搜档网
当前位置:搜档网 › 回归分析方法

回归分析方法

回归分析方法
回归分析方法

第八章 回归分析方法

当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。

变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;

(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;

(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。

应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MA TLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MA TLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MA TLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。

8.1 一元线性回归分析

回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现

01y x ββε=++ 2~(0,)N εσ

其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

假设对于x 的n 个值i x ,得到y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使

2201011

1

(,)[()]n n

i i i i i Q y x ββεββ====-+∑∑

取最小值。利用极值必要条件令

01

0,0Q Q ββ??==??,求01ββ,的估计值01??ββ,,从而得到回归直线01

??y x ββ=+。只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。

(1)参数的区间估计

由于我们所计算出的01??ββ,仍然是随机变量,因此要对01

??ββ,取值的区间进行估计,如果区间估计值是一个较短的区间表示模型精度较高。

(2)对误差方差的估计

设?i y

为回归函数的值,i y 为测量值,残差平方和 21

?()n

i i i Q y y

==-∑ 剩余方差2

2

Q

s n =

- (3)线性相关性的检验

由于我们采用的是一元线性回归,因此,如果模型可用的话,应该具有较好的线性关系。反映模型是否具有良好线性关系可通过相关系数R 的值及F 值观察(后面的例子说明)。 (4)一元线性回归的MATLAB 实现

MATLAB 工具箱中用命令regress 实现,其用法是: b=regress(y,x)

[b ,bint , r ,rint , s]=regress(y , x , alpha) 输入y (因变量,列向量)、x (1与自变量组成的矩阵,见下例),alpha 是显著性水平(缺省时默认0.05)。

输出01

??(,)b ββ=,注意:b 中元素顺序与拟合命令polyfit 的输出不同,bint 是01ββ,的置信区间,r 是残差(列向量),rint 是残差的置信区间,s 包含4个统计量:决定系数2

R (相关系数为R );F 值;F(1,n-2)分布大于F 值的概率p ;剩余方差2

s 的值(MATLAB7.0以后版本)。2

s 也可由程序sum(r.^2)/(n-2)计算。

其意义和用法如下:2

R 的值越接近1,变量的线性相关性越强,说明模型有效;如果满足

1(1,2)F n F α--<,则认为变量y 与x 显著地有线性关系,其中1(1,2)F n α--的值可查F 分

布表,或直接用MA TLAB 命令finv(1-α,1, n-2)计算得到;如果p α<表示线性模型可用。这三个值可以相互印证。2

s 的值主要用来比较模型是否有改进,其值越小说明模型精度越高。

8.1.2身高与腿长

例1 测得16名成年女子身高y 与腿长x 所得数据如下:

表8-1 16名女子身高(cm)腿长(cm)数据

x 88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102 y 143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164

首先利用命令plot(x,y,'r*')画出散点图,从图形可以看出,这些点大致分布在一条直线的左右,因此,可以考虑一元线性回归。可编制程序如下:

y=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]; x=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]; n=16;

X=[ones(n,1),x'];

[b,bint,r,rint,s]=regress(y',X,0.05); b,bint,s,

rcoplot(r,rint) 运行后得到

b = 31.7713 1.2903 bint = 12.3196 51.2229 1.0846 1.4960

s = 0.9282 180.9531 0.0000 3.1277

2R =0.9282,由finv(0.95,1,14)= 4.6001,即1(1,2)F n α--= 4.6001

可以通过残差图发现,第二个数据为奇异数据,去掉该数据后运行后得到 b = 17.6549 1.4363 bint = -0.5986 35.9083 1.2445 1.6281

s = 0.9527 261.6389 0.0000 1.9313

2R =0.9527,由finv(0.95,1,13)= 4.6672,即1(1,2)F n α--= 4.6672

说明模型有效且有改进,因此我们得到身高与腿长的关系17.6549 1.4363y x =+。 当然,也可以利用直线拟合得到同一方程。只不过不能得到参数置信区间和对模型进行检验。拟合程序如下:

y=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]; x=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102];

a=polyfit(x,y,1) temp=polyval(a,x); plot(x,y,'r*',x,temp)

注意:函数相同,但输出一次函数参数顺序与回归分析(升幂排列)中不同。另一个差别是拟合不能发现奇异数据。

8.2 多元线性回归分析

8.2.1 多元线性回归模型的建模步骤及其MATLAB 实现

如果根据经验和有关知识认为与因变量有关联的自变量不止一个,那么就应该考虑用最小二乘准则建立多元线性回归模型。

设影响因变量y 的主要因素(自变量)有m 个,记1(,,)m x x x =,假设它们有如下

的线性关系式:

011m m y x x βββε

=++

++ , 2

~(0,)

N εσ

如果对变量y 与自变量12,,,m x x x 同时作n 次观察(n>m )得n 组观察值,采用最小

二乘估计求得回归方程

011????k m

y x x βββ=+++.

建立回归模型是一个相当复杂的过程,概括起来主要有以下几个方面工作(1)根据研

究目的收集数据和预分析;(2)根据散点图是否具有线性关系建立基本回归模型;(3)模型的精细分析;(4)模型的确认与应用等。

收集数据的一个经验准则是收集的数据量(样本容量)至少应为可能的自变量数目的6~10倍。在建模过程中首先要根据所研究问题的目的设置因变量,然后再选取与该因变量有统计关系的一些变量作为自变量。我们当然希望选择与问题关系密切的变量,同时这些变量之间相关性不太强,这可以在得到初步的模型后利用MATLAB 软件进行相关性检验。下面通过一个案例探讨MA TLAB 软件在回归分析建模各个环节中如何应用。 多元线性回归的MATLAB 实现

仍然用命令regress(y , X),只是要注意矩阵X 的形式,将通过如下例子说明其用法。

8.2.2 某类研究学者的年薪 1. 问题

例2 工薪阶层关心年薪与哪些因素有关,以此可制定出它们自己的奋斗目标。

某科学基金会希望估计从事某研究的学者的年薪Y 与他们的研究成果(论文、著作等)的质量指标X 1、从事研究工作的时间X 2、能成功获得资助的指标X 3之间的关系,为此按一定的实验设计方法调查了24位研究学者,得到如下数据(i 为学者序号):

表8-2 从事某种研究的学者的相关指标数据

i

1 2 3 4 5 6 7 8 9 10 11 12 1i x 3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 2i x 9 20 18 33 31 13 25 30 5 47 25 11 3i x 6.1

6.4

7.4

6.7

7.5

5.9

6.0

4.0

5.8

8.3

5.0

6.4

i y

33.2 40.3 38.7 46.8 41.4 37.5 39.0 40.7 30.1 52.9 38.2 31.8

i 13 14 15 16 17 18 19 20 21 22 23 24 1i x 8.0 6.5 6.6 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9 2i x 23 35 39 21 7 40 35 23 33 27 34 15 3i x 7.6

7.0

5.0

4.4

5.5

7.0

6.0

3.5

4.9

4.3

8.0

5.8

i y

43.3 44.1 42.5 33.6 34.2 48.0 38.0 35.9 40.4 36.8 45.2 35.1

试建立Y 与123,,X X X 之间关系的数学模型,并得出有关结论和作统计分析。

2. 作出因变量Y 与各自变量的样本散点图

作散点图的目的主要是观察因变量Y 与各自变量间是否有比较好的线性关系,以便选择恰当的数学模型形式。下图分别为年薪Y 与成果质量指标1X 、研究工作时间2X 、获得资助的指标3X 之间的散点图,

subplot(1,3,1),plot(x1,Y,'g*'), subplot(1,3,2),plot(x2,Y,'k+'), subplot(1,3,3),plot(x3,Y,'ro'),

从图可以看出这些点大致分布在一条直线旁边,因此,有比较好的线性关系,可以采用线性回归。

0510

30

35404550

55

050

30

3540455055

0510

30

35

40

45

50

55

Y 与x1的散点图 Y 与x2的散点图 Y 与x3的散点图

图8.1 因变量Y 与各自变量的样本散点图

3. 利用MATLAB 统计工具箱得到初步的回归方程

设回归方程为:0112333

?????y x x x ββββ=+++.

建立m-文件输入如下程序数据:

x1=[3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 8.0 6.5 6.5 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9]; x2=[9 20 18 33 31 13 25 30 5 47 25 11 23 35 39 21 7 40 35 23 33 27 34 15];

x3=[6.1 6.4 7.4 6.7 7.5 5.9 6.0 4.0 5.8 8.3 5.0 6.4 7.6 7.0 5.0 4.0 5.5 7.0 6.0 3.5 4.9 4.3 8.0 5.0]; Y=[33.2 40.3 38.7 46.8 41.4 37.5 39.0 40.7 30.1 52.9 38.2 31.8 43.3 44.1 42.5 33.6 34.2 48.0 38.0 35.9 40.4 36.8 45.2 35.1]; n=24; m=3;

X=[ones(n,1),x1',x2',x3'];

[b,bint,r,rint,s]=regress(Y',X,0.05); b,bint,r,rint,s,

运行后即得到结果如表8-3所示。

表8-3 对初步回归模型的计算结果

回归系数

回归系数的估计值

回归系数的置信区间 0β 18.0157 [13.9052 22.1262] 1β

1.0817 [0.3900 1.7733] 2β 0.3212 [0.2440 0.3984] 3β

1.2835

[0.6691 1.8979]

2R =0.9106 F=67.9195 p<0.0001 2s = 3.0719

计算结果包括回归系数b=(0123,,,ββββ)=(18.0157, 1.0817 , 0.3212 , 1.2835),且置信区间均不包含零点,;残差及其置信区间;统计变量stats ,它包含四个检验统计量:相关系数的平方

2R ,假设检验统计量F,与F 对应的概率p ,2s 的值(7.0以前版本2s 也可由程序

sum(r.^2)/(n-m-1)计算)。因此我们得到初步的回归方程为:

123?18.0157 1.08170.3212 1.2835y

x x x =+++

由结果对模型的判断:

回归系数置信区间不包含零点表示模型较好,残差在零点附近也表示模型较好,接着就是利用检验统计量R,F,p 的值判断该模型是否可用。

(1)相关系数R的评价:一般地,相关系数绝对值在0.8~1范围内,可判断回归自变量与因变量具有较强的线性相关性。本例R的绝对值为0.9542,表明线性相关性较强。 (2)F 检验法:当1(,1)F F m n m α->--,即认为因变量y 与自变量12,,,m x x x 之间显

著地有线性相关关系;否则认为因变量y 与自变量12,,

,m x x x 之间线性相关关系不显著。

本例 F=67.919>10.05(3,20)F -= 3.10 (查F 分布表或输入命令finv(0.95,3,20)计算)。 (3)p 值检验:若p α<(α为预定显著水平),则说明因变量y 与自变量12,,

,m x x x 之

间显著地有线性相关关系。本例输出结果,p<0.0001,显然满足P<α=0.05。

以上三种统计推断方法推断的结果是一致的,说明因变量y 与自变量之间显著地有线性相关关系,所得线性回归模型可用。2

s 当然越小越好,这主要在模型改进时作为参考。

4. 模型的精细分析和改进 (1) 残差分析

残差?(1,2,,)i i i e y y i n =-=,是各观测值i y 与回归方程所对应得到的拟合值?i y

之差,实际上,它是线性回归模型中误差ε的估计值。2

~(0,)N εσ即有零均值和常值方差,利用残差的这种特性反过来考察原模型的合理性就是残差分析的基本思想。利用MA TLAB

进行残差分析则是通过残差图或时序残差图。残差图是指以残差为纵坐标,以其他指定的量为横坐标的散点图。主要包括:(1)横坐标为观测时间或观测值序号;(2)横坐标为某个自变量的观测值;(3)横坐标为因变量的拟合值。通过观察残差图,可以对奇异点进行分析,还可以对误差的等方差性以及对回归函数中是否包含其他自变量、自变量的高次项及交叉项等问题给出直观的检验。

以观测值序号为横坐标,残差为纵坐标所得到的散点图称为时序残差图,画出时序

残差图的MATLAB 语句为rcoplot(r,rint)(图8.2)。可以清楚看到残差大都分布在零的附近,因此还是比较好的 ,不过第4、12、19这三个样本点的残差偏离原点较远,如果作为奇异点看待,去掉后重新拟合,则得回归模型为:

123?19.08080.86160.3176 1.3463y

x x x =+++

且回归系数的置信区间更小均不包含原点,统计变量stats 包含的三个检验统计量:相关系数的平方2

R ,假设检验统计量F,概率P ,分别为:0.9533 ; 115.5586 ; 0.0000 ,比较可知R ,F 均增加模型得到改进。

图8.2 时序残差图

(2) 变量间的交互作用讨论

变量间的交互作用包括:不同自变量之间的交互作用以及同一变量的自相关性。

不同自变量之间的交互作用:有时,在实验中不仅单因素对指标有影响,而且因素间还会联合起来对指标产生影响,常称这种联合作用为交互作用。处理两个因素间交互作用的一个简单办法是加入这两个自变量的乘积项。本文案例如果加入交互项则为:

0112333412513623

????????y x x x x x x x x x βββββββ=++++++

用表8.2的数据,利用MA TLAB 统计工具箱得到回归系数分别为:27.0727 ,1.1147,

-0.0215 ,-0.1843 ,0.0033 ,-0.0054 ,0.0511 。但它们的置信区间均包含原点,其他指标也不理想,因此,本例中其交互作用并不显著,该模型不如前面两个模型好。

自相关性的诊断和处理:若数据是以时间为序的,称为时间序列数据。在时间序列数据

中,同一变量的顺序观测值之间出现的相关现象称为自相关。一旦数据中存在这种自相关序列,如果仍采用普通的回归模型直接处理,将产生不良后果,使预测失去意义。自相关的诊断主要有图示检验法、相关系数法和DW 检验法。图示检验法是通过绘制残差t e 散点图观察,如果散布点1(,),2,3,

,t t e e t n -=大部分点落在第Ⅰ,Ⅲ象限,表明存在着正的序列

相关;如果大部分点落在第Ⅱ,Ⅳ象限,表明存在着负的序列相关。对DW 检验法可以利用MA TLAB 软件编程计算统计量:

122

2

122??2(1),n

t t t n

n

t t t t e e

DW e e ρ

ρ-=-==≈-=∑∑∑,

然后查阅DW 检验上下界表,以决定模型的自相关状态。

当一个回归模型存在序列相关性时,首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应增加自变量;如果以上方法都不能消除序列相关性,则需要采用差分法、迭代法等处理,更详细内容参见相关概率统计参考文献。

8.2.3 逐步回归方法建模

逐步回归就是一种从众多自变量中有效地选择重要变量的方法。逐步回归的基本思路是,先确定一个包含若干自变量的初始集合,然后每次从集合外的变量中引入一个对因变量影响最大的,再对集合中的变量进行检验,从变得不显著的变量中移出一个影响最小的,依此进行,直到不能引入和移出为止。引入和移出都以给定的显著性水平为标准。

MATLAB 统计工具箱中逐步回归的命令是stepwise ,它提供了一个人机交互式画面,通过此工具可以自由地选择变量进行统计分析。该命令的用法是:

stepwise(X , Y , inmodel , alpha)

其中X 是自变量数据,排成n m ?矩阵(m 为自变量个数,n 为每个变量的数据量),Y 是因变量数据,排成1n ?向量,inmodel 是自变量初始集合的指标,缺省时为全部自变量,alpha 为显著水平,缺省时为0.05。

运行stepwise 命令时产生图形窗口:Stepwise Plot , Stepwise Table , Stepwise History.当鼠标移到图形某个区域时,鼠标点击后产生交互作用。Stepwise Plot 窗口中的虚线表示回归系数的置信区间包含零点,即该回归系数与零无显著差异,一般应将该变量移去;实线则表明该回归系数与零有显著差异,应保留在模型中(蓝色表示该变量已进入模型,红色表示该变量已移出模型)。引入和移出变量还可参考Stepwise History 窗口中剩余标准差RMSE 是否在下降,剩余标准差RMSE 最小的就是最好的模型。Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差RMSE 、相关系数R-square 、F 值、与F 对应的概率。

关于本节案例2,如果引入新的自变量412513623,,x x x x x x x x x === . 也可以采用逐步回归法解决,源程序如下:

A=[3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 8.0 6.5 6.5 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9;9 20 18 33 31 13 25 30 5 47 25 11 23 35 39 21 7 40 35 23 33 27 34 15;6.1 6.4 7.4 6.7 7.5 5.9 6.0 4.0

5.8 8.3 5.0

6.4

7.6 7.0 5.0 4.0 5.5 7.0 6.0 3.5 4.9 4.3

8.0 5.0]';

Y=[33.2 40.3 38.7 46.8 41.4 37.5 39.0 40.7 30.1 52.9 38.2 31.8 43.3 44.1 42.5 33.6 34.2 48.0 38.0 35.9 40.4 36.8 45.2 35.1]'; x1=A(:,1); x2=A(:,2); x3=A(:,3); x4=x1.*x2; x5=x1.*x3; x6=x2.*x3;

X=[A,x4,x5,x6]; stepwise(X,Y)

运行并按上述步骤操作后可以得到本文前面线性回归相同的结论,即不含交互项的模型是最好的。在此只介绍操作过程,其交互界面,只要在MATLAB 软件上一试便知。 8.2.4 多项式回归

多项式回归仍然属于多元线性回归,可以是一元多项式回归或多元多项式回归。 一元多项式回归模型的一般形式为

01m m y x x βββε=++++

用MA TLAB 求解一元多项式回归,除了使用命令polyfit(x,y,m)外,还可以使用如下命令: Polytool(x,y,m,alpha)

输入x,y,m 同命令polyfit ,alpha 是显著性水平(默认0.05),则输出一个交互式画面,画面显示回归曲线及其置信区间,通过图左下方的export 下拉式菜单,还可以输出回归系数估计值及其置信区间、残差等。

下面通过一个用多元多项式回归的实例说明什么时候用多项式回归以及如何通过MATLAB 软件进行处理。

例3 为了了解人口平均预期寿命与人均国内生产总值和体质得分的关系,我们查阅了国家统计局资料,北京体育大学出版社出版的《2000国民体质监测报告》,表8-4是我国大陆31个省市的有关数据。我们希望通过这几组数据考察它们是否具有良好的相关关系,并通过它们的关系从人均国内生产总值(可以看作反映生活水平的一个指标)、体质得分预测其寿命可能的变化范围。体质是指人体的质量,是遗传性和获得性的基础上表现出来的人体形态结构,生理机能和心理因素综合的、相对稳定的特征。体质是人的生命活动和工作能力的物质基础。它在形成、发展和消亡过程中,具有明显的个体差异和阶段性。中国体育科学学会体质研究会研究表明,体质应包括身体形态发育水平、生理功能水平、身体素质和运动能力发展水平、心理发育水平和适应能力等五个方面。目前,体质的综合评价主要是形态、机能和身体素质三类指标按一定的权重进行换算而得。

表8-4 31个省市人口预期寿命与人均国内生产总值和体质得分数据

序号

预期寿命

体质得分

人均产值

序号

预期寿命

体质得分

人均产值

序号

预期寿命

体质得分

人均产值

1 71.54 66.165 12857 1

2 65.49 56.775 8744 2

3 69.87 64.305 17717 2 73.92 71.25 24495 13 68.95 66.01 1149

4 24 67.41 60.48

5 15205 3 73.27 70.135 24250 14 73.34 67.97 20461 25 78.14

70.29

70622

4 71.20 65.12

5 10060 15 65.9

6 62.9 5382 26 76.10 69.345 47319 5 73.91 69.99 29931 16 72.3

7 66.1 19070 27 74.91 68.415 40643 6 72.54 65.765 18243 17 70.07

64.51

10935 28 72.91 66.495 11781 7 70.66 67.29 10763 18 72.55 68.385 22007 29 70.17 65.765 10658 8 71.85 67.71 9907 19 71.65 66.205

13594 30 66.03 63.28 11587 9 71.08 66.525 13255 20 71.73, 65.77

11474 31 64.37 62.84 9725 10 71.29,

67.13 9088

21

73.10 67.065 14335 11 74.70

69 .505

33772 22

67.47 63.605

7898

模型的建立和求解 作表8-4数据12(,),(,)x y x y 的散点图如图8.3

图8.3 预期寿命与人均国内生产总值和体质得分的散点图

从图8.3可以看出人口预期寿命y 与体质得分2x 有较好的线性关系,y 与人均国内生产总值1x 的关系难以确定,我们建立二次函数的回归模型。

一般的多元二项式回归模型可表为 0111,m m jk j k j k m

y x x x x ββββε≤≤=++

++

+∑

MATLAB 统计工具箱提供了一个很方便的多元二项式回归命令:

Rstool(x,y, 'model',alpha)

输入x 为自变量(n ×m 矩阵),y 为因变量(n 维向量),alpha 为显著水平,model 从下列4个模型中选择一个:

linear (只包含线性项)

purequadratic (包含线性项和纯二次项) interaction (包含线性项和纯交互项) quadratic (包含线性项和完全二次项)

输出一个交互式画面,对例3,编程如下:

y=[71.54 73.92 73.27 71.20 73.91 72.54 70.66 71.85 71.08 71.29,74.70 65.49 68.95 73.34 65.96 72.37 70.07 72.55 71.65 71.73,73.10 67.47 69.87 67.41 78.14 76.10 74.91 72.91 70.17 66.03 64.37];

x1=[12857 24495 24250 10060 29931 18243 10763 9907 13255 9088 33772 8744 11494 20461 5382 19070 10935 22007 13594 11474 14335 7898 17717 15205 70622 47319 40643 11781 10658 11587 9725];

x2=[66.165 71.25 70.135 65.125 69.99 65.765 67.29 67.71 66.525 67.13,69.505 56.775 66.01 67.97 62.9 66.1 64.51 68.385 66.205 65.77,67.065 63.605 64.305 60.485 70.29 69.345 68.415 66.495 65.765 63.28 62.84]; x=[x1',x2'];

rstool(x,y','purequadratic')

得到一个如图8.4的交互式画面

图8.4 预期寿命与人均国内生产总值和体质得分的一个交互式画面

左边一幅图形是2x 固定时的曲线1()y x 及其置信区间,右边一幅图形是1x 固定时的曲线

2()y x 及其置信区间。移动鼠标可改变1x ,2x 的值,同时图左边给出y 的预测值及其置信

区间。如输入1x =128757,2x =66.165,则y =70.6948,其置信区间70.6948±1.1079。 图的左下方有两个下拉式菜单,上面的菜单Export 用于输出数据(包括:回归系数parameters,残差residuals,剩余标准差RMSE 等), 在MA TLAB 工作空间中得到有关数据。通过下面的菜单在上述4个模型中变更选择,最后确定RMSE 值较小的模型。例3则是包含线性项和完全二次项(quadratic )的模型最佳,即

22

011223124152y x x x x x x ββββββε=++++++

剩余标准差为1.2622,因此,所得回归模型为:

5922

121212195.360.0045 5.5753 6.733810 3.3529100.055556y x x x x x x --=+--?+?+

利用此模型我们可以根据国内生产总值及体质得分,预测寿命。

8.3 非线性回归分析

8.3.1 非线性最小二乘拟合

线性最小二乘拟合与线性回归中的“线性”并非指y 与x 的关系,而是指y 是系数

01,ββ或01(,,

,)m ββββ=的线性函数。拟合如201y x ββ=+的函数仍然是最小二乘拟

合;如果拟合如10x

y e

ββ=的曲线,y 对01,ββ是非线性的,但取对数后ln y 对系数01

,ββ是线性的,属于可化为线性回归的类型。下面讨论非线性拟合的情形。

非线性最小二乘拟合问题的提法是:已知模型

101(,),(,,),(,,,)m k y f x x x x βββββ===,

其中f 对β是非线性的,为了估计参数β,收集n 个独立观测数据

1(,),(,

)i i i i im x y x x x =(1,,),i n n m =>。记拟合误差()(,)i i i y f x εββ=-,求β使误

差的平方和

221

1

()()[(,)]n n

i i i i i Q y f x βεββ====-∑∑

最小。

作为无约束非线性规划的特例,解非线性最小二乘拟合可用MA TLAB 优化工具箱命令lsqnonlin 和lsqcurvefit 。 8.3.2 非线性回归模型

非线性回归模型记作

101(,),(,

,),(,,,)m k y f x x x x βεββββ=+==

其中f 对回归系数β是非线性的,2

~(0,)N εσ。求得回归系数β的最小二乘估计。 MATLAB 统计工具箱中非线性回归的命令是: [b,R,J]=nlinfit(x,y, 'model',bo)

输入x 是自变量数据矩阵,每列一个向量;y 是因变量数据向量;model 是模型的函数名(M 文件),形式为(,)y f b x =,b 为待估系数β;b0是回归系数β的初值。输出b 是β的估计值,R 是残差,J 是用于估计预测误差的Jacobi 矩阵。这个命令是依据高斯—牛顿法求解的。

将上面的输出作为命令 Bi=nlparci(b,R,J) 的输入,得到的bi 是回归系数β的置信区间。用命令

nlintool(x,y, 'model',b)

可以得到一个交互式画面,其内容和用法与多项式回归的Polytool 类似。 例4 酶促反应速度与底物浓度

酶促反应动力学简称酶动力学,主要研究酶促反应速度与底物(即反应物)浓度以及其它因素的关系。在底物浓度很低时酶促反应是一级反应;当底物浓度处于中间范围时,是混合级反应;当底物浓度增加时,向零级反应过渡。某生化系学生为了研究嘌呤霉素在某项酶促反应中对反应速度与底物浓度之间关系的影响,设计了两个实验,一个实验中所使用的酶

是经过嘌呤霉素处理的,而另一个实验所用的酶是未经嘌呤霉素处理的。所得实验数据见表8-5。试根据问题的背景和这些数据建立一个合适的数学模型,来反映这项酶促反应的速度与底物浓度以及嘌呤霉素处理与否之间的关系。

表8-5 嘌呤霉素实验中的反应速度与底物浓度数据

底物浓度(ppm )

0.02 0.06

0.11

0.22 0.56 1.10

反应

速度 未处理 67 51 84 86 98 115 131 124 144 158 160 / 处理 76 47 97

107

123

139 159

152 191

201 207 200

分析与假设

记酶促反应的速度为y ,底物浓度为x ,二者之间的关系写作(,)y f x β=,其中β为参数(β可为一向量)。由酶促反应的基本性质可知,当底物浓度很低时酶促反应是一级反应,此时反应速度大致与底物浓度成正比;而当底物浓度很大,渐近饱和时,反应速度将趋于一个固定值(即零级反应)。下面的两个简单模型具有这种性质:

Michaelis-Menten 模型

(,)y f x x

x

12β=β=

β+

指数增长模型

(,)(1)x y f x e 2-β1=β=β-

非线性模型的求解

首先作出给出的经过嘌呤霉素处理和未经处理的反应速度与底物浓度的散点图,可以看出,上述两个模型与实际数据得到的散点图是大致符合的。

我们将主要对前一模型即Michaelis-Menten 模型进行详细的分析。首先对经过嘌呤酶素处理的实验数据进行分析,在此基础上,再来讨论是否有更一般的模型来统一刻画处理前后的数据,进而揭示其中的联系。

我们用非线性回归的方法直接估计模型的参数12ββ,,模型的求解可利用MATLAB 统计工具箱中的命令进行,使用格式为:

[beta,R,J]=nlinfit(x,y,'model',beta0)

其中输入x 为自变量数据矩阵,每列一个变量;y 为因变量数据向量;model 为模型的M 文件名,M 函数形式为y=f (beta,x),beta 为待估计参数;beta0为给定的参数初值。输出beta 为参数估计值,R 为残差,J 为用于估计预测误差的Jacobi 矩阵。参数beta 的置信区间用命令 nlparci(beta,R,J)得到。

首先建立函数M 文件huaxue.m ,非线性模型参数估计的源程序如下: x=[0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10 1.10]; y=[76 47 97 107 123 139 159 152 191 201 207 200]; beta0=[195.8027 0.04841];

[beta,R,J]=nlinfit(x,y,'huaxue',beta0); betaci=nlparci(beta,R,J);

beta,betaci

yy=beta(1)*x./(beta(2)+x); plot(x,y,'o',x,yy,'m+'),pause nlintool(x,y,'huaxue',beta) 得到的数值结果见表8-6。

Nlintool 用于给出一个交互式画面,可以得到因变量y 的预测值和预测区间,左下方的Export 可向工作区传送剩余标准差等数据。

表8-6 模型参数的估计结果

参 数

参 数 估 计 值 置 信 区 间 1β 212.6818 [197.2028 228.1608] 2β

0.0641

[0.0457 0.0826]

从上面的结果可以知道,对经过嘌呤霉素处理的实验数据,在用Michaelis-Menten 模型进行回归分析时,最终反应速度为1β=212.6818,反应的半速度点(达到最终反应速度的一半时的底物浓度x 值)恰为2β=0.06412。

混合反应模型

由酶动力学知识我们知道,酶促反应的浓度依赖于底物浓度,并且可以假定,嘌呤霉素的处理会影响最终反应速度参数1β,而基本上不影响半速度参数2β.表8-5的数据也印证了这种看法。Michaelis-Menten 模型的形式可以分别描述经过嘌呤霉素处理和未处理的反应速度与底物浓度的关系(两个模型的参数β会不同),为了在同一个模型中考虑嘌呤霉素处理的影响,我们采用对未经嘌呤霉素处理的模型附加增量的方法,考察如下的混合反应模型:

11212221

(,)))y f x x x x x +(β=β=

(βγ+γ+

其中自变量

1

x 为底物浓度, 2

x 为一示性变量(0-1变量), 用来表示是否经嘌呤霉素处理,

2

x =1表示经过处理, 2

x =0表示未经处理;参数1

β是未处理的反应的最终反应速度,1

γ是经

处理后最终反应速度的增长值, 2β是未经处理的反应的半速度点, 2γ是经处理后反应的半速度点的增长值。

混合模型的求解和分析

为了给出初始迭代值,从实验数据我们注意到,未经处理的反应速度的最大实验值为

160,经过处理的最大实验值为207,于是可取参数初值00

11170,60βγ==;又从数据可大

致估计未经处理的半速度点约为0.05,经过处理的半速度点约为0.06,我们取

00

220.05,0.01βγ==。

建立函数M 文件model.m function yhat=model(beta0,x) a=beta0(1); b=beta0(2); c=beta0(3); d=beta0(4); x1=x(:,1); x2=x(:,2);

yhat=((a+c*x2).*x1)./(b+d*x2+x1); 建立M 文件meicu.m

x=[0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10 1.10 0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10 1.10; 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0]';

y=[76 47 97 107 123 139 159 152 191 201 207 200 67 51 84 86 98 115 131 124 144 158 160 170]';

beta0=[170 0.05 60 0.01];

[beta,R,J]=nlinfit(x,y,'model',beta0); betaci=nlparci(beta,R,J); beta,betaci a=beta(1); b=beta(2); c=beta(3); d=beta(4); x1=x(:,1); x2=x(:,2);

yy=((a+c*x2).*x1)./(b+d*x2+x1);

%yy=((beta(1,:)+beta(3,:)*x(2)).*x(1))./(beta(2,:)+beta(4,:)*x(2)+x(1)); plot(x1,y,'o',x1,yy,'+'),pause nlintool(x,y,'model',beta) 运行后即得如下表8-7结果

表8-7 混合模型参数的估计结果

参数

参数估计值 置信区间

1β 165.3259 [152.1100 178.5418] 2β 0.0524 [0.0347 0.0700] 1γ 47.3574 [28.510 66.6637] 2γ

0.0118

[-0.0126 0.0361]

从表8-7可以发现,2γ的置信区间包含零点,这表明参数2γ对因变量y 的影响并不显著,即:嘌呤霉素的作用不影响半速度参数。因此,可以考虑下面的模型:

21

1

()(,)x x y f x x 112β+γ=β=

β+

可以采用类似方法计算和分析,所得结果统计指标差不多,不过显然最后一个模型具有更为简洁的形式。

相关分析与回归分析的异同

问:请详细说明相关分析与回归分析的相同与不同之处 相关分析与回归分析都是研究变量相互关系的分析方法,相关分析是回归分析的基础,而回归分析则是认识变量之间相关程度的具体形式。 下面分为三个部分详细描述两种分析方法的异同: 第一部分:相关分析 一、相关的含义与种类 (一)相关的含义 相关是指自然与社会现象等客观现象数量关系的一种表现。 相关关系是指现象之间确实存在的一定的联系,但数量关系表现为不严格相互依存关系。即对一个变量或几个变量定一定值时,另一变量值表现为在一定范围内随机波动,具有非确定性。如:产品销售收入与广告费用之间的关系。 (二)相关的种类 1. 根据自变量的多少划分,可分为单相关和复相关 2. 根据相关关系的方向划分,可分为正相关和负相关 3. 根据变量间相互关系的表现形式划分,线性相关和非线性相关 4.根据相关关系的程度划分,可分为不相关、完全相关和不完全相关 二、相关分析的意义与内容 (一)相关分析的意义 相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。其目的是揭示现象之间是否存在相关关系,确定相关关系的表现形式以及确定现象变量间相关关系的密切程度和方向。 (二)相关分析的内容 1. 明确客观事物之间是否存在相关关系 2. 确定相关关系的性质、方向与密切程度 三、直线相关的测定 (一)相关表与相关图 1. 相关表 在定性判断的基础上,把具有相关关系的两个量的具体数值按照一定顺序平行排列在一张表上,以观察它们之间的相互关系,这种表就称为相关表。 2. 相关图

把相关表上一一对应的具体数值在直角坐标系中用点标出来而形成的散点图则称为相关图。利用相关图和相关表,可以更直观、更形象地表现变量之间的相互关系。 (二)相关系数 1. 相关系数的含义与计算 相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。相关系数的理论公式为: y x xy r δδδ2= (1)xy 2δ 协方差 x δ x 的标准差 y δ y 的标准差 (2)xy 2δ 协方差对相关系数r 的影响,决定:???<>数值的大小正、负)或r r r (00 简化式 ()()2222∑∑∑∑∑∑∑-?--= y y n x x n y x xy n r 变形:分子分母同时除以2 n 得 r =???????????? ??-???????????? ??-?-∑∑∑∑∑∑∑2222n y n y n x n x n y n x n xy =()[]()[]2222y y x x y x xy -*-?-=y x y x xy δδ-?- n x x x ∑-=2)(δ=()[]n x x x x ∑+?-222=()222x n x x n x +??-∑∑ = () 22x x - 2. 相关系数的性质

回归分析方法

第八章 回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。 假设对于x 的n 个值i x ,得到 y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使 取最小值。利用极值必要条件令 01 0,0Q Q ββ??==??,求01ββ,的估计值01??ββ,,从而得到回归直线01 ??y x ββ=+。只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。

总结:线性回归分析的基本步骤

总结:线性回归分析的基本 步骤 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线性回归分析的基本步骤 步骤一、建立模型 知识点: 1、总体回归模型、总体回归方程、样本回归模型、样本回归方程 ①总体回归模型:研究总体之中自变量和因变量之间某种非确定依赖关系的计量模型。Y X U β=+ 特点:由于随机误差项U 的存在,使得Y 和X 不在一条直线/平面上。 例1:某镇共有60个家庭,经普查,60个家庭的每周收入(X )与每周消费(Y )数据如下: 作出其散点图如下:

②总体回归方程(线):由于假定0EU =,因此因变量的均值与自变量总处于一条直线上,这条直线()|E Y X X β=就称为总体回归线(方程)。 总体回归方程的求法:以例1的数据为例 由于01|i i i E Y X X ββ=+,因此任意带入两个X i 和其对应的E (Y |X i )值,即可求出01ββ和,并进而得到总体回归方程。

如将()()222777100,|77200,|137X E Y X X E Y X ====和代入 ()01|i i i E Y X X ββ=+可得:0100117710017 1372000.6ββββββ=+=?????=+=?? 以上求出01ββ和反映了E (Y |X i )和X i 之间的真实关系,即所求的总体回归方程为:()|170.6i i i E Y X X =+,其图形为: ③样本回归模型:总体通常难以得到,因此只能通过抽样得到样本数据。如在例1中,通过抽样考察,我们得到了20个家庭的样本数据: 那么描述样本数据中因变量Y 和自变量X 之间非确定依赖关系的模型 ?Y X e β =+就称为样本回归模型。

第二章回归分析概述

第二章回归分析概述 回归分析是寻求隐藏在随机现象中的统计规律的理论和方法,是经济计量学的最基本的方法论基础。讨论回归模型在经典假设条件下的参数估计、假设检验和估计量的统计性质,以及经典假设不完全满足条件下,有关问题的处理是理论经济计量学的任务。为了对回归分析理论和方法有一个全面深入的理解,本章先对回归分析的基本概念和性质予以介绍,在以后各章顺次展开以上问题的讨论。 第一节回归分析的性质 一、“回归”一词的现代含义 回归一词最早是生物统计学家高尔顿(Francis Galton)引入的。高尔顿在对人类身高之类的遗传特性的研究中,发现了他称之为“向平均回归”的现象。虽然客观上存在一种趋势,即父母高,子女也高;父母矮,子女也矮,但是给定父母的身高,子女的平均身高却有“回归”到全体人口的平均身高的倾向。也就是说,尽管父母双亲都异常高或异常矮,而子女的身高却有趋向人口总体平均身高的趋势。高尔顿的普通回归定律也被另一位统计学家皮尔逊(Karl Pearson)证实。高尔顿的兴趣在于发现人口的身高为什么有一种稳定性。这是“回归”一词的初始含义。 然而,对“回归”一词的现代解释却与初始含义有很大不同,其现代含义是回归分析研究一个被解释变量对另一个或多个解释变量的变量依存关系,其用意在于通过后者(在重复抽样中)的已知或设定值,去估计或预测前者的(总体)均值。 比如,对于父母身高与子女身高的关系研究,人们会发现,对于设定的每一个父辈的身高,都有一个儿辈的假想人口总体的身高分布与之对应,随着父辈身高的增加,儿辈的平均身高也增加。若把这种父辈身高与儿辈平均身高的一一对应关系绘制在平面坐标图上,可以得到一条直线,这条直线就叫做回归线,它表明儿辈的平均身高如何随父辈的身高变化。从现代回归的观点出发,人们关心的是给定父辈的身高情况下,如何发现儿辈平均身高的变化。也就是说,人们关心的是一旦知道了父辈的身高,如何估计预测儿辈的平均身高。 经济学家可以利用回归分析研究个人消费支出对其实际可支配收入的依从关系。通过回归分析可估计边际消费倾向(MPC),而边际消费倾向说明人们每增加一个单位的实际可支配收入而引起的消费支出的平均变化。 农业经济学家可利用回归分析研究农作物收成对施肥量,降雨量,气温等的依赖关系。这种分析能使他用给定的解释变量的信息预测或预报农作物的平均收成。 劳动经济学家利用回归分析研究货币工资变化率对失业率的依存关系,著名的菲利普斯曲线就是研究这一依存关系的成果,劳动经济学家经常利用这一曲线预测在给定的某个失业率下货币工资的平均变化。由于工资的增长会引起物价的上涨,因此通过这一曲线还可以研究通货膨胀、关于经济扩张过程方面的问题。 由货币银行学的知识可知,若其它条件不变,通货膨胀率愈高,人们愿意以货币形式保存的收入比例越低。对这种关系作回归分析,使金融学家能够预测在各种通货膨胀率下人们愿意以货币形式保存的平均收入比例。

应用回归分析

第五章 自变量选择对回归参数的估计有何影响 答:全模型正确而误用选模型时,我们舍去了m-p 个自变量,用剩下的p 个自变量去建立选模型,参数估计值是全模型相应参数的有偏估计。选模型正确而误用全模型时,参数估计值是选模型相应参数的有偏估计。 自变量选择对回归预测有何影响 (一)全模型正确而误用选模型的情况 估计系数有偏,选模型的预测是有偏的,选模型的参数估计有较小的方差,选模型的预测残差有较小的方差,选模型预测的均方误差比全模型预测的方差更小。 (二)选模型正确而误用全模型的情况 全模型的预测值是有偏的,全模型的预测方差的选模型的大,全模型的预测误差将更大。 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣 答:应该用自由度调整复决定系数达到最大的准则。当给模型增加自变量时,复决定系数也随之增大,然而复决定系数的增大代价是残差自由度的减小,自由度小意味着估计和预测的可靠性低。应用自由度调整复决定系数达到最大的准则可以克服样本决定系数的这一缺点,把2 R 给予适当的修正,使得只有加入“有意义”的变量时,经过修正的样本决定系数才会增加,从而提高预测的精度。 试述前进法的思想方法。 解:主要是变量由少到多,每次增加一个,直至没有可引入的变量为止。 具体做法是:首先将全部m 个自变量,分别对因变量y 建立m 个一元线性回归方程,并分别计算这m 个一元回归方程的m 个回归系数的F 检验值,记为 111 12{,,,} m F F F ,选其最大者 1111 12max{,, ,} j m F F F F =,给定显著性水平α,若 1(1,2) j F F n α≥-,则首先将 j x 引入回 归方程,假设 1 j x x =。其次,将 12131(,),(,),,(,)m y x x x x x x 分别与建立m-1个二元线性 回归方程,对这m-1个回归方程中 23,, ,m x x x 的回归系数进行F 检验,计算F 值,记为 222 23{,, ,} m F F F ,选其最大的记为 2222 23max{,, ,} j m F F F F =,若 2(1,3) j F F n α≥-,则 接着将j x 引入回归方程。以上述方法做下去。直至所有未被引入方程的自变量的F 值均小

你应该要掌握的7种回归分析方法

你应该要掌握的7种回归分析方法 标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: 机器学习(5) 目录(?)[+]转载:原文链接:7 Types of Regression Techniques you should know!(译者/刘帝伟审校/刘翔宇、朱正贵责编/周建丁) 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系;

2.它表明多个自变量对一个因变量的影响强度。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

现代统计分析方法试卷

(2017年12月,研究生) (要求:答案写在答题纸上) 一、名词解释(20分,每题4分) 1、随机项和残差项 2、时间序列平稳性 3、偏回归平方和 4、DW检验 5、大数据 二、简答题(36分,每题6分) 1、回归分析中,回归方程检验和回归系数检验有什么异同? 2、建立ARMA模型时,如何进行模型识别? 3、因子载荷矩阵有什么统计意义?它与主成分系数矩阵有什么不同? 4、判别分析中Fisher 判别准则,贝叶斯判别准则的区别? 5、利用回归分析方法如何进行边际分析和弹性分析? 6、统计上,如何测定样品或变量之间的亲疏程度? 三、论述题(44分) 1、结合自己所学专业举例说明回归分析的步骤?(14分) 2、结合自己所学专业举例说明因子分析的步骤和每步的意义?(15分) 3、结合自己所学专业举例说明系统聚类分析的步骤和应注意的问题?(15分)

(2018年7月,研究生) (要求:答案写在答题纸上) 一、名词解释(20分,每题4分) 1、可决系数和修正可决系数 2、偏回归平方和 3、自相关系数 4、主成分 5、系统聚类分析 二、简答题(36分,每题6分) 1、回归分析中,回归方程检验和回归系数检验有什么异同? 2、建立ARMA模型时,如何进行模型识别? 3、因子载荷矩阵有什么统计意义?它与主成分系数矩阵有什么不同? 4、比较距离判别准则,Fisher 判别准则,贝叶斯判别准则的区别? 5、逐步回归分析与一般回归分析的区别和意义? 6、统计上,如何测定样品或变量之间的亲疏程度? 三、论述题(44分) 1、结合自己所学专业举例说明回归分析的应用步骤?(14分) 2、结合自己所学专业举例说明因子分析的应用步骤?(15分) 3、结合自己所学专业举例说明聚类分析的应用步骤?(15分)

第五章 回归分析

第五章回归分析 §1.回归分析的数学模型 1.1.线性统计模型 1.线性回归方程 从一个简单的例子谈起。个人的消费水平Y与他的收入水平X间的关系,大体上可以描述:收入水平高,一般消费水平也高。但Y 和X绝不是简单的线性关系,这从常识便能判别;而且也不是一种确定的数学关系,两个收入水平完全一样的个人,他们的消费水平可能有很大的差异。比较合理的看法是:个人的消费水平Y是一个随机变量,从平均的意义上看,应与收入水平成正比。因此,我们可以给出以下模型: Y = b0 + b1X +ε (1) 其中b0,b1是待定常数,ε是随机变量,且有E(ε)=0,这样就能保证 E(Y) = b0 + b1X (2) 即从平均意义上Y和X线性相关。等式(2)称为变量Y对于变量X的线性回归方程。一般情况下,一个随机变量Y与变量X1,X2,…,X p有关系

Y = b0 + b1X1 + b2X2 + … + b p X p +ε (3) 随机变量ε的期望E(ε)=0,即有: E(Y) = b0+ b1X1 + b2X2+ … + b p X p (4) 从平均意义上,Y与X1,X2,…,X p呈线性关系。(4)式称为变量Y对于变量X1,X2,…,X p的线性回归方程,p=1时,称方程是一元的;p≥2时,称方程是多元的;b0,b1,…,b p称为回归系数。 2.统计模型的假设 设变量Y与X1,X2,…,X p之间有关系(3),对(X1,X2,…,X p,Y)做n 次观察,得到一个容量为n的样本:(x i1,x i2, …,x i p,y i)i=1,2,…,n,按(4)式给出的关系,这些样本观察值应有: y1= b0+ b1x11+ b2x12 + … + b p x1p+ε1 y2= b0+ b1x21+ b2x22 + … + b p x2p+ε2 (5) ………………………………… y n= b0+ b1x n1+ b2x n2 + … + b p x n p+εn 其中的εi, i=1,2,…,n是随机误差,出于数学上推导的需要,假设:1)E(εi)=0,i=1,2,…,n.即观察结果没有系统误差; 2)Var(εi)=σ2,i=1,2,…,n.这个性质叫做方差齐性;

一元线性回归分析法

一元线性回归分析法 一元线性回归分析法是根据过去若干时期的产量和成本资料,利用最小二乘法“偏差平方和最小”的原理确定回归直线方程,从而推算出a(截距)和b(斜率),再通过y =a+bx 这个数学模型来预测计划产量下的产品总成本及单位成本的方法。 方程y =a+bx 中,参数a 与b 的计算如下: y b x a y bx n -==-∑∑ 222 n xy x y xy x y b n x (x)x x x --==--∑∑∑∑∑∑∑∑∑ 上式中,x 与y 分别是i x 与i y 的算术平均值,即 x =n x ∑ y =n y ∑ 为了保证预测模型的可靠性,必须对所建立的模型进行统计检验,以检查自变量与因变量之间线性关系的强弱程度。检验是通过计算方程的相关系数r 进行的。计算公式为: 22xy-x y r= (x x x)(y y y) --∑∑∑∑∑∑ 当r 的绝对值越接近于1时,表明自变量与因变量之间的线性关系越强,所建立的预测模型越可靠;当r =l 时,说明自变量与因变量成正相关,二者之间存在正比例关系;当r =—1时,说明白变量与因变量成负相关,二者之间存在反比例关系。反之,如果r 的绝对值越接近于0,情况刚好相反。 [例]以表1中的数据为例来具体说明一元线性回归分析法的运用。 表1: 根据表1计算出有关数据,如表2所示: 表2:

将表2中的有关数据代入公式计算可得: 1256750x == (件) 2256 1350y ==(元) 1750 9500613507501705006b 2=-??-?=(元/件) 100675011350a =?-=(元/件) 所建立的预测模型为: y =100+X 相关系数为: 9.011638 10500])1350(3059006[])750(955006[1350 750-1705006r 22==-??-???= 计算表明,相关系数r 接近于l ,说明产量与成本有较显著的线性关系,所建立的回归预测方程较为可靠。如果计划期预计产量为200件,则预计产品总成本为: y =100+1×200=300(元)

多元回归分析SPSS

多元线性回归分析预测法 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。

设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b 0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x 1对y的偏回归系数;同理b2为固定时,x2每增加一 个单位对y的效应,即,x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b 0为常数项,为回归系数,b1为固定时,x2每增加 一个单位对y的效应,即x 2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b 0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自 变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之 因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b 0,b1,b2的数值。亦可用下列矩阵法求得

逐步回归分析

逐步回归分析 1、逐步回归分析的主要思路 在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。逐步回归分析正是根据这种原则提出来的一种回归分析方法。它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量 已被剔除。 逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回 归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于 最小的一个更不需要剔除)。相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。将对影响不显著的变量全部剔除, 保留的都是显著的。接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平 下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。 2、逐步回归分析的主要计算步骤 (1) 确定检验值 在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。 检验水平要根据具体问题的实际情况来定。一般地, 为使最终的回归方程中包含较多的变量, 水平不宜取得过高, 即显著水平α不宜太小。水平还与自由度有关, 因为在逐步回归过程中, 回归方程中所含的变量的个数不断在变化, 因此方差分析中的剩余自由度也总在变化, 为方便起见常按计算自由度。为原始数据观测组数, 为估计可能选人回归方程的变量个数。例如, 估计可能有2~3个变量选入回归方程, 因此取自由度为15-3-1=11, 查分布表, 当α=0.1, 自由度, 时, 临界值, 并且在引入变量时, 自由度取, , 检验的临界值记, 在剔除

第五章相关分析作业(试题及标准答案)

第五章相关分析 一、判断题 1.若变量X的值增加时,变量Y的值也增加,说明X与Y之间存在正相关关系;若变量X的值减 少时,Y变量的值也减少,说明X与Y之间存在负相关关系。() 2.回归系数和相关系数都可以用来判断现象之间相关的密切程度() 3.回归系数既可以用来判断两个变量相关的方向,也可以用来说明两个变量相关的密切程度。() 4.计算相关系数的两个变量,要求一个是随机变量,另一个是可控制的量。() 5.完全相关即是函数关系,其相关系数为±1。() 1、× 2、× 3、× 4、× 5、√. 二、单项选择题 1.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于()。 A.相关关系 B.函数关系 C.回归关系 D.随机关系 2.现象之间的相互关系可以归纳为两种类型,即()。 A.相关关系和函数关系 B.相关关系和因果关系 C.相关关系和随机关系 D.函数关系 和因果关系 3.在相关分析中,要求相关的两变量()。 A.都是随机的 B.都不是随机变量 C.因变量是随机变量 D.自变量是随机变量 4.现象之间线性依存关系的程度越低,则相关系数( ) 。 A.越接近于-1 B. 越接近于1 C. 越接近于0 D. 在0.5和0.8 之间 5.若物价上涨,商品的需求量相应减少,则物价与商品需求量之间的关系为( )。 A.不相关 B. 负相关 C. 正相关 D. 复相关 6.能够测定变量之间相关关系密切程度的主要方法是( ) 。 A.相关表 B.相关图 C.相关系数 D.定性分析 7.下列哪两个变量之间的相关程度高()。 A.商品销售额和商品销售量的相关系数是0.9 B.商品销售额与商业利润率的相关系数是0.84 C.平均流通费用率与商业利润率的相关系数是-0.94 D.商品销售价格与销售量的相关系数是-0.91 8.回归分析中的两个变量()。 A、都是随机变量 B、关系是对等的 C、都是给定的量 D、一个是自变量,一个是因变量 9.当所有的观察值y都落在直线上时,则x与y之间的相关系数为( )。 A.r = 0 B.| r | = 1 C.-1

回归分析方法应用实例

4、回归分析方法应用实例 在制定运动员选材标准时,理论上要求先对不同年龄的运动员,各测试一个较大的样本,然后,计算出各年龄的平均数、标准差,再来制定标准。 但是,在实际工作中,有时某些年龄组不能测到较大的样本。这时能不能使用统计的方法,进行处理呢? 我们遇到一个实例。测得45名11至18岁男田径运动员的立定三级跳远数据。其各年龄组人数分布如表一。由于受到许多客观因素的限制,一时无法再扩大样本,因此决定使用统计方法进行处理。 第一步,首先用原始数据做散点图,并通过添加趋势线,看数据的变化趋势是否符合随年龄增长而变化的趋势,决定能否使用回归方程制定标准。如果趋势线不符合随年龄增长而变化的趋势,或者相关程度很差就不能用了。 本例作出的散点图如图1,图上用一元回归方法添加趋势线,并计算出年龄和立定三级跳远的: 一元回归方程:Y=2.5836+0.3392 X 相关系数 r=0.7945(P<0.01) 由于从趋势线可以看出,立定三级跳远的成绩是随年龄增加而逐渐增加,符合青少年的发育特点。而且, 相关系数r=0.7945,呈高度相关。因此,可以认为计算出的一元回归方程,反映了11至18岁男运动员年龄和立定三级跳远成绩的线性关系。决定用一元回归方程来制定各年龄组的标准。 第二步,用一元回归方程:Y=2.5836+0.3392 X 推算出各年龄的立定三级跳远回归值,作为各年龄组的第2等标准。 第三步,用45人的立定三级跳远数据计算出标准差为:0.8271。由于在正态分布下,如把平均数作为标准约有50%的人可达到标准,用平均数-0.25标准差制定标准则约有60%的人可达到,用平均数+0.25、+0.52、+0.84标准差制定标准约有40%、30%、20%的人可达到标准。本例用各年龄组回归值-0.25标准差、+0.25标准差、+0.52标准差、+0.84标准差计算出1至5等标准如表2、图2。

第六章相关与回归分析方法

第六章 相关与回归分析方法 第一部分 习题 一、单项选择题 1.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关 ( )。 A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关 C.两者都是正相关 D.两者都是负相关 2.样本相关系数r 的取值范围( )。 A.-∞<r <+∞ B.-1≤r ≤1 C. -l <r <1 D. 0≤r ≤1 3.当所有观测值都落在回归直线 01y x ββ=+上,则x 与y 之间的相关系数( )。 A.r =0 B.r =1 C.r =-1 D.|r|=1 4.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( )。 A.前者无需确定,后者需要确定 B.前者需要确定,后者无需确定 C.两者均需确定 D.两者都无需确定 5.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( )。 A.完全相关 B.微弱相关 C.无线性相关 D.高度相关 6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。 A.增加70元 B.减少70元 C.增加80元 D.减少80元 7.下面的几个式子中,错误的是( )。 A. y= -40-1.6x r=0.89 B. y= -5-3.8x r =-0.94 C. y=36-2.4x r =-0.96 D. y= -36+3.8x r =0.98 8.下列关系中,属于正相关关系的有( )。 A.合理限度内,施肥量和平均单产量之间的关系 B.产品产量与单位产品成本之间的关系 C.商品的流通费用与销售利润之间的关系 D.流通费用率与商品销售量之间的关系 9.直线相关分析与直线回归分析的联系表现为( )。 A.相关分析是回归分析的基础 B.回归分析是相关分析的基础 C.相关分析是回归分析的深入 D.相关分析与回归分析互为条件 10.进行相关分析,要求相关的两个变量( )。 A.都是随机的 B.都不是随机的 C.一个是随机的,一个不是随机的 D.随机或不随机都可以 11.相关关系的主要特征是( )。 A.某一现象的标志与另外的标志之间存在着确定的依存关系 B.某一现象的标志与另外的标志之间存在着一定的关系,但它们不是确定的关系 C.某一现象的标志与另外的标志之间存在着严重的依存关系 D.某一现象的标志与另外的标志之间存在着函数关系 12.相关分析是研究( )。 A.变量之间的数量关系 B.变量之间的变动关系 C.变量之间相互关系的密切程度 D.变量之间的因果关系 13.现象之间相互依存关系的程度越低,则相关系数( )。 A.越接近于0 B.越接近于-1 C.越接近于1 D.越接近于0.5 14.在回归直线01y x ββ=+中,若10 β<,则x 与y 之间的相关系数( )。 A. r=0 B. r=1 C. 0<r <1 D. —l <r <0 15.当相关系数r=0时,表明( )。 A.现象之间完全无关 B.相关程度较小

回归研究分析方法总结全面

回归分析方法总结全面

————————————————————————————————作者:————————————————————————————————日期:

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。 3.计算估计标准误差。通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。 四、一元线性回归分析 1.一元线性回归分析的特点 1)两个变量不是对等关系,必须明确自变量和因变量。 2)如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y 为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。若绘出图

对回归分析的认识、体会和思考

对回归分析的认识、体会和思考 海口市第一中学潘峰 一、教材分析 1.内容编排 散点图、最小二乘估计的基本思想、最小二乘估计的计算公式、建立回归方程并进行预报等回归分析的部分内容在《数学3(必修)》中已经出现过。在此基础上,本章通过现实生活中遇到的问题“女大学生身高和体重的关系”进一步讨论一元线性回归模型,分析产生模型中随机误差项的原因,并从相关系数的角度研究了两个变量间线性相关关系的强弱,从而让学生了解在什么情况下可以考虑使用线性回归模型。教材介绍了一元线性回归模型的残差平方和分解的思想,从而给出相关指数的含义,即相关指数越大,模型拟合的效果越好。从残差分析的角度研究所选用的回归模型是否合适,引导学生初步体会检验模型的思想。为提高学生解决应用问题的能力,教材还强调了用解释变量(自变量)估计预报变量(因变量)时需要注意的问题(这点总结得非常的好,帮助学生思考),总结建立回归模型的基本步骤。作为线性回归模型的一个应用,教材还给出了一个处理非线性相关关系的例子,并通过相关指数比较不同模型对同一样本数据集的拟合效果。这里所涉及的非线性相关关系可以通过变换转化成线性相关关系,从而可以用线性回归模型进行研究。这个例子没有增加难度,但能开阔学生的思路,使学生了解虽然任何数据对都可以用线性回归模型来拟合,但其拟合的效果并不一定最好,可以探讨用其他形式的回归模型来拟合观测数据。 2.学习价值: ⑴.数理统计已成为人们的常识,它几乎渗透到每一学科中,哪里有试验,哪里有数据,哪里就少不了数理统计,不懂数理统计,就无法应付大量信息; ⑵.现代社会是信息社会,学会搜集、测量、评价信息做出决策是一个人成功必备的素质。 3.教材处理的优点: ⑴.总以一些生动活泼的、丰富的实际情境引入,激发学生的兴趣和学习激情; ⑵.以恰时恰点的问题引导学生思考,培养问题意识,孕育创新精神;(这点对我们教师的思考也是一种帮助) ⑶.螺旋上升地安排核心概念和数学思想,加强数学思想方法的渗透与概括; ⑷.对高等知识点到即止,强调类比、推广、特殊化、化归等思想方法的运用,开阔视野,提高数学思维能力,培育理性精神。 4.重点和难点

相关主题