仍然是吸收空气中的水汽而达到抗静电的目的。未来的发展方向将是以永久型的抗静

电剂为主,不仅可保持材料本身长效的抗静电性,更可增进材料的物性,一避免低分子量的抗静电剂迁移所造成的污染。

在ESD及EMI防护方面,使用的处理方式主要为内部添加及外部处理两种。内部添加及通常有高的添加量、价格高、分散不均匀加工困难、易影响物性等缺点,因此,常造成塑料材料脆裂,目前仍以外部处理为主,如用导电漆及表面金属化处理。但从加工方便性、环保及回收等方面考虑,未来的研究方向仍以新的导电填充剂开发为主,以降低添加量、增加电导率、降低对材料物性的影响及增加加工性,如微细不锈钢丝、导电微粒子及云母电镀金属等研发,即是这方面的研发。

参考文献

[1]张丰志,丁晴,宋清潭.应用高分子手册.北京:化学工业出版社,2006;

[2]王国建,王德海,赵立群.功能高分子材料.上海:华东理工大学出版社,2006;

[3]吴其晔.高分子材料概论.北京:机械工业出版社,2004。

材料物理导论熊兆贤着课后习题答案第四章习题参考解答

第四章 材料的磁学 1. 垂直于板面方向磁化,则为垂直于磁场方向 J = μ0M = 1Wb/m 2 退磁场Hd = - NM 大薄片材料,退磁因子Na = Nb = 0, Nc = 1 所以Hd = - M = -0μJ =m H m Wb /104/17 2-?π=7.96×105 A/m 2. 试证明拉莫进动频率W L = 00 2H m e e μ 证明:由于逆磁体中自旋磁矩相互抵消,只须考虑在磁场H 中电子轨道运动的变化,按照动量矩定理,电子轨道动量l 的变化等于作用在磁矩μl 的力矩,即: dt dl = μl ()00B H l ?=?μμ,式中B 0 = μ0H 为磁场在真空中的磁感应强度. 而 μl = - l m e 2 上式改写成: l B m e dt dl ?=02,又因为L V dt dl ?==线 所以,在磁场B 0电子的轨道角动量l 和轨道磁矩均绕磁场旋转,这种旋转运动称为拉莫运动,拉莫运动的频率为00022H m e m eB W l μ== 3. 答: 退磁因子,无量纲,与磁体的几何形状有关. 对于旋转椭圆体的三个主轴方向退磁因子之和,存在下面简单的关系: Na + Nb +Nc = 1 (a,b,c 分别是旋转椭圆体的三个半主轴,它们分别与坐标轴x,y,z 方向一致) 根据上式,很容易求得其三种极限情况下的退磁因子: 1) 球形体:因为其三个等轴, Na = Nb = Nc 3 1=∴N 2) 细长圆柱体: 其为a,b 等轴,而c>>a,b Nb Na =∴ 而0=Nc 2 11= =∴=++Nb Na Nc Nb Na 3) 薄圆板体: b=a>>c 0=∴Na 0=Nb 1 1 =∴=++Nc Nc Nb Na

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

材料物理导论-思考题3

第二章 材料的热学 1. 讨论为什么高温下非密排结构晶体是稳定相,而低温时,密排结构晶体却为 稳定相? 1.高温下原子活动能力较强,为了满足高温下原子平衡跳动的需要,原子间距要大,所以为非密排结构;低温时,原子活动性弱,原子间距小,在最低能态的条件下,原子尽量以密排方式。 2. 如图,比较铜和铁的热传导系数随温度的变化情况,讨论为什么铜在1084℃、 铁在912℃会出现跳跃? 2.铜在1084℃、铁在912℃会出现相变,晶体结构有变化。铜的热传导系数出现跳跃是因为在此温度下铜由固态变成了液态,发生了相变,由于吸热使得单位时间内通过单位垂直面积的热量骤减,故热传导系数骤减;而铁在912℃由α-Fe 转变成γ-Fe ,晶体结构发生改变,热传导系数骤增,出现跳跃。 3. 进一步讨论晶体结构是如何影响热膨胀系数的?举例说明。 3、物体的体积或长度随着温度的升高而增大的现象称为热膨胀(thermal expansion )用先膨胀系数、体膨胀系数表示。 线(体)膨胀系数指温度升高1K 时,物体的长度(体积)的相对增加。由于晶体结构类型变化伴随着材料比体积发生引起线膨胀系数发生不连续变化。例如,有序—无序转变时,伴随着膨胀系数的变化,在膨胀曲线上出现拐折,其中Au —Cu50%(质量分数)的有序合金加热至300℃时,有序机构开始破坏,450℃完全变为无序结构。在这个温度区间,膨胀系数增加很快,在450℃处,膨胀曲线上出现明显的拐折,拐折点对应于有序—无序转变温度。从曲线可以看出,有序结构具有较小的膨胀系数,这是Cu Fe 温度,℃/ 热 传导 系 数 ℃/mm 0.4 0.2 题2图 热传导系数与温度关系

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

无机材料物理性能课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=,V 2=。则有 当该陶瓷含有5%的气孔时,将P=代入经验计算公式E=E 0+可得,其上、下限弹性模量分别变为 GPa 和 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度 τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0816.04.25.2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.44500 6 MPa A F T =?= =-σ真应力

无机材料物理化学课后习题及答案

第一章几何结晶学基础 1-1.晶体、晶胞的定义;空间格子构造的特点;晶体的基本性质。 1-2.参网页上的模型,运用对称要素组合定律,写出四方柱、六方柱、四方 四面体、斜方双锥、六八面体、三方柱、复三方三角面体、四六面体的点群符号,并写出其所属的晶系和晶族。 1-3.参阅网页上的模型,请确定单型中的六八面体、复三方偏三角面体、复六 方双锥、和聚型中2、3、4号模型在晶体定向中,各晶体的晶轴分别与哪些对称 轴重或晶棱方向平行? 1-4.请写出单型三方柱、四方柱、四方双锥、六方柱、菱面体、斜方双锥各晶 面的主要晶面符号。 1-5.请写出下列聚型模型各晶面的晶面符号:1、2、3、4。两个对称面相互成 1)60°、2)90°、3)45°、4)30°,可组合成什么点群? 1-6.由两根相交的二次轴互成1)90°、2)60°、3)45°、4)30°,可以组 合成什么点群?试在面心立方格子中画出菱面体格子 1-7.一晶面在X、Y、Z轴分别截得2、4、6个轴单位,请写出此晶面符号。 1-8.作图表示立方晶体的(123)、(012)、(421)晶面。 1-9.在六方晶体中标出晶面(0001)、(2110)、(1010)、(1120)、(1210)的位臵。 1. 答:晶体最本质的特点是其内部的原子、离子、或原子集团在三维空间以一 定周期性重复排列而成 , 晶体的空间格子构造有如下特点:结点空间格子中的 点,在实际晶体中它们可以代表同种质点占有的位臵,因此也称为晶体结构中的 等同点位臵。行列结点在一维方向上的排列 . 空间格子中任意两个结点连接的 方向就是一个行列方向。面网结点在平面上的分布构成面网。空间格子中,不 在同一行列上的任意三个结点就可联成一个面网。平行六面体空间格子中的最 小单位。它由六个两两平行且大小相等的面组成。 晶体的基本性质是指一切晶体所共有的性质,这些性质完全来源于晶体的空间格 子构造。晶体的基本性质主要包括以下五点: 1 ) . 自限性(自范性),指晶体在适当条件下自发形成封闭几何多面体的性 质。晶体的的多面体形态是其格子构造在外形上的反映。暴露在空间的晶体外表,如晶面、晶棱与角顶分别对应其晶体空间格子中的某一个面网、行列和结点。 2 ) . 结晶均一性,指同一晶体的各个不同部分具有相同的性质。因为以晶体 的格子构造特点衡量,晶体不同部分质点分布规律相同,决定了晶体的均一性。 3 ) . 对称性,指晶体中的相同部分在不同方向上或不同位臵上可以有规律地 重复出现。这些相同部位可以是晶面、晶棱或角顶。晶体宏观上的对称性反映了 其微观格子构造的几何特征。

材料物理性能部分课后习题

课后习题 第一章 1.德拜热容的成功之处是什么? 答:德拜热容的成功之处是在低温下,德拜热容理论很好的描述了晶体热容,CV.M∝T的三次方 2.何为德拜温度?有什么物理意义? 答:HD=hνMAX/k 德拜温度是反映晶体点阵内原子间结合力的一个物理量 德拜温度反映了原子间结合力,德拜温度越高,原子间结合力越强 3.试用双原子模型说明固体热膨胀的物理本质 答:如图,U1(T1)、U2(T2)、U3(T3)为不同温度时的能量,当原子热振动通过平衡位置r0时,全部能量转化为动能,偏离平衡位置时,动能又逐渐转化为势能;到达振幅最大值时动能降为零,势能打到最大。由势能曲线的不对称可以看到,随温度升高,势能由U1(T1)、U2(T2)向U3(T3)变化,振幅增加,振动中心就由r0',r0''向r0'''右移,导致双原子间距增大,产生热膨胀

第二章 1.300K1×10-6Ω·m4000K时电阻率增加5% 由于晶格缺陷和杂质引起的电阻率。 解:按题意:p(300k) = 10∧-6 则: p(400k) = (10∧-6)* (1+0.05) ----(1) 在400K温度下马西森法则成立,则: p(400k) = p(镍400k) + p(杂400k) ----(2) 又: p(镍400k) = p(镍300k) * [1+ α* 100] ----(3) 其中参数: α为镍的温度系数约= 0.007 ; p(镍 300k)(室温) = 7*10∧-6 Ω.cm) 将(1)和(3)代入(2)可算出杂质引起的电阻率p(杂400k)。 2.为什么金属的电阻因温度升高而增大,而半导体的电阻却因温度的升高而减小? 对金属材料,尽管温度对有效电子数和电子平均速率几乎没有影响,然而温度升高会使离子振动加剧,热振动振幅加大,原子的无序度增加,周期势场的涨落也加大。这些因素都使电子运动的自由称减小,散射几率增加而导致电阻率增大 而对半导体当温度升高时,满带中有少量电子有可能被激发

材料物理导论习题库

材料化学导论习题库 第一篇高分子材料导论 第一章 1.叙述高分子科学在科学技术发展中的地位。 2.说出获得诺贝尔奖的高分子科学家的名字和他们的主要贡献。 3.说出十种你日常生活中遇到的高分子的名称。 4.查阅最新的全世界合成材料的年产量,并与图1-2相比较,看又增长了多少?(提示: 从当年的“塑料工业”、“橡胶工业”和“合成纤维工业”的有关文章中可查到前一年的数据) 5.调查学习高分子的学生毕业后就业的百分比是多少? 6.下列产品中哪些属于聚合物?(1) 水;(2)羊毛;(3) 肉;(4) 棉花;(5) 橡胶轮胎;(6) 涂料 7.写出下列高分子的重复单元的结构式:(1) PE;(2) PS;(3) PVC;(4) POM;(5) 尼龙; (6) 涤纶 8.用简洁的语言说明下列术语:(1)高分子;(2) 链节;(3)聚合度;(4) 多分散性; (5) 网状结构;(6) 共聚物 9.说出具有下列重复单元的一种聚合物的名称。 A.亚乙基—CH2—CH2— B.苯酚和甲酚缩合后的单元 C.氨基酸缩和后的单元 10.H(CH2CH2)3000H的分子量是多少? 11.平均分子量为100万的超高分子量PE的平均聚合度是多少? 12.已知一个PS试样的组成如下表所列,计算它的数均分子量、重均分子量和d。 组分重量分数平均分子量组分重量分数平均分子量 1 0.10 20.19 30.24 4 0.18 1.2万 2.1万 3.5万 4.9万 5 6 7 8 0.11 0.08 0.06 0.04 7.5万 10.2万 12.2万 14.6万 13.按值递增的次序排列数均分子量、重均分子量、Z均分子量和粘均分子量。 14.下列哪一种聚合物是单分散的?(1)天然橡胶;(2) 玉米淀粉;(3) 棉纤维素;(4) 牛奶酪蛋白;(5) 高密度聚乙烯;(6) 聚氯乙烯;(7) β—角蛋白;(8) 尼龙-66;(9) 脱氧核糖核酸;(10) 石腊 15.高分子结构有哪些层次?各层次研究的内容是什么? 16.什么是高分子的构型?什么是高分子的构象?请举例说明。 17.有一种等规度不高的聚丙烯,能否通过改变构象的办法提高它的等规度?为什么?18.由以下单体聚合得到的高分子是否存在有规立构体?有几种? (1) CH2=CH-CH2-CH=CH2;(2) CH2=C(CH3)2 19.画出PE的平面锯齿形构象示意图。 20.当n=2000时,高密度聚乙烯分子链的近似长度为多少?重复单元数目相同的聚氯乙烯分子链的近似长度是多少? 21.线形聚合物和支化聚合物中碳原子的近似键角各是多少度?

材料物理性能考试重点、复习题电子教案

材料物理性能考试重点、复习题

精品资料 1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而 形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波 2.色散关系:频率和波矢的关系 3.声子:晶格振动中的独立简谐振子的能量量子 4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K 所需要增加的能量。 5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的 原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。 6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀 7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶 格结点上原子振动的平衡位置间的距离。材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。 8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因 素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。材料声子热容C在低温下与温度T3成正比。声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。 在较高温度下,声子的平均自由程L随温度升高继续减小,而声子热容C趋近于常数,材料的热导率由L随温度升高而减小决定。随着温度升高,声子的平均自由程逐渐趋近于其最小值,声子热容为常数,光子平均自由程有所增大,故此光子热导逐步提高,因此高温下热导率随温度升高而增大。一般来说,对于晶体材料,在常用温度范围内,热导率随温度的上升为下降。 9.影响热导率的因素:1)温度的影响,一般来说,晶体材料在常用温度范围内,热导率随 温度的上升而下降。2)显微结构的影响。3)化学组成的影响。4)复合材料的热导率 10.热稳定性:是指材料承受温度的急剧变化而不致破坏的能力,所以又称为抗热震性。 11.常用热分析方法:1)普通热分析法2)差热分析3)差示扫描量热法4)热重法 12.光折射:当光依次通过两种不同介质时,光的行进方向要发生改变,这种现象称为折 射 13.光的散射:材料中如果有光学性能不均匀的结构,例如含有透明小粒子、光性能不同 的晶界相、气孔或其他夹杂物,都会引起一部分光束偏离原来的传播方向而向四面八方散开来,这种现象称为光的散射。 14.吸收:光通过物质传播时,会引起物质的价电子跃迁或使原子振动,从而使光能的一 部分转变为热能,导致光能的衰减的现象 15.弹性散射:光的波长(或光子能量)在散射前后不发生变化的,称为弹性散射 16.按照瑞利定律,微小粒子对波长的散射不如短波有效,在可见光的短波侧λ=400nm 处,紫光的散射强度要比长波侧λ=720nm出红光的散射强度大约大10倍 17.色散:材料的折射率随入射光的频率的减小(或波长的增加)而减小的性质,称为材仅供学习与交流,如有侵权请联系网站删除谢谢2

材料物理导论-思考题4

第三章 材料的电学 1.说明量子自由导电理论与经典导电理论的异同。 经典导电理论:金属是由原子点阵组成的,价电子是完全自由的,可以在整个金属中自由运动自由电子的运动遵守经典力学的运动规律,遵守气体分子运动论。这些电子在一般情况下可沿所有方向运动。在电场作用下自由电子将沿电场的反方向运动,从而在金属中产生电流。电子与原子的碰撞妨碍电子的继续加速,形成电阻。 量子自由导电理论:金属离子所形成的势场各处都是均匀的,价电子是共有化的,它们不束缚于某个原子上,可以在整个金属内自由地运动,电子之间没有相互作用。电子运动服从量子力学原理 。 2. 一块n 型硅半导体,其施主浓度N D =1015/cm 3,本征费米能级Ei 在禁带正中,费米能级E F 在Ei 之上0.29eV 处,设施主电离能?E D =0.05eV ,试计算在T =300K 时,施主能级上的电子浓度 对于硅半导,其禁带E=E C -E V =1.12ev 又由题可知:E F -Ei=0.29ev ,?E D = E C -E D = 0.05eV 所以 E D -E F =0.5E-?E D -(E F -Ei )=0.22ev 将 N D =1015/cm 3,E D -E F = 0.22ev ,T=300K ,k=1.38 x 10-23带入下式 因此施主能级上的电子浓度n D =4.06 x 1011/cm 3 3.为什么金属的电阻随温度的上升而增加,半导体却降低? 半导体是靠载流子(空穴或电子)导电的,温度升高,载流子增多,导电性增强;金属晶体里边,温度升高原子核振动加剧,碰撞电子使之减速的概率增加,电阻率上升 4.在实际工程中往往需要金属既有良好的导电性又有高的强度,假如足够高的强度既可以通过冷加工获得,也可以由固溶强化得到,从导电率的要求看,你建议采用哪种强化方法?为什么? 采用冷加工的方法,固溶强化会使金属的电导率大大降低,主要原因是溶质原子的溶入引起溶剂点阵的畸变,量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵()11exp()2D D D D D F N n N f E E E kT ==-+

材料物理导论 试卷及参考答案-试卷及参考答案-Test4 B

河北大学课程考核试卷 —学年第学期级应用物理物理专业(类) 考核科目材料物理导论课程类别考核类型考试考核方式开卷卷别 B (注:考生务必将答案写在答题纸上,写在本试卷上的无效) 1.Choice (30 points, 3 points for each question) 1). Point defects in metal make resistance: A. increase B. decrease C. invariant 2). Generally speaking, the direction of dislocation movement is: A. similar to the direction of crystal slip; B. the vertical direction of dislocation line; C. the parallel direction of dislocation line; 3). There are usually solute atoms or impurity atoms in metal, whose existence: A. always increase lattice constant; B. always decrease lattice constant; C. may increase or decrease lattice constant 4). Which is the driving force of atom diffusion in solid metal: A. Concentration gradient; B. Chemical potential gradient; C.Diffusion activation energy 5). Work hardening is a useful strengthening method, but its drawback is: A. suitable for bi-material only; B. not suitable when material heated at high temperature; C. suitable for single crystal only B-4-1

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

东南大学-材料物理性能复习题(2008)

材料物理性能复习题 第一章 1、C v 、C p 和c 的定义。C pm 和C vm 的关系,实际测量得到的是何种量?Cvm 与温度(包括ΘD )的关系。自由电子对金属热容的贡献。合金热容的计算。 2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点? 3、撒克斯法测量热容的原理。何谓DTA 和DSC ?DTA 测量对标样有何要求?如何根据DTA 曲线及热容变化曲线判断相变的发生及热效应(吸热或放热)? 4、线膨胀系数和体膨胀系数的表达式及两者的关系。证明c b a v αααα++=(采用与教材不同的方法) 5、金属热膨胀的物理本质。热膨胀和热容与温度(包括ΘD )的关系有何类似之处?为何金属熔点越高其膨胀系数越小?为何化合物和有序固溶体的膨胀系数比固溶体低?奥氏体转变为铁素体时体积的变化及机理。膨胀测量时对标样有何要求? 6、比容的定义(单位重量的体积,为密度的倒数)。奥氏体、珠光体、马氏体和渗碳体的比容相对大小。 7、钢在共析转变时热膨胀曲线的特点及机理。如何根据冷却膨胀曲线计算转变产物的相对量? 8、傅里叶定律和热导率、热量迁移率。导温系数的表达式及物理意义。 9、金属、半导体和绝缘体导热的物理机制。魏德曼-弗兰兹定律。 10、何谓抗热冲击断裂性和抗热冲击损伤性?热应力是如何产生的,与哪些因素有关?提高材料的抗热冲击断裂性可采取哪些措施? 第二章 1、电阻、电阻率、电导率及电阻温度系数的定义及相互关系。 2、电阻的物理意义。为何温度升高、冷塑性变形和形成固溶体使金属的电阻率增加,形成有序固溶体使电阻率下降?马基申定律的表达式及各项意义。为何纯金属的电阻温度系数较其合金大?如何获得电阻温度系数很低的精密电阻合金? 3、对层片状组织,证明教材中的关系式(2.25)和(2.26)。 4、双电桥较单电桥有何优点?用电位差计测量电阻的原理。用电阻分析法测定铝铜合金时效和固溶体的溶解度的原理。 5、何谓本征半导体?其载流子为何?证明关系式J=qnv 和ρ=E/J (J 和E 分别为电流密度和电场强度)。 6、为何掺杂后半导体的导电性大大增强?为何有电子型和空穴型两种半导体。N 型和P 型半导体中的多子和少子。为何PN 结有单向导电性? 7、温差电势和接触电势的物理本质,热电偶的原理。 8、何谓压电效应?电偶极矩的概念。压电性产生的机理。 9、何谓霍尔效应和霍尔系数?推导出教材中的关系式(2.83)~(2.85)。如何根据霍尔效应判断半导体中载流子是电子还是空穴? 第三章 1、M 、P m 的关系。M 、H 的关系。μ0,μ,χ的概念。B 、H 的关系。磁化曲线

材料物理导论总结

第一章:材料的力学 形变:材料在外力作用下发生形状和尺寸的变化,称为形变 力学性能(机械性能):材料承受外力作用,抵抗形变的能力及其破坏规律,称为材料的力学性能或机械性能 应力:材料单位面积上所受的附加内力称应力。 法向应力应该大小相等,正负号相同,同一平面上的两个剪切应力互相垂直。法向应力导致材料的伸长或缩短,剪切应力引起材料的切向畸变。应变:用来表征材料受力时内部各质点之间的相对位移。对于各向同性材料,有三种基本的应变类型。拉伸应变,剪切应变,压缩应变。 拉伸应变:材料受到垂直于截面积的大小相等,方向相反并作用在同一直线上的两个拉伸应力时材料发生的形变。 剪切应变:材料受到平行于截面积的大小相等,方向相反的两剪切应力时发生的形变。 压缩应变:材料周围受到均匀应力P时,体积从起始时的V0变化为V1的形变。 弹性模量:是材料发生单位应变时的应力,表征材料抵抗形变能力的大小,E越大,越不易变形,表征材料的刚度越大。是原子间结合强度的标志之一。 黏性形变:是指黏性物体在剪切应力作用下发生不可逆的流动形变,该形变随时间的增大而增大。剪切应力小时,黏度与应力无关,随温度的上升而下降。 牛顿流体:服从牛顿黏性定律的物体称为牛顿流体。在足够大的剪切应力下或温度足够高时,无机材料中的陶瓷晶界,玻璃和高分子材料的非晶部分均会产声黏性形变,因此高温下的氧化物流体,低分子溶液或高分子稀溶液大多属于牛顿流体,而高分子浓溶液或高分子熔体不符合牛顿黏性定律,为非牛顿流体。 塑性:材料在外应力去除后仍能保持部分应变的特性称为塑性。 晶体塑性形变两种类型:滑移和孪晶。 延展性:材料发生塑性形变而不断裂的能力称为延展性。 μ(泊松比),定义为在拉伸试验中,材料横向单位面积的减少与纵向单位长度的增加率之比。 滑移是指在剪切应力作用下晶体的一部分相对于另一部分发生平移滑动,在显微镜下可观察到晶体表面出现宏观条纹,并构成滑移带。滑移一般发生在原子密度大和晶向指数小的晶面和晶向上。材料的滑移系统往往不止一个,滑移系统越多,则发生滑移的可能性越大。

《材料物理性能》课后习题答案.doc

1-1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:真应力OY = — = ―"°。—=995(MP Q) A 4.524 xlO-6 真应变勺=In — = In — = In^v = 0.0816 /0 A 2.42 名义应力a = — = ―4°°°_ 一= 917(MPa) A) 4.909x1()2 名义应变£ =翌=& —1 = 0.0851 I。 A 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1- 5 一陶瓷含体积百分比为95%的/\12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa), 试 计算其上限和下限弹性模量。若该陶瓷含有5%的气孔,再估算其上限和下限弹性模量。 解:令Ei=380GPa, E2=84GPa, V^O. 95, V2=0. 05o则有 上限弹性模量=E]% +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GP Q) 下限弹性模量战=(¥ +3)T =(?料+誓尸=323.1(GP Q) E]380 84 当该陶瓷含有5%的气孔时,将P二0. 05代入经验计算公式E=E O(1-1. 9P+0. 9P2) 可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0, t = oo和t二£时的纵坐标表达式。 解:Maxwell模型可以较好地模拟应力松弛过程: 其应力松弛曲线方程为:b⑴=贝0光必则有:<7(0) = b(0);cr(oo) = 0;<7(r) = a(0)/e. Voigt模型可以较好地模拟应变蠕变过程: 其蠕变曲线方程为:的)=火(1 -广")=£(00)(1 _g") E 则有:£(0)=0; £(OO)= 21;冶)=%1-(尸).

材料物理性能课后习题答案-北航出版社-田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。 (P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

【无机材料物理性能】课后习题集答案解析

课后习题 《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 0816.04.25.2ln ln ln 2 2 001====A A l l T ε真应变) (91710 909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变)(99510524.445006 MPa A F T =?== -σ真应力)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。 解: 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: ). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为 ) (112)(1012.160cos /0015.060cos 1017.3) (1017.360cos 53cos 0015.060cos 0015.053cos 8 2332min 2MPa Pa N F F f =?=? ???=?=? ???=?? ?? = πσπ τπ τ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移

材料物理导论(熊兆贤着)课后习题答案第三章习题参考解答

材料物理导论(熊兆贤着)课后习题答案第三章习题参考解答

第三章 材料的电学 3 112319/)(/1006.4)3001038.1106.122.0exp(211211)(22.005.029.02 12 .1)(,12.1.1cm e N E f N n eV E E E E E E E E E E E E eV E Si kT E E D D D D F D i F D i c F D D c D g F D ?=????+=+= ?==-= -∴--?--=--=?= ? ---的查解:?? ? ???==?==∴???。少子;多子解: )(/1013.1)(/105.1.23 9203150cm N n p cm N n N n D i D D i ΘeV 22.0J 1053.3E E cm /102N cm /100.1N N N ln kT E E P cm /1045.8102)103.1(p n n cm /102109101.1N N p T N P ,N N .320V F 3 15A 319 V A V V F 3415 2 102i 3 151516D A A D =?=-??=-?? ????=??==?=?-?=-=?∴∴??-代入可得取,取型半导体,有对于杂质几乎完全电离 在室温,较少且又型半导体 补偿后解: ΘΘ时可保持强电离。 则有令,仅考虑杂质电离有低温区,忽略本征激发解: 318D 3 18D D D 2 /1kT /E C D D D 0cm /1032.1N cm /1032.1N N 9.0n )e N N 8( 1N 2n n .4D ?????≥?+= =?+?+

相关主题