搜档网
当前位置:搜档网 › 穿根法解高次不等式

穿根法解高次不等式

穿根法解高次不等式
穿根法解高次不等式

穿根法解高次不等式

一.方法:先因式分解,再使用穿根法.

注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:

①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点.

②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).

③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.

例1:解不等式

(1) (x+4)(x+5)2(2-x)3<0

(2) x 2-4x+1 3x 2-7x+2

≤1

解:

(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0

根据穿根法如图

不等式解集为{x ∣x>2或x<-4

(2) 变形为 (2x-1)(x-1)

≥0 根据穿根法如图

不等式解集为

{x x<1

3 或

1

2 ≤x≤1或x>2}.

【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0.

【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况.

解:(1)原不等式可化为

x(2x+5)(x-3)>0

顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分.

(2)原不等式等价于

(x+4)(x+5)2(x-2)3>0

∴原不等式解集为{x|x<-5或-5<x<-4或x>2}.

【说明】用“穿根法”解不等式时应注意:①各一次项中

.....................x.的.

系数必为正;②对于偶次或奇次重根可参照...................(2)

...的解法转化为不含重

.........

根的不等式,也可直接用“穿根法”,但注意....................“奇穿偶不穿”

........其法

...

如图

..(5..-.2)....

二.

数轴标根法”又称“数轴穿根法”

第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保

证x前的系数为

正数)

例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0

第二步:将不等号换成等号解出所有根。

例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1

第三步:在数轴上从左到右依次标出各根。

例如:-1 1 2

第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。

第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。

例如:

若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2

画穿根线:由右上方开始穿根。

因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。

运用序轴标根法解题时常见错误分析

当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x-an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f(x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。

为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1。

运用序轴标根法解不等式时,常犯以下的错误:

1.出现形如(a-x)的一次因式时,匆忙地“穿针引线”。

例1解不等式x(3-x)(x+1)(x-2)>0。

解x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或0<x<2或x>3}。

事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是:

解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,由图1,原不等式的解集为{x|-1<x<0或2<x<3}。

2.出现重根时,机械地“穿针引线”

例2解不等式(x+1)(x-1)2(x-4)3<0

解将三个根-1、1、4标在数轴上,由图2得,

原不等式的解集为{x|x<-1或1<x<4}。

这种解法也是错误的,错在不加分析地、机械地“穿针引线”。出现几个相同的根时,所画的浪线遇到“偶次”点(即偶数个相同根所对应的点)不能过数轴,仍在数轴的同侧折回,只有遇到“奇次”点(即奇数个相同根所对应的点)才能穿过数轴,正确的解法如下:解将三个根-1、1、4标在数轴上,如图3画出浪线图来穿过各根对应点,遇到x=1的点时浪线不穿过数轴,仍在数轴的同侧折回;遇到x=4的点才穿过数轴,于是,可得到不等式的解集

{x|-1<x<4且x≠1}

3.出现不能再分解的二次因式时,简单地放弃“穿针引线”

例3解不等式x(x+1)(x-2)(x3-1)>0

解原不等式变形为x(x+1)(x-2)(x-1)(x2+x+1)>0,有些同学同解变形到这里时认为不能用序轴标根法了,因为序轴标根法指明要分解成一次因式的积,事实上,根据这个二次因式的符号将其消去再运用序轴标根法即可。

解原不等式等价于

x(x+1)(x-2)(x-1)(x2+x+1)>0,

∵ x2+x+1>0对一切x恒成立,

∴ x(x-1)(x+1)(x-2)>0,由图4可得原不等式的解集为{x|x<-1或0<x<1或x>2}

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

高考数学 高次分式不等式解法

课 题:分式不等式 高次不等式的解法 ⒈ 一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析一:利用前节的方法求解; 分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等 式的解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|? ??<+>-040 1x x } ∪?? ?>+<-0 40 1|{x x x }=φ∪{x|-4-0401x x 或? ??>+<-040 1x x ?x ∈φ或-40; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3; ③列表如下: ④由上表可知,原不等式的解集为:{x|-23}. 小结:此法叫列表法,解题步骤是:

①将不等式化为(x-x1)(x-x2)…(x-xn)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)… (x-xn)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……; ②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的 因式开始依次自上而下排列); ③计算各区间内各因式的符号,下面是乘积的符号; ④看下面积的符号写出不等式的解集. 练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-13}. {x|-10(<0)形式,并将各因式x的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来; ③由右上方穿线,经过数轴上表示各根的点(为什么?); ④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”, 则找“线”在x轴下方的区间. 注意:奇过偶不过 例3解不等式:(x-2)2(x-3)3(x+1)<0. 解:①检查各因式中x的符号均正; ②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根); ③在数轴上表示各根并穿线,每个根穿一次(自右上方开始奇过偶不过),如下图: ④∴原不等式的解集为:{x|-1

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

高考数学 解题方法攻略 不等式放缩 理

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一 利用重要不等式放缩 1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证.2 )1(2)1(2 +<<+n S n n n 解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+= 2121)1(+ =++<+++=+<∑=n n n k S n k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里 n a a n a a a a a a n n n n n n 2211111 1++≤ ++≤ ≤++ΛΛΛΛ 其中,3,2=n 等的各式及其变式公式均可供选用。 例2 已知函数bx a x f 211)(?+= ,若5 4)1(= f ,且)(x f 在[0,1]上的最小值为21,求证:.21 2 1)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题) 简析 )221 1()()1()0(22114111414)(?->++?≠?->+-=+=n f f x x f x x x x Λ .21 2 1)21211(41)2211()2211(1 12-+=+++-=?-++?-++-n n n n n ΛΛ 例3 已知b a ,为正数,且 11 1=+b a ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由111=+b a 得b a ab +=,又42)11)((≥++=++a b b a b a b a ,故 4≥+=b a ab ,而n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =11 11----++++n n n r r n r n n n ab C b a C b a C ΛΛ,因为i n n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ, 而12 1 1 1 1 2422+------=?≥≥+==+==+n n n n n n r n r r r n n n b a b a ab b a b a ab b a ΛΛ,则 )(2n f =) )(22())((1 1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ?-≥)22(n 12+n ,所以)(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a . 例4 求证),1(2 2 1321N n n n C C C C n n n n n n ∈>?>++++-Λ.

(完整word版)高中解分式不等式和高次不等式练习题(有详细答案)

解分式不等式和高次不等式练习题 班级 姓名 学号 一.选择填空 1. 使不等式x x 1>成立的x 取值范围是( ) A. )1(∞, B. )1(--∞, C. )1()01(∞-,,Y D. )1()1(∞--∞,,Y 2. 不等式 11 <-x ax 的解集为}21|{>a B. 21>b a ,,则不等式b x a ->>1的解是( ) A. 01<<-x b 或a x 10<< B. 01<<-x a 或b x 10<< C. b x 1-<或a x 1> D. b x a 11<<- 4. 不等式01 33≤-+x x x 的解集为( ) A }10{<≤x x B }1{>b a 则不等式a x b <<-1等价于( ) A .a x 1-<或b x 1> B .b x 1-<或a x 1> C . 01<<-x a 或b x 10<< D .01<<-x b 或a x 10<< 6. 关于x 的不等式)0(0<+<-+b a x b x a 的解集是( ) (A){}a x x -<| (B){}b x a x x >-<或| (C){}a x b x x -><或| (D){}a x b x -<<| 7. 不等式01 33≤-+x x x 的解集为( ) A }10{<≤x x B }1{-≤x x x 或 D. {}25|≥-≤x x x 或 9. 不等式2601 x x x --->的解集为( ) A.{}2,3x x x -<或> B.{}213x x x -<,或<< C.{}213x x x -<<,或> D.{}2113x x x -<<,或<<

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

高中数学竞赛解题方法篇不等式

高中数学竞赛解题方法篇 不等式 The pony was revised in January 2021

高中数学竞赛中不等式的解法 摘要:本文给出了竞赛数学中常用的排序不等式,平均值不等式,柯西不等式和切比雪夫不等式的证明过程,并挑选了一些与这几类不等式相关的一些竞赛题进行了分析和讲解。希望对广大喜爱竞赛数学的师生有所帮助。 不等式在数学中占有重要的地位,由于其证明的困难性和方法的多样性,而成为竞赛数学中的热门题型.在解决竞赛数学中的不等式问题的过程中,常常要用到几个着名的代数不等式:排序不等式、平均值不等式、柯西不等式、切比雪夫不等式.本文就将探讨这几个不等式的证明和它们的一些应用. 1.排序不等式 定理1 设1212...,...n n a a a b b b ≤≤≤≤≤≤,则有 1211...n n n a b a b a b -+++(倒序积和) 1212...n r r n r a b a b a b ≤+++(乱序积和) 1122 ...n n a b a b a b ≤+++(顺序积和) 其中1,2,...,n r r r 是实数组1,2,...,n b b b 一个排列,等式当且仅当12...n a a a ===或 12...n b b b ===时成立. (说明:本不等式称排序不等式,俗称倒序积和乱序积和顺序积和.) 证明:考察右边不等式,并记1212...n r r n r S a b a b a b =+++。

不等式1212...n r r n r S a b a b a b ≤+++的意义:当121,2,...,n r r r n ===时,S 达到最大值 1122 ...n n a b a b a b +++.因此,首先证明n a 必须和n b 搭配,才能使S 达到最大值.也即,设n r n <且n b 和某个()k a k n <搭配时有 .n n k n n r k r n n a b a b a b a b +≤+(1-1) 事实上, 不等式(1-1)告诉我们当n r n <时,调换n b 和n r b 的位置(其余n-2项不变),会使和S 增加.同理,调整好n a 和n b 后,再调整1n a -和1n b -会使和增加.经过n 次调整后,和S 达到最大值1122 ...n n a b a b a b +++,这就证明了1212...n r r n r a b a b a b +++1122 ...n n a b a b a b ≤+++. 再证不等式左端, 由1211...,...n n n a a a b b b -≤≤≤-≤-≤≤-及已证明的不等式右端, 得 即1211...n n n a b a b a b -+++1212...n r r n r a b a b a b ≤+++. 例1(美国第3届中学生数学竞赛题)设a,b,c 是正数,求证:3 ()a b c a b c a b c abc ++≥. 思路分析:考虑两边取常用对数,再利用排序不等式证明. 证明:不妨设a b c ≥≥,则有lg lg lg a b c ≥≥ 根据排序不等式有: 以上两式相加,两边再分别加上lg lg lg a a b b c c ++

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

第三章 不等式练习题(一元二次不等式、高次不等式、分式不等式解法)

一元二次不等式与特殊的高次不等式解法 例1 解不等式0)1)(4(<-+x x . 分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的 解集是下面两个不等式组:???<+>-0401x x 与???>+<-0401x x 的解集的并集,即{x|???<+>-0401x x }∪???>+<-040 1|{x x x }= φ∪{x|-4-0401x x 或???>+<-040 1x x ?x ∈φ或-4++或的代数解法: 设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为 2121x x x x ≤且、,则00212>--?>++)x x )(x x (a c bx ax ; ①若?? ?>>???<->-???<-<->. x x , x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若?? ?>-<-?? ?>-<-<. x x , x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得?∈x . 分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集. 解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号 例2:解不等式:(x-1)(x+2)(x-3)>0; 解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:

穿根法解不等式的原理

穿根法解不等式的原理、步骤和应用范例 摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-x n)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。 关键词:穿根法;解不等式;原理;步骤;应用 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是 大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示 f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x1

基本不等式的各种求解方法和技巧

基本不等式 一、知识梳理 二、极值定理 (1)两个正数的和为常数时,它们的积有 ; 若0,0,a b a b M >>+=,M 为常数,则ab ≤ ;当且仅当 ,等号成立.简述为,当0,0,a b a b M >>+= ,M 为常数,max ()ab = . (2)两个正数的积为常数时,它们的和有 ; 若0,0,a b ab P >>=,P 为常数,则a b +≥ ;当且仅当 ,等号成立.简述为,当0,0,a b ab P >>= ,M 为常数,min ()a b += . (,)2 a b a b R ++≤ ∈,求最值时应注意以下三个条件:

应用基本不等式的经典方法 方法一、直接利用基本不等式解题 例1、(1)若0,0,4a b a b >>+=,则下列不等式恒成立的是( ) A .1 1 2ab > B .1 1 1a b +≤ C 2≥ D. 2211+8a b ≤ (2)不等式2162a b x x b a +<+对任意(),0,a b ∈+∞ 恒成立,则实数x 的取值范围是( ) A .(2,0)? B .(,2)(0,)?∞?+∞ C .(4,2)? D .(,4)(2,)?∞?+∞ (3)设,,1,1x y R a b ∈>>,若3,x y a b a b +,则11 x y +的最大值为 ( ) A .2 B .32 C .1 D .12

方法二:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件,通过乘或除常数、拆因式、平方等方式进行构造) 例2、(1)已知54x <,求函数1 445y x x =+?的最大值; (2)已知,则的取值范围是( ) A . B . C . D . 方法三:“1”的巧妙代换 命题点1、“1”的整体代换 例3、(1)若正数,x y 满足35x y xy +=,则34x y +的最小值是( ) A .245 B .285 C .5 D .6 (2)已知0,0,x y >>且21x y +=,求1 1 x y +的最小值. 0,2b a ab >>=2 2 a b a b +?(],4?∞?(),4?∞?(],2?∞?(),2?∞?

相关主题