搜档网
当前位置:搜档网 › 主电动机风道优化仿真

主电动机风道优化仿真

主电动机风道优化仿真
主电动机风道优化仿真

主电动机风道优化仿真

利用试验设计,通过对影响风量分配比、直(弯)腿的沿程压力损失等考核指标的多组设计变量进行了灵敏度分析,指出了入口处导流板与风道的夹角是影响风量分配比和直腿压力损失最敏感因素,为后续主风道的优化重点指明了方向。

标签:灵敏度分析;风量分配比;压力损失

1 前言

目前,已经完成了主电动机风道(下文简称主风道)的流动特性及两分支风量分配特性的CFD仿真分析。在此基础上,为了进一步提高主风道的性能,可尝试进行主风道结构优化,使两分支风量的分配比例更接近1:1,同时两分支沿程压力损失更小。解决此类工程结构优化问题通常采用基于试验设计(DOE,Design of Experiment)的响应面(Response Surface)优化设计[1],如果问题涉及的设计变量(也称为设计变量或因子)较多,还需先对各变量进行灵敏度分析,以确定各变量对响应影响程度的主次顺序,为下一步细致拟合主要设计变量与考核指标的近似响应面奠定基础。

文章基于主风道的CFD模型,利用试验设计(DOE,Design of Experiment)进行风道内导流板的结构对风量分配比和两分支沿程压力损失的灵敏度分析,各导流板编号如图1所示。涉及的设计变量有各导流板的长度(其中忽略导流板4的长度变化)及其与风道的夹角,共计11个设计变量。所有相关的CFD仿真在Star-CCM+

中完成,DOE分析在Hyperstudy 中完成。

图1 主风道及各导流板的原结构示意图

2 部分变量试验设计方法

2.1 灵敏度分析

灵敏度分析是最优化设计的重要组成部分,是研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化敏感程度的方法。通过灵敏度分析,可以研究原始数据不准确或发生变化时最优解的稳定性,还可以决定哪些参数对系统或模型有较大的影响。对文章而言,直接利用DOE获取11个设计变量对考核指标的近似响应面需要进行大量的试验仿真(除去用于校验和修正的辅助计算,拟合二次响应面至少需要计算77次,拟合三次响应面则至少需要计算198次)。而通过灵敏度分析找出影响考核指标最大或较大的设计变量,可极大节省计算耗费,提高计算效率和精度。

相关主题