搜档网
当前位置:搜档网 › 固体物理实验方法简单题13页

固体物理实验方法简单题13页

固体物理实验方法简单题13页
固体物理实验方法简单题13页

1.说明X射线谱的分类及产生物理机制?

一种是连续X射线谱,与靶材料无关,是高速电子受到靶的抑制作用,速度骤减,小于1%的电子动能转化为X射线光能,电子所减少的能量ε?就作为一个X射线光量子辐射出来,其频率υ由爱因斯坦方程给出:数量极大的电子射向阳极靶受到减速的条件不可能相同,电子损失的能量也不同,因而出现了不同波长及不同数量的光量子,形成了连续分布的X射线谱。

另一种是特征X射线线标识谱,与加速电压无关,而与靶材料有关。不同靶元素的X射线标识谱具有相似的结构,随着靶原子的原子序数 Z的增加,只是单调变化,而不是周期性变化。标识谱的这一特征表明它是原子内层电子跃迁所产生的。当高速电子轰击靶原子,将原子内层电子电离,内层产生一个电子的空位,外层电子跃迁到内层空位所发出的辐射谱线就是标识谱。

当管电压比较小时,只有连续X射线产生。当管电压上升到超过某一临界激发电压时,在某一特定的波长处,将会有强度极强的特征X射线叠加在连续X射线谱上,此即为特征X射线,又名标识X射线。特征X射线谱的产生机理起源于电子的跃迁。某些高速射向阳极靶的电子能量足够大,可能将靶元素原子的内层电子击出,电子从能量较高的态迁到能量较低的态时发出辐射。

2.什么是俄歇效应,什么是厄瓦尔德球?

俄歇效应是原子发射的一个电子导致另一个或多个电子(俄歇电子)

被发射出来而非辐射X射线(不能用光电效应解释),使原子、分子成为高阶离子的物理现象,是伴随一个电子能量降低的同时,另一个(或多个)电子能量增高的跃迁过程。

当X射线或γ射线辐射到物体上时,由于光子能量很高,能穿入物体,使原子内壳层上的束缚电子发射出来。当一个处于内层电子被移除后,在内壳层上出现空位,而原子外壳层上高能级的电子可能跃迁到这空位上,同时释放能量。一定的内原子壳空位可以引起一个或多个俄歇电子跃迁。跃迁时释放的能量将以辐射的形式向外发射。通常能量以发射光子的形式释放,但也可以通过发射原子中的一个电子来释放,被发射的电子叫做俄歇电子。被发射时,俄歇电子的动能等于第一次电子跃迁的能量与俄歇电子的离子能之间的能差。这些能级的大小取决于原子类型和原子所处的化学环境。

以波长大小的倒数(1/λ)为半径,作一个球面,从球心向球面与倒易点阵的交点的射线为波的衍射线,这个球面称为反射球,也称厄瓦尔德球。

厄瓦尔德反射球——图解衍射原理

倒易点阵最重要的应用就是用厄瓦尔德反射球图解并阐述了衍射原理,由一级布拉格公式2d sinθ= λ知,sinθ=(1/d)/(2/λ),即与θ成正弦关系的1/d和2/λ分别成为一个直角三角形θ角的对边和斜边。

图1是著名的Ewald反射球。以样品位置C为中心,1/λ为半径作圆球,入射X射线ACO(直径)的A、O两点均在球赤道圆上,设想晶体内与X射线AC成θ角的晶面(hkl)形成衍射线CG交赤道园于G,则AG⊥OG。

∠OAG=θ,OG=1/d。G点就是符合布拉格方

程的(hkl)晶面的衍射斑点,G点必在这个球面上。此球称为厄瓦尔德反射球。CG是衍射线方向,∠OCG=2θ是衍射角。G点还可以看成是以O点为原点的衍射面(hkl)的法线方向上的一点,该法线长度等于衍射面(hkl)系列的晶面间距d(hkl)的倒数!这样就把厄瓦尔德反射球的元素与实际晶胞的大小联系起来。至于把厄瓦尔德反射球与实际晶胞的形状的联系请继续阅读下面的叙述。请注意这里的点O、点G及OG旋转衍射面等组成的以晶体晶格为正点阵的倒易点阵诸元素是不同于真实晶体的是虚幻的。O 点是这个倒易点阵的原点,OG是倒易矢量Hhkl 【H是黑体字,黑体字表示向量;hkl是下标,下同】。

单晶体的倒易点阵是在三维空间有规律排列的阵点,根据厄瓦尔德图

解可以领悟到单晶体的衍射斑点组成。粉末多晶体由无数个任意取向的晶粒组成,所以其某一确定值晶面(hkl)的倒易点如晶面(110)在三维空间是均匀分布的,所有晶粒这些晶面(hkl)倒易点的集合构成了一个以O 为球心、半径为1/d(hkl)(=Hhkl)的倒易球壳,显然这个倒易球壳来源于那个{hkl}晶面族的衍射。不同晶面间距d的晶面系列的衍射对应不同半径的同心倒易球壳,它们与反射球相交,得到一个个圆。以该圆为底面、以反射球心为顶点的旋转圆锥称为衍射圆锥或衍射锥,圆锥的顶角夹角等于4θ。因为,当样品单晶旋转时或样品是多晶体时,满足布拉格方程的倒易点阵点不仅是标出的一个G点,而是以C为顶点、以CO为对称轴、以CG为母线的旋转圆锥面都是样品中一个(hkl)晶面系列的衍射方向,该旋转圆锥面的顶角为4θ,其与反射球交点轨迹就是G点所在的垂直于直径ACO的圆。

图2 是一个旋转晶体在其转轴[001]方向获得的倒易点阵。

这是(hkl)晶面等于某一组特定值时的情况。当(hkl)值换为另一组值,衍射面自然也变为另一组值,布拉格角θ(hkl)随hkl值变换而不同于前一个θ角,衍射角2θ(hkl)也随之改变,衍射斑点的位置也相应改变。晶面指数hkl不是连续变化,衍射园锥面也相应地断续出现。旋转晶体在其转轴[001]方向获得如图2的倒易点阵结构:以转轴为轴的以晶体处即反射球心为顶点的以2θ为半顶角的一系列不连续的圆锥面再与反射球相交成为交线圆。这些圆平面垂直于纸面,故在纸面上的投影被画为直线。从中心向两侧分别标以l【这里的l是大写为L的l】=0、±1、±2、……,用感光胶片在垂直于l轴或C*轴方向接收,会得到一系列同

心圆环(或称为德拜园环)。放感光胶片到平行于l轴方向,接收到的由衍射锥留下的交线的图案就是一系列类双曲线极限球。

在厄瓦尔德图解中,当晶体绕ACO轴旋转时或让入射线沿任意方向入射时,凡处在以2/λ为半径的球O内的倒易点阵点都有可能与反射球相交,即这些倒易点所反映的衍射晶面才有发生衍射的可能,而那些倒易点处于球O之外的对应晶面则不能发生衍射(因为与反射球无交点,不符合布拉格方程);故半径为2/λ的球O称为极限球。它给出了一定入射波长下可以发生衍射晶面的范围,即Hhkl≤2/λ,显然结论与布拉格方程一致。另外,可看出,选用的X射线源的波长λ越小,极限球越大,能够产生衍射的晶体越多。图3显示了厄瓦尔德反射球、极限球和晶体倒易点阵之间的相互关系,其中空心小圈表示可能发生衍射的倒易点阵区域。各种X 射线衍射的基本方法原理都是根据反射球和倒易点阵的关系设计的。

3.什么是标识X射线和荧光X射线?

特征X射线:指原子的内层电子受到激发后,在能级跃迁过程中直接释放的具有特征能量和特征波长的一种电磁波辐射。特征X射线的波长和原子序数间的关系服从莫塞莱定律。

荧光X射线就是被分析样品在X射线照射下发出的X射线,不同元素的荧光X射线具有各自的特定波长,因此根据荧光X射线的波长可以确定元素的组成,也就是它包含了被分析样品化学组成的信息。

4.什么是俄歇电子、背散射电子?

背散射电子:被固体样品中原子反射回来的一部分入射电子,又分弹性背散射电子和非弹性背散射电子。

当电子束照射样品时,入射电子在样品内遭到衍射时,会改变方向,甚至损失一部分能量(在非弹性散射的情况下)。在这种弹性和非弹性散射的过程中,有些入射电子累积散射角超过90度,并将重新从样品表面逸出。那么背散射电子就是由样品反射出来的初次电子,

其主要特点是:能量很高,有相当部分接近入射电子能量 E 0 ,在试样中产生的范围大,像的分辨率低。背散射电子发射系数η =I B /I 0 随原子序数增大而增大。作用体积随入射束能量增加而增大,但发射系数变化不大。

5.说明XRD XPS WDS EDS TEM SEM STM EPMA分别标示什么分析手段?XRD:X-ray diffractionX射线衍射

XPS:X-ray photoelectron spectroscopyX射线光电子能谱

WDS:Wavelength Dispersive Spectrometer 波长分散谱仪

EDS:Energy-dispersive X-ray spectroscopy能量分散X射线谱

TEM:Transmission Electron Microscopy 透射电镜

SEM:scanning electron microscope扫描电子显微镜

STM:scanning tunneling microscope扫描隧道显微镜

EPMA:Electronprobemicro-analyzer 电子探针显微分析仪,也被简称为电子探针(electronmicroprobe)或探针(probe)

6.说明X射线衍射仪的主要组成部分有哪些?

X射线衍射仪的主要组成部分有X射线发生器、X射线衍射发生装置、测角仪、辐射探测器和测量系统

7.电子束入射到固体样品表面会激发那些信号?各有什么样的特点和用

途?

(1)背散射电子:被固体原子核反弹回来的部分入射电子,弹性背散射:散射角大于90°,能量无变化;非弹背散射:入射电子和核外电子撞击产生,能量方向都变化。原子序数衬度,形貌衬度,定性成分分析。能量很高,在试样中产生的范围大,像的分辨率低。

(2)二次电子:被入射电子轰出来的核外电子,表面形貌敏感衬度,分辨率高(扫描电镜分辨率),发自试样表层二次电子与入射电子面积无区别,无原子序数衬度。

(3)吸收电子:入射电子进入样品后经过多次非弹性散射能量消失殆尽最后被样品吸收(无透射),与背散射电子衬度互补,反应原子序数定性微曲成分。

(4)透射电子:样品厚度小于入射电子有效穿透度,穿过薄试样成,样品下方检测到的透射电子信号中除了有能量与入射电子相当的弹射,还有能量损失非弹,有些特征能量损失的非弹和分析区成分有关,配合能量分析器。

(5)特征X射线:原子内层电子受激发后,能级跃迁中直接释放的具有特征能量和波长的电磁波辐射,原子序数与特征能量对应关系,微区元素分析。

(6)俄歇电子:原子内层电子跃迁过程中释放出的能量不已X射线形式释放,而是用能量江河外另一电子打出成为二次电子,每种原子都有特定壳层能量,俄歇电子特征值,试样表面有限原子层发出,表层化学成分分析。

《答案二》

. 背散射电子:——能量高;来自样品表面几百nm深度范围;其产额随原子序数增大而增多。用作形貌分析、成分分析以及结构分析。

二次电子:——能量较低;来自表层5-10nm深度范围对样品表面状态十分敏感不能进行成分分析主要用于分析样品表面形貌。

吸收电子:——其衬度恰好和SE或BE信号调制图像衬度相反与背散射电子的衬度互补吸收电子能产生原子序数衬度,即可用来进行定性的微区成分分析

透射电子:——透射电子信号由微区的厚度、成分和晶体结构决定可进行微区成分分析

. 特征X射线:——用特征值进行成分分析,来自样品较深的区域俄歇电子——各元素的俄歇电子能量值低;来自样品表面1-2nm范围。适合做表面分析.

8.什么是化学位移、在哪些分析手段中利用了化学位移?

同种原子处于不同化学环境而引起的电子结合能的变化,在谱线上造成的位移称为化学位移。在 XPS、俄歇电子能谱、核磁共振等分析手段中均利用化学位移。

9.体心立方晶体点阵常数a=0.2866nm,用波长λ=0.2291nm照射,试计算( 1 1 0),(2 0 0)及(2 1 1)晶面可能发生的衍射角

要点:

10.对于立方晶体,已知晶胞参数a=0.405nm,射线波长λ=0.154nm,试计算其(2 0 0)晶面衍射角2θ角

要点:

11.磁透镜的像差是怎样产生的,如何消除或减小像差?

答:

<1>

像差分为两类:几何像差和色差。几何像差是因为透镜磁场几何形状上的缺陷而造成的。色差是由于电子波的波长或能量发生一定幅度的改变而造成的。

<2>

第一,采取稳定加速电压的方法可有效地减小色差。

第二,单一能量或波长的电子束照射样品物质时,将与样品原子的核外电子发生非弹性散射。一般来说,样品越厚,电子能量损失或波长变化幅度越大,色差散焦斑越大,透镜像分辩率越差。所以应尽可能减小样品厚度,以利于提高透镜像的分辩率。

<答案二>

像差分为球差,像散,色差.

球差是磁透镜中心区和边沿区对电子的折射能力不同引起的. 增大透镜的激磁电流可减小球差.

像散是由于电磁透镜的周向磁场不非旋转对称引起的.使用附加弱磁场的电磁消象散器来矫正。

色差是电子波的波长或能量发生一定幅度的改变而造成的. 使用薄试样和小孔径光阑将散射角大的非弹性散射电子挡掉,将有助于减小色散、稳定加速电压和透镜电流可减小色差

12.透射电镜中主要有哪些光阑、其作用是什么?

透射电镜有三种主要光阑:聚光镜光阑、物镜光阑和选区光阑。

聚光镜光阑作用:限制照明孔径角。在双聚光镜系统中,该光阑装在第二聚光镜下方。光阑孔直径:20-400um,一般分析用时光阑孔直径用200-300um,作微束分析时,采用小孔径光阑。

物镜光阑:也称衬度光阑,安装于物镜的后焦面。光阑孔直径20-120um。作用:提高像衬度减小孔径角,从而减小像差进行暗场成像

选区光阑:为了分析样品上的微区,应在样品上放置光阑来限定微区,对该微区进行衍射分析叫做选取衍射。该光阑是选区光阑,也称限场光阑或视场光阑。《答案二》

答:主要有三种光阑:

①聚光镜光阑。在双聚光镜系统中,该光阑装在第二聚光镜下方,作用:限制照明孔径角。

②物镜光阑。安装在物镜后焦面。作用:提高像衬度:减小孔径角,从而减小像差:进行暗场成像。

③选区光阑:放在物镜的像平面位置。作用:对样品进行微区衍射分析。

13.二次电子信号主要用于样品表面的形貌分析,说明其衬度形成原理?

成像原理为:二次电子产额对微区表面的几何形状十分敏感。随入射束与试样表面法线夹角增大,二次电子产额增大。因为电子束穿入样品激发二次电子的有效深度增加了,使表面5-10 nm作用体积内逸出表面的二次电子数量增多。

14.简述能谱仪和波谱仪的工作原理

能量色散谱仪主要由 Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识 X 射线,这些 X 射线被 Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个 X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的 X 射线能量色散谱。

在波谱仪中,在电子束照射下,样品发出所含元素的特征 x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射 X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的 X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的 X 射线分开,即不同波长的 X 射线将在各自满足布拉格方程的 2θ 方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的 X 射线能量色散谱。 15.说明什么是结构因子与系统消光?试总结简单立方点阵、体心立方点阵、面心立方点阵的衍射系统的消光规律?

系统消光:在X 射线衍射过程中,把因原子在晶体中位置不同或原子种类不同而引起的某些方向上的衍射线消失的现象称为系统消光。 结构因子:定量表征原子排布以及原子种类对衍射强度影响规律的参数称为结构因子,即晶体结构对衍射强度的影响因子。

[要点] 详见P31

()exp G j j j

S f iG r =-?∑v v ,j f 为原子形状因子,既与原子中电子数目和分布有

关,又与辐射的波长和散射角度有关。

123j j j j r x a y a z a =++,123G hb kb lb =++,

()2j j j j G r hx ky lz π?=++

简单立方点阵:晶胞中原子数1,坐标(000),22

f F =,结构因子与hkl 无关,不存在消光现象。

体心立方点阵:晶胞中原子数2,坐标(000)及(1/2,1/2,1/2),当l k h ++为偶数时224f F =,当l k h ++为奇数时02=F ,只有晶面指数之和为偶数时才会出现衍射现象,否则即消光。

面心立方点阵:晶胞中原子数4,坐标(000)、(1/2,1/2,0)、(0,1/2,1/2)及(1/2,0,1/2),当hkl 全为奇数或全为偶数时22

16f F =,当hkl 为奇偶混合时02=F ,只有晶面指数为全奇数或全偶数时才会出现衍射现象,否则即消光。 16.根据光电效应方程说明XPS 工作原理,以Mg K ɑ射线(1253.8eV )为激发源,由谱仪(功函数为4eV )测得某元素的电子动能为981.5eV ,求此元素的电子结合能?

答:在入射X 光子的作用下,核外电子克服原子核和样品的束缚,逸出样品变成光电子。入射光子的能量hυ被分成了三部分:(1)电子结合能EB ;

(2)逸出功(功函数)ФS 和(3)自由电子动能Ek 。 hυ= EB + EK +ФS 因此,如果知道了样品的功函数,则可以得到电子的结合能。X 射线光电子能谱的工作原理为,用一束单色的 X 射线激发样品,得到具有一定动能的光电子。光电子进入能量分析器,利用分析器的色散作用,可测得起按能量高低的数量分布。由分析器出来的光电子经倍增器进行信号的放大,在以适当的方式显示、记录,得到 XPS 谱图,根据以上光电方程,求出电子的结合能,进而判断元素成分和化学环境。

此元素的结合能EB = hυ- EK -ФS=1253.8-981.5-4=268.3eV

17.举例说明X射线定量物相分析包括哪些?

采用标样的定量物相分析:外标法,内标法,K值法(基体效应消除法),增量法。

无标样的定量物相分析:直接比较法,绝热法。

18.影响X射线衍射谱宽度的因素有哪些?

样品中的晶块细化,显微畸变,位错及层错等晶体不完整因素,必然影响到X射线的空间干涉强度及其分布,在稍偏离布拉格方向上会出现一定的衍射,从而导致衍射峰宽化和峰值强度降低。

希望以上资料对你有所帮助,附励志名言3条::

1、世事忙忙如水流,休将名利挂心头。粗茶淡饭随缘过,富贵荣华莫强求。

2、“我欲”是贫穷的标志。事能常足,心常惬,人到无求品自高。

3、人生至恶是善谈人过;人生至愚恶闻己过。

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理精彩试题库(大全)

一、名词解释 1.晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。 2.非晶态--非晶态固体材料中的原子不是长程有序地排列,但在几个原子的围保持着有序性,或称为短程有序。 3.准晶--准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 4.单晶--整块晶体原子排列的规律完全一致的晶体称为单晶体。 5.多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 6.理想晶体(完整晶体)--在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。 7.空间点阵(布喇菲点阵)--晶体的部结构可以概括为是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。 8.节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。 9.点阵常数(晶格常数)--惯用元胞棱边的长度。 10.晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。 11.配位数—晶体中和某一原子相邻的原子数。 12.致密度—晶胞原子所占的体积和晶胞体积之比。 13.原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲和能) 14.肖特基缺陷—晶体格点原子扩散到表面,体留下空位。 15.费仑克尔缺陷--晶体格点原子扩散到间隙位置,形成空位-填隙原子对。 16.色心--晶体能够吸收可见光的点缺陷。 17.F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。 18.V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。 19.近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。 20.Einsten模型--在晶格振动中,假设所有原子独立地以相同频率E振动。 21.Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且=vq 。 22.德拜频率D──Debye模型中g()的最高频率。 23.爱因斯坦频率E──Einsten模型中g()的最可几频率。 24.电子密度分布--温度T时,能量E附近单位能量间隔的电子数。 25.接触电势差--任意两种不同的物质A、B接触时产生电荷转移,并分别在A和B上产生电势V A、V B,这种电势称为接触电势,其差称为接触电势差。 25.BLoch电子费米气--把质量视为有效质量 m,除碰撞外相互间无互作用,遵守费米分布的

学习固体物理的目的和难点

JISHOU UNIVERSITY 《固体物理》期末 考核报告 摘要:本课以本科理论物理的“四大力学”为基础。又是学习凝聚态物理学和材料科学的基础,它是最基础的、又同专业关系最密切的一门课程。通过本课的学习,一方面是对以前所学基础理论知识的复习和应用,另一方面也为今后了解、掌握现代高新技术和从事科学研究打下基础。 关键字:力学、基础、课程-现代高新科技、应用 一、引言 固体物理就是研讨固体(主要是晶体)材料物理特性的一门科学。它是从固体中的原子和电子状态的根本特点出发来讨论固体的物理性质,所以是最基础的、又同专业关系最密切的一门课程,它也讨论非晶体材料的性质,是学习金属物理、半导体物理、电介质物理、磁学等的基础、先行课程。 虽然固体物理主要是讨论固体材料的问题,但是实际上对于讨论液体、气体材料也有参考价值,同时还体现了应用基础课的特点,既要讲有关的理论体系,又要讲和实验、生产的密切关系.特别要突出科学的研究方法。对于物理类和电

子科学类的专业,固体物理是必修课。所以。对于了解学习固体物理的目的和难点是非常有必要的。 二、学习固体物理的目的 2.1 固体物理学的发展 固体物理对于技术的发展有很多重要的应用,晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。新的实验条件和技术日新月异,正为固体物理不断开拓新的研究领域。极低温、超高压、强磁场等极端条件、超高真空技术、表面能谱术、材料制备的新技术、同步辐射技术、核物理技术、激光技术、光散射效应、各种粒子束技术、电子显微术、穆斯堡尔效应、正电子湮没技术、磁共振技术等现代化实验手段,使固体物理性质的研究不断向深度和广度发展。由于固体物理本身是微电子技术、光电子学技术、能源技术、材料科学等技术学科的基础,也由于固体物理学科内在的因素,固体物理的研究论文已占物理学中研究论文三分之一以上。其发展趋势是:由体内性质转向研究表面有关的性质;由三维体系转到低维体系;由晶态物质转到非晶态物质;由平衡态特性转到研究瞬态和亚稳态、临界现象和相变;由完整晶体转到研究晶体中的杂质、缺陷和各种微结构;由普通晶体转到研究超点阵的材料。这些基础研究又将促进新技术的发展,给人们带来实际利益。同时,固体物理学的成就和实验手段对化学物理、催化学科、生命科学、地学等的影响日益增长,正在形成新的交叉领域。 2.2 学习固体物理的要求 固体物理是很抽象的,在于他研究的对象已经不是一般的某个体系,而是涉及组成物体的原子分子之间的结构能量问题,有些类似于原子物理,但又不一样。想要学好固体物理完全没有必要纠结于难记的公式和复杂的推导,关键是理解固体物理中引进的其它物理分支中没有的概念和研究方法,举个例子,一开始介绍倒格矢,概念很抽象,但是它的目的是研究晶格,晶体性质的,那么就需要站在晶体结构的角度理解它;研究满带,空带,就需要联系分子之间能量来理解它。要区分微观和宏观研究方法的不同,不要带着以往学物理的方法来学习固体物理。 对于大学生所学的固体物理,其中的内容都是比较浅显易懂,我们所要做的就是在课堂所学的基础上,去为将要学习更深的内容做好准备。利用大学所学的基础知识,对固体物理的一些基础的知识的了解,去更好的用到生活中去。这样才能做到真正的学以致用。

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长,做一个平 行六面体,这样的平行六面体叫做晶胞。由很多个晶胞结合在一起构成晶 体。 II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的 排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称 性。在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺 构成整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的 最小单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相 互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可 划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。

固体物理试题库

一、名词解释 1、晶态--晶态固体材料中的原子有规律的周期性排列,或称为长程有序。 2、非晶态--非晶态固体材料中的原子不就是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。 3、准晶--准晶态就是介于晶态与非晶态之间的固体材料,其特点就是原子有序排列,但不具有平移周期性。 4、单晶--整块晶体内原子排列的规律完全一致的晶体称为单晶体。 5、多晶--由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。 6、理想晶体(完整晶体)--内在结构完全规则的固体,由全同的结构单元在空间无限重复排列而构成。 7、空间点阵(布喇菲点阵)--晶体的内部结构可以概括为就是由一些相同的点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵。 8、节点(阵点)--空间点阵的点子代表着晶体结构中的相同位置,称为节点(阵点)。 9、点阵常数(晶格常数)--惯用元胞棱边的长度。 10、晶面指数—描写布喇菲点阵中晶面方位的一组互质整数。 11、配位数—晶体中与某一原子相邻的原子数。 12、致密度—晶胞内原子所占的体积与晶胞体积之比。 13、原子的电负性—原子得失价电子能力的度量;电负性=常数(电离能+亲与能) 14、肖特基缺陷—晶体内格点原子扩散到表面,体内留下空位。 15、费仑克尔缺陷--晶体内格点原子扩散到间隙位置,形成空位-填隙原子对。 16、色心--晶体内能够吸收可见光的点缺陷。 17、F心--离子晶体中一个负离子空位,束缚一个电子形成的点缺陷。 18、V心--离子晶体中一个正离子空位,束缚一个空穴形成的点缺陷。 19、近邻近似--在晶格振动中,只考虑最近邻的原子间的相互作用。 20、Einsten模型--在晶格振动中,假设所有原子独立地以相同频率ωE振动。 21、Debye模型--在晶格振动中,假设晶体为各向同性连续弹性媒质,晶体中只有3支声学波,且ω=vq 。 22、德拜频率ωD──Debye模型中g(ω)的最高频率。 23、爱因斯坦频率ωE──Einsten模型中g(ω)的最可几频率。 24、电子密度分布--温度T时,能量E附近单位能量间隔的电子数。 25、接触电势差--任意两种不同的物质A、B接触时产生电荷转移,并分别在A与B上产生电势V A、V B,这种电势称为接触电势,其差称为接触电势差。 25、BLoch电子费米气--把质量视为有效质量→ m,除碰撞外相互间无互作用,遵守费米分布的 Bloch电子的集合称为BLoch电子费米气。 26、惯用元胞(单胞):既能反映晶格周期性,又能反映其对称性的结构单元。 27、简谐近似:晶体中粒子相互作用势能泰勒展开式中只取到二阶项的近似。 28、杜隆-伯替定律:高温下固体比热为常数。 29、晶体的对称性:经过某种对称操作后晶体能自身重合的性质。 30、格波的态密度函数(振动模式密度):在ω附近单位频率间隔内的格波总数。 31、晶体结合能:原子在结合成晶体过程中所释放出来的能量。 32、倒格矢:

非常有用的固体物理实验方法课第4章_透射电子显微镜

第4章透射电子显微镜 同学们好!今天我们学习的内容是第4章透射电子显微镜,(transmission electron microscopy)简称TEM。下图就是我们今天要介绍的仪器。 那么透射电子显微镜在什么情况下产生的?又有什么功能和作用呢?下面我们就简单介绍一下它的历史背景和其功能和作用。 在光学显微镜下有的细微结构也无法看清,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska等发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 透射电子显微镜(Transmission Electron Microscopy,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,适于观察超微结构。透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力

低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。 那么我们总结以上内容可以给透射电子显微镜下一个简单的定义: 用透过样品的电子束使其成像的电子显微镜。在一个高真空系统中,由电子枪发射电子束,穿过被研究的样品,经电子透镜聚焦放大,在荧光屏上显示出高度放大的物像,还可作摄片记录的一类最常见的电子显微镜。 那么本章主要分为5个部分组成。 4.1 电子光学基础 4.2 电子与固体物质的相互作用 4.3 透射电子显微镜 4.4 电子衍射 4.5 透射电子显微分析样品制备 下面我们就来讲第一节,4.1 电子光学基础。本节内容有三部分组成 4.1.1 电子波与电磁透镜 4.1.2 电磁透镜的分辨率 4.1.3 电磁透镜的景深和焦长 那么我们再回顾一下以前所学的内容。

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理考试习题大全

晶体结构 20 分 晶体衍射 10 分 晶格振动 20分 与晶体的热学性质 18分 能带理论和晶体中电子在电场磁场中的运动 36 分 金属电子论和半导体电子论 5—10分 1. 晶体的微观结构、原胞、W-S 原胞、惯用单胞的概念、常见的晶体结构、晶面与晶向的概念,并能进行必要的计算;倒格子与布里渊区、晶体X 射线衍射,能计算几何结构因子和衍射极大条件。 2. 晶体结合的普遍特性;离子键结合和范德瓦耳斯结合的结合能计算。 3. 简谐近似和最近邻近似,双原子链的晶格振动;周期边界条件,晶格振动的量子化与声子,色散关系;爱因斯坦模型和德拜模型,晶体的比热,零点振动能计算。 4. 经典自由电子论:电子运动方程,金属的直流电导,霍耳效应,金属热导率。量子自由电子论:能态密度,费米分布,费米能级,电子热容量。 5. 布洛赫定理及其证明;近自由电子近似的思想一维和二维近自由电子近似的能带计算,紧束缚近似的思想,紧束缚近似的计算(S 能带的的色散关系)。理解半导体Ge 、Si 的能带结构。 6.波包的准经典运动概念,布洛赫电子的速度,加速度和有效质量和相应的计算,空穴的概念;导体、半导体和绝缘体的能带解释,原子能级和能带的对应;朗道能级,回旋共振,德×哈斯—范×阿尔芬效应,碱金属和贵金属的费米面。 7.分布函数法和恒定外电场下玻耳兹曼方程的推导。理解电子声子相互作用,晶格散射和电导,电阻的来源。 8. 半导体基本的能带结构,半导体中的施主和受主杂质,P 型半导体和N 型半导体,半导体中的费米统计分布。PN 结平衡势垒。 1.1 在结晶学中, 晶胞是按晶体的什么特性选取的? 在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性. 1.2六角密积属何种晶系? 一个晶胞包含几个原子? 六角密积属六角晶系, 一个晶胞(平行六面体)包含两个原子. 1.3在晶体衍射中,为什么不能用可见光? 晶体中原子间距的数量级为1010 -米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米. 但可见光的波长为7.6?4.0710-?米, 是晶体中原子 间距的1000倍. 因此, 在晶体衍射中,不能用可见光. 2.1共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产

固体物理题库

一、填空题 第一章 1、某些晶体的物理性质具有各向异性:原因在于晶体中原子排列 (在不同方向上具有不同的周期性) 2.按结构划分,晶体可分为大晶系, 共布喇菲格子? 3、面心立方原胞的体积为;第一布里渊区的体积为。 4、简单立方原胞的体积为;第一布里渊区的体积为。 5.体心立方原胞的体积为;第一布里渊区的体积为。 6、对于立方晶系,有、和三种布喇菲格子。 7、金刚石晶体是格子,由两个的子晶格沿空间对角线位移 1/4 的长度套构而成,晶胞中有个碳原子。 8.原胞是的晶格重复单元。对于布喇菲格子,原胞只包含个原子。 9、晶面有规则、对称配置的固体,具有长程有序特点的固体称为;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为。 10. 由完全相同的一种原子构成的格子,格子中只有一个原子,称为布喇菲格子。满足关系的b1,b2,b3为基矢,由G h=h1b1+ h2b2+ h3b3构成的格子,称为。由若干个布喇菲格子相套而成的格子,叫做,其原胞中有以上的原子。 11、CsCl晶体是格子,由两个的子晶格沿空间对角线位移 1/2 的长度套构而成。 12、对晶格常数为a的SC晶体,与正格矢R=a i+2a j+2a k正交的倒格子晶面族的 2 面指数为 , 其面间距为。122, a3 13、晶体有确定的熔点,晶体熔化热实际是能量(破坏晶体结构的或者说晶体由晶态转化为非晶态的)

14、一个面心立方晶格单元(晶胞)包含有个面心原子和个顶点原子,其原胞拥有个原子 (3,1,1) 15、晶胞是能够反映晶体的结构单元,在固体物理学中重要的是理解晶胞结构 (晶格的对称性和周期性) 16、根据晶胞对称性,晶体分为晶系;根据晶格特点,晶格分为Bravais格子 (7种,14种) 18、晶格分为简单晶格和复式晶格, NaCI是复式晶格,CsCI是复式晶格 (面心立方,简立方) 19、晶格常数大小为晶胞的边长,利用实验可以测量出的晶格常数(X射线衍射) 20、常用的X射线衍射方法主要有、和转动单晶法 (劳厄法、粉末法) 21、单晶具有规则的几何外形,是的结果和宏观体现 (晶体中原子排列具有周期性) 22、按照原子排列特征,固体分为:、和准晶体 (晶体和非晶体) 23、晶体分为单晶和多晶,单晶是长程有序,具有规则的和物理性质(几何外形、各向异性) 24、金属晶体是典型的多晶,构成多晶的单晶晶粒大小为 m (10-6~10-5) 25、晶体结构的基本特征是原子排列的周期性,原胞是能够反映的最小单元,一个原胞拥有一个原子 (晶格周期性) 26、一个体心立方晶格单元(晶胞)包含有个顶点原子和个体心原子,其原胞拥有个原子

非常有用的固体物理实验方法课第2章__固体X射线学

第二章固体X-射线学 固体X-射线学是通过测定X-射线与凝聚态物质相互作用产生的效应来研究物质本性和结构的学科。在X-射线被吸收时产生吸收谱,通过对吸收谱的研究可以决定原子的能级结构,通过对吸收限高能测微弱的扩展吸收谱的研究可以获得吸收原子周围的结构信息;原子吸收了X-光子后发射标识辐射和俄歇电子,通过对这两中谱的测定可识别物质中的原子种类并测定其含量;X-射线被凝聚态物质散射时,通过对弹性散射线束强度和方向的测定可求得晶体和非晶体的结构、组织和缺陷,通过对非弹性散射线束这些量的测定可求出物质中晶格振动谱和原子外层电子的动量分布。 在这一章里,我们将固体X-射线学中的一些试验技术分成三部分来介绍:①晶体的衍射强度公式和衍射仪的使用方法,②常用的一些晶体结构分析法,③固体物理发展前沿的一些结构分析技术。 §2.1 散射理论与强度公式 在原理上,凝聚态物质对X-射线相干散射强度的计算是:将全部相干波叠加,求出合振幅,这合振幅的平方就是所求的强度。计算出来的强度是与散射体的结构状态密切相关的;进行叠加的振幅和位相因子决定于散射体内的原子及其分布,因而散射强度及其分布代表散射体的结构信息。这就是衍射法结构分析的依据。 按照结构来分类,凝聚态物质可分成晶体、准晶态和非晶态固体与液体。晶体又可分成大块完整晶体和嵌镶结构晶体。衍射理论中使用于大块完整晶体的理论叫做衍射动力学理论,适于嵌镶晶体的理论叫做衍射运动学理论,而适用于非晶态固体和液体的理论叫做非晶态衍射理论。准晶态固体是近几年才发现的含有5次度转对称类型机构但非周期性(有准周期性)的物质,其结构介乎晶态与非晶态之间,它的衍射理论正在迅速发展中。 X-射线在完整晶体中传播时,它首先被点阵第一次衍射,这些衍射线又被点阵再次衍射,衍射线与透射线相互作用,发生干涉效应。动力学理论是考虑这种再衍射效应的理论。X-射线在嵌镶晶体中传播时,由于嵌镶警惕是由许多位略有差别的完整小晶块嵌镶而成的,这样,一方面完整小晶块足够小以致其内部再衍射引起的效应可以忽略,另一方面各晶块之间的取向差又足以使它们的衍射线之间没有相干性,因而运动学理论是不考虑再衍射效应的理论。由于动力学理论和运动学理论有这样根本的差别,导出的衍射强度公式及衍射线束张角也就大不相同:动力学理论导出的衍射强度正比于结构因数F(hkl)的一次方,张角只有数弧秒,而运动学理论导出的衍射强度正比于F(hkl)的平方,平常见到的衍射强度,张角却有数分弧(由嵌镶晶体的位向分布决定)。 实际晶体绝大多数是嵌镶晶体,平常见到的衍射强度公式是根据运动学理论导出的。在这一节里准备对运动学强度公式做一扼要介绍。此外还将对小角散射及两种重要的不相干散射作一个简单说明。非晶态衍射理论则放在下面有关章节中叙述。

固体物理学习心得

固体物理学习心得 篇一:学习固体物理后的感想 学习固体物理的感受 经过了十几周的学习,我们这门《固体物理学》也结束了最后的任务,虽然说这门课对于咱们专业的同学来说总体上难度很大,但是在您的指导下,同学们还是基本能够按时出勤,最重要的是达到了开设这门课的最初用意,能够为我们以后学习和了解更多物理学相关的知识打下良好的基础。 本课程是材料科学与工程专业的物理类基础课,包括晶格结构、晶格振动与热性质、固体电子理论、半导体、固体磁性质、绝缘体、介电体等部分。这门课程系统介绍固体物理研究的基本理论与重要试验方法提示丰富多彩的固体形态(如金属、绝缘体、磁性材料等)形成的基本物理规律,给出研究这些固体的实验(如X光衍射、中子散射、磁

散射等)设计的基本原理。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。其实固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。晶体或多或少都存在各种杂质和缺陷,它们对固体的物性, 以及功能材料的技术性能都起重要的作用。半导体的电学、发光学等性质

依赖于其中的杂质和缺陷;大规模集成电路的工艺中控制和利用杂质及缺陷是极为重要的。非晶态固体的物理性质同晶体有很大差别,这同它们的原子结构、电子态以及各种微观过程有密切联系。从结构上来分,非晶态固体有两类。一类是成分无序,在具有周期性的点阵位置上随机分布着不同的原子或者不同的磁矩;另一类是结构无序,表征长程序的周期性完全破坏,点阵失去意义。但近邻原子有一定的配位关系,类似于晶体的情形,因而仍然有确定的短程序。在无序体系中,电子态有局域态和扩展态之分。在局域态中的电子只有在声子的合作下才能参加导电,这使得非晶态半导体的输运性质具有新颖的特点。1974年人们掌握了在非晶硅中掺杂的技术,现在非晶硅已成为制备高效率太阳能电池的重要材料。无序体系是一个复杂的新领域,非晶态固体实际上是一个亚稳态。目前对许多基本问题还存在着争论,有待进一步的探索和研究。

固体物理学整理要点

固体物理复习要点 第一章 1、晶体有哪些宏观特性? 答:自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点 这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映 2、什么是空间点阵? 答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵。 3、什么是简单晶格和复式晶格? 答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。 复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。 4、试述固体物理学原胞和结晶学原胞的相似点和区别。 答:(1)固体物理学原胞(简称原胞) 构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。 特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。 (2)结晶学原胞(简称晶胞) 构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。 特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积是固体物理学原胞体积的整数倍。 5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。 答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。 6.在晶体的宏观对称性中有哪几种独立的对称元素?写出这些独立元素。 答: 7.密堆积结构包含哪两种?各有什么特点? 答:(1)六角密积 第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:在第一层球的正上方形成ABABAB······排列方式。 六角密积是复式格,其布拉维晶格是简单六角晶格。 基元由两个原子组成,一个位于(000),另一个原子位于 c b a r 213132:++=即 (2)立方密积 第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。 第二层:占据1,3,5空位中心。 第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。 8.试举例说明哪些晶体具有简单立方、面心立方、体心立方、六角密积结构。并写出这几种结构固体物理学原胞基矢。 答:CsCl 、ABO3 ; NaCl ; ; 纤维锌矿ZnS 9.会从正格基矢推出倒格基矢,并知道倒格子与正格子之间有什么区别和联系? 11.会求晶格的致密度。 14.X 射线衍射的几种基本方法是什么?各有什么特点? 答:劳厄法:(1)单晶体不动,入射光方向不变;(2)X 射线连续谱,波长在 间变化,反射球半径 转动单晶法:(1)X 射线是单色的;(2)晶体转动。 粉末法 :(1)X 射线单色(λ固定);(2)样品为取向各异的单晶粉末。 第二章 1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力? 答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。 结合类型:离子晶体—离子键 分子晶体—范德瓦尔斯力 共价晶体—共价键 金属晶体—金属键 氢键晶体—氢键 max min ~λλ

历年固体物理考试题 6

一.名词解释(20) 1、倒格子空间 5 2、配位数 2 3、声子 6 4、Frenkel缺陷和Schottky缺陷 9 5、能带(结构、理论) 8 6、刃位错 3 7、晶体结构4 8、滑移2 9、费米面、费米能6 10、10、布拉格定律

11、晶体结构与非晶体结构特征 12、布洛赫波 13、声子与光子 14、隧道效应2 15、正格子和倒格子空间 16、布里渊区 17、倒空间 18、晶带 19、倒易点阵 20、带隙 二.简述题(20) 1、引入玻恩-卡门边界条件的理由是什么?玻恩-卡门边界条件及其意义是什么?8 2、晶体热容理论中爱因斯坦模型建立的条件?晶体热容理论中低温条件下爱因斯坦模型 与实验条件存在偏差的根源?晶体热容理论中德拜模型建立的条件?晶体热容理论中德拜和爱因斯坦模型建立的条件分别是什么?理论研究与实验结果的相符特点是什么? 为什么?7 3、共价键为什么有饱和性和方向性?共价结合, 两原子电子云交迭产生吸引, 而原子靠近时, 电子云交迭会产生巨大的排斥力, 如何解释?共价键及其特点?5 4、固体的宏观弹性的微观本质是什么?6 5、说明淬火后的金属材料变硬的原因。4 6、杂化轨道理论。2 7、晶体膨胀时, 费密能级如何变化? 8、为什么温度升高,费米能反而降低? 9、费米子和玻色子特征及其各自所遵循什么统计规律?4 10、引入周期性边界条件的理由?原子运动的周期性边界条件的建立及其理由?2 11、固体的宏观弹性的微观本质是什么?4 12、晶态、非晶态和准晶态在原子排列上各有什么特点?简便区分的方法及依据?4 13、两块同种金属温度不同, 接触后在温度未达到相等前, 是否存在电势差? 为什么? 3 14、晶体中原子结合的类型有哪些? 2

固体物理学发展简史

固体物理学发展简史 固体物理学是研究固体物质的物理性质、微观结构、构成物质的各种粒子的运动形态,及其相互关系的科学。它是物理学中内容极丰富、应用极广泛的分支学科。 固体通常指在承受切应力时具有一定程度刚性的物质,包括晶体和非晶态固体。简单地说,固体物理学的基本问题有:固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?在特定的固体中,电子和原子取什么样的具体的运动形态?它的宏观性质和内部的微观运动形态有什么联系?各种固体有哪些可能的应用?探索设计和制备新的固体,研究其特性,开发其应用。 在相当长的时间里,人们研究的固体主要是晶体。早在18世纪,阿维对晶体外部的几何规则性就有一定的认识。后来,布喇格在1850年导出14种点阵。费奥多罗夫在1890年、熊夫利在1891年、巴洛在1895年,各自建立了晶体对称性的群理论。这为固体的理论发展找到了基本的数学工具,影响深远。 1912年劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到20

世纪50年代舒布尼科夫才建立了磁有序晶体的对称群理论。 第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善,成为研究晶体表面的有力工具。近年来发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:高子键合、金属键合、共价键合、分子键合和氢键合。根据X 射线衍射强度分析和晶体的物理、化学性质,或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 固体中电子的状态和行为是了解固体的物理、化学性质的基础。维德曼和夫兰兹于1853年由实验确定了金属导热性和导电性之间关系的经验定律;洛伦兹在1905年建立了自由电子的经典统计理论,能够解释上述经验定律,但无法说明常温下金属电子气对比热容贡献甚小的原因;泡利在1927年首先用量子统计成功地计算了自由电子气的顺磁性,索末菲在1928年用量子统计求得电子气的比热容和输运现象,解决了经典理论的困难。

固体物理知识题指导

固体物理习题指导 第一章 晶体的结构 第二章 晶体的结合 第三章 晶格振动与晶体热学性质 第四章 晶体的缺陷 第五章 能带 第六章 自由电子论和电子的输运性质 第一章 晶体的结构 思 考 题 1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为() 3 3/4R , 一个晶胞包含两个原子, 一个原子占的体积为()2/3/43 R ,单位体积晶体中的原子数为()3 3/4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为()3 2/4R , 一个晶胞包含四个原子, 一个原子占的体积为()4/2/43 R , 单位体积晶体中的原子数为()3 2/4/4R . 因此, 同体积的体心和面心立方晶体中的原子数 之比为2/323 ? ??? ??=0.272. 2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.

3. 3. 基矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为何种结构? 若=3a ()k j +2a +i 23a , 又为何 种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 23321a = ??=a a a Ω. 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 =-=13a a u 2a ()k j i ++-, =-=23a a v 2a ()k j i +-, =-+=321a a a w 2a ()k j i -+. w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基矢为=1a i a , =2a aj , =3a ()k j i ++2a 的晶体为体心立方结构. 若 =3a ()k j +2a +i 23a , 则晶体的原胞的体积 23 321a Ω= ??=a a a , 该晶体仍为体心立方结构. 4. 4. 若3 21l l l R 与hkl R 平行, hkl R 是否是321l l l R 的整数倍? 以体心立方和面心立方结构证明之. [解答] 若 3 21l l l R 与hkl R 平行, hkl R 一定是321l l l R 的整数倍. 对体心立方结构, 由(1.2)式可知 32a a a +=,13a a b +=, 21a a c +=, hkl R =h a +k b +l c =(k+l )+1a (l+h )+2a (h+k )3a =p 321l l l R =p (l 11a +l 22a +l 33a ), 其中p 是(k+l )、(l+h ) 和(h+k )的公约(整)数. 对于面心立方结构, 由(1.3)式可知, 321a a a a ++-=, =b 321a a a +-, =c 321a a a -+, hkl R =h a +k b +l c =(-h+k+l )1a +(h-k+l )2a +(h+k-l )3a =p ’321l l l R = p ’(l 11a +l 22a +l 33a ), 其中p ’是(-h+k+l )、(-k+h+l )和(h-k+l )的公约(整)数. 5. 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基矢1a 、2a 和3a 重

固体物理实验方法课程作业及答案(仅供参考)

《固体物理实验方法》课程作业 所在院系: 年级专业: 姓 名: 学 号: 完成日期:2012年6月8日 一、X 射线衍射分析 1.原子比为1:1的MgO 晶体,其X 射线衍射谱(XRD )能否观察到以下衍射峰:(111)、(110)、 (001)和(002)。给出推导证明过程。 解:MgO 晶体是面心立方结构,及面心立方晶格结构。而面心立方结构的基元在(0,0,0),(0,1/2,1/2), (1/2,0, 1/2), (1/2,1/2,0)的位置具有全同的原子。其面心立方晶格的结构因子如下: 如果所有的指数123(,,)v v v 都是偶数,则s=4ρ(ρ为原子的形状因子);如果所有的指数123(,,)v v v 都是奇数,则 仍然得到s=4ρ;但是,如果123(,,)v v v 中只有一个整数为偶数,那么上式中将有两个指数项中的指数银子是-i π的 奇数倍,从而s=0。如果在123(,,)v v v 中只有一个整数为奇数,同理可知s=0。因此,对于面心立方晶格,如果整 数123(,,)v v v 不能同时取偶数或奇数,则不能发生反射。所以(111)、(002)可观测到衍射峰。而(110)、(001)不能观测到衍射峰。 2.L10相AuCu 合金点阵为四方晶格(a=b ≠c ,α=β=γ=90°)。下表为L10相AuCu 合金X 射线衍射峰位置。计算L10 相AuCu 合金的晶格参数。 解:从表格可以看出(111)峰的位置40.489θ=?,(110)峰的位置31.935θ=? 由布拉格定律:2sin d n θλ= 则有2sin31.935 1.54056d A ??= 得21.4562246, 2.0594126d A a b T d A ??===?= ,2sin 40.489 1.54056d A ? ?= 得 1.18632d A ?= 从而得出 2.0455678c A ?= 二、成分及形貌分析 1.电子与物质发生相互作用能产生哪些物理信号?解释各种物理信号产生的机理;基于这些 物理信号能发展出一系列分析方法,请论述这些分析方法的原理和应用。 电子束通过物质时发生的散射、电离、轫致辐射和吸收等过程。β射线同物质的相互作用 作为特例也属于这个范畴。具体原理及应用如下: (1)散射 电子和物质的原子核发生弹性散射时电子的运动方向受到偏折,根据所穿过物质

13级固体物理题库

一、填空 1. 固体按其微结构的有序程度可分为_______、_______和准晶体。 2. 组成粒子在空间中周期性排列,具有长程有序的固体称为_______;组成粒子在空间中的分布完全无序或仅仅具有短程有序的固体称为_________。 3. 在晶体结构中,所有原子完全等价的晶格称为______________;而晶体结构中,存在两种或两种以上不等价的原子或离子的晶格称为____________。 4晶体结构的最大配位数是____;具有最大配位数的晶体结构包括______________晶体结构和______________晶体结构。 5. 简单立方结构原子的配位数为______;体心立方结构原子的配位数为______。 6.NaCl 结构中存在_____个不等价原子,因此它是_______晶格,它是由氯离子和钠离子各自构成的______________格子套构而成的。 7. 金刚石结构中存在______个不等价原子,因此它是_________晶格,由两个_____________结构的布拉维格子沿空间对角线位移1/4的长度套构而成,晶胞中有_____个碳原子。 8. 以结晶学元胞(单胞)的基矢为坐标轴来表示的晶面指数称为________指数。 9. 满足2,2,1,2,3)0i j ij i j a b i j i j ππδ=??===?≠?r r 当时 (,当时 关系的123,,b b b r r r 为基矢,由112233h K hb h b h b =++r r r r 构成的点阵,称为_______。 10. 晶格常数为a 的一维单原子链,倒格子基矢的大小为________。 11. 晶格常数为a 的面心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 12. 晶格常数为a 的体心立方点阵初基元胞的体积为_______;其第一布里渊区的体积为_______。 13. 晶格常数为a 的简立方晶格的(010)面间距为________ 14. 体心立方的倒点阵是________________点阵,面心立方的倒点阵是________________点阵,简单立方的倒点阵是________________。 15. 一个二维正方晶格的第一布里渊区形状是________________。 16. 若简单立方晶格的晶格常数由a 增大为2a ,则第一布里渊区的体积变为原来的___________倍。

相关主题