搜档网
当前位置:搜档网 › MPU-6050模块(三轴陀螺仪 + 三轴加速度)

MPU-6050模块(三轴陀螺仪 + 三轴加速度)

MPU-6050模块(三轴陀螺仪 + 三轴加速度)
MPU-6050模块(三轴陀螺仪 + 三轴加速度)

名称:MPU-6050模块(三轴陀螺仪+ 三轴加速度) 单价:75.00(未税)

使用芯片:MPU-6050

供电电源:3-5v(内部低压差稳压)

通信方式:标准IIC通信协议

芯片内置16bit AD转换器,16位数据输出

陀螺仪范围:±250 500 1000 2000 °/s

加速度范围:±2±4±8±16g

采用沉金PCB,机器焊接工艺保证质量

引脚间距2.54mm

提供原理图,相关数据手册及参考文档

MPU-6000为全球首例整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时之轴间差的问题,减少了大量的包装空间。MPU-6000整合了3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术

InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。

MPU-6000的角速度全格感测范围为±250、±500、±1000与±2000°/sec (dps),可准确追緃快速与慢速动作,并且,用户可程式控制的加速器全格感测范围为±2g、±4g±8g与±16g。产品传输可透过最高至400kHz的I2C或最高达20MHz的SPI。

MPU-6000可在不同电压下工作,VDD供电电压介为2.5V±5%、3.0V±5%或3.3V±5%,逻辑接口VVDIO供电为1.8V±5%。MPU-6000的包装尺寸4x4x0.9mm(QFN),在业界是革命性的尺寸。其他的特征包含内建的温度感测器、包含在运作环境中仅有±1%变动的振荡器。应用

运动感测游戏

现实增强

电子稳像(EIS: Electronic Image Stabilization)

光学稳像(OIS: Optical Image Stabilization)

行人导航器

“零触控”手势用户接口

姿势快捷方式

认证

市场

智能型手机

平板装置设备

手持型游戏产品

3D遥控器

可携式导航设备

特征

以数字输出6轴或9轴的旋转矩阵、四元数(quaternion)、欧拉角格式(Euler Angle forma)的融合演算数据。

具有131 LSBs/°/sec 敏感度与全格感测范围为±250、±500、±1000与±2000°/sec 的3轴角速度感测器(陀螺仪)。

可程式控制,且程式控制范围为±2g、±4g、±8g和±16g的3轴加速器。

移除加速器与陀螺仪轴间敏感度,降低设定给予的影响与感测器的飘移。

数字运动处理(DMP: Digital Motion Processing)引擎可减少复杂的融合演算数据、感测器同步化、姿势感应等的负荷。

运动处理数据库支持Android、Linux与Windows

内建之运作时间偏差与磁力感测器校正演算技术,免除了客户须另外进行校正的需求。

以数位输出的温度传感器

以数位输入的同步引脚(Sync pin)支援视频电子影相稳定技术与GPS

可程式控制的中断(interrupt)支援姿势识别、摇摄、画面放大缩小、滚动、快速下降中断、high-G中断、零动作感应、触击感应、摇动感应功能。

VDD供电电压为2.5V±5%、3.0V±5%、3.3V±5%;VDDIO为1.8V±5%

陀螺仪运作电流:5mA,陀螺仪待命电流:5μA;加速器运作电流:350μA,加速器省电模式电流:20μA@10Hz

高达400kHz快速模式的I2C,或最高至20MHz的SPI串行主机接口(serial host interface)

内建频率产生器在所有温度范围(full temperature range)仅有±1%频率变化。

使用者亲自测试

10,000 g 碰撞容忍度

为可携式产品量身订作的最小最薄包装(4x4x0.9mm QFN)

符合RoHS及环境标准

三轴加速度传感器原理应用及前景分析

三轴加速度传感器原理及应用 2012年09月09日 12:42来源:本站整理作者:胡哥我要评论(0) 三轴加速度传感器原理 MEMS换能器(Transducer)可分为传感器(Sensor)和致动器(Actuator)两类。其中传感器会接受外界的传递的物理性输入,通过感测器转换为电子信号,再最终转换为可用的信息,如加速度传感器、陀螺仪、压力传感器等。其主要感应方式是对一些微小的物理量的变化进行测量,如电阻值、电容值、应力、形变、位移等,再通过电压信号来表示这些变化量。致动器则接受来自控制器的电子信号指令,做出其要求的反应动作,如光敏开关、MEMS显示器等。 目前的加速度传感器有多种实现方式,主要可分为压电式、电容式及热感应式三种,这三种技术各有其优缺点。以电容式3轴加速度计的技术原理为例。电容式加速度计能够感测不同方向的加速度或振动等运动状况。其主要为利用硅的机械性质设计出的可移动机构,机构中主要包括两组硅梳齿(Silicon Fingers),一组固定,另一组随即运动物体移动;前者相当于固定的电极,后者的功能则是可移动电极。当可移动的梳齿产生了位移,就会随之产生与位移成比例电容值的改变。 当运动物体出现变速运动而产生加速度时,其内部的电极位置发生变化,就会反映到电容值的变化(ΔC),该电容差值会传送给一颗接口芯片(InteRFace Chip)并由其输出电压值。因此3轴加速度传感器必然包含一个单纯的机械性MEMS传感器和一枚ASIC接口芯片两部分,前者内部有成群移动的电子,主要测量XY及Z轴的区域,后者则将电容值的变化转换为电压输出。 文中所述的传感器和ASIC接口芯片两部分都可以采用CMOS制程来生产,而在目前的实际生产制造中,由于二者实现技术上的差异,这两部分大都会通过不同的加工流程来生产,再最终封装整合到一起成为系统单封装芯片(SiP)。封装形式可采用堆叠(Stacked)或并排(Side-by-Side)。 手持设备设计的关键之一是尺寸的小巧。目前ST采用先进LGA封装的加速度传感器的尺寸仅有3 X 5 X 1mm,十分适合便携式移动设备的应用。但考虑到用户对尺寸可能提出的进一步需求,加速度传感器的设计要实现更小的尺寸、更高的性能和更低的成本;其检测与混合讯号单元也会朝向晶圆级封装(WLP)发展。 下一代产品的设计永远是ST关注的要点。就加速度传感器的发展而言,单芯片结构自然是

三轴角度检测(倾角传感器MMA7455(加速度传感器))

#include #include //要用到_nop_();函数 #define uchar unsigned char #define uint unsigned int /***************************************************************************/ /*********** 单片机引脚定义 ************/ /***************************************************************************/ sbit sda=P1^0; //I2C 数据传送位 sbit scl=P1^1; //I2C 时钟传送位 char x,y,z,num[9]={0,0,0}; /****************************************************************************** / /********** 数据部 分 ***********/ /****************************************************************************** / #define IIC_READ 0x1D //定义读指令 #define IIC_WRITE 0x1D //定义写指令 #define LCD_data P0 //数据口 sbit inter_0=P3^2; sbit LCD_RS = P2^7; //寄存器选择输入 sbit LCD_RW = P2^6; //液晶读/写控制 sbit LCD_EN = P2^5; //液晶使能控制 sbit LCD_PSB = P2^4; //串/并方式控制 void delay_1ms(uint x) { uint i,j; for(j=0;j

三轴向高灵敏度加速度传感器

三轴向高灵敏度加速度传感器 便携式电子产品功能的增加推动了对数据驱动器存储的需求,设计人员正在寻找占用较小板卡空间的改进保护系统。飞思卡尔半导体率先推出业界第一款三轴向高灵敏度加速度传感器——MMA7260Q。MMA7260Q能在XYZ三个轴向上以极高的灵敏度读取低重力水平的坠落、倾斜、移动、放置、震动和摇摆,它是同类产品中的第一个单芯片三轴向加速器。 1 小巧的巨人 飞思卡尔自1980年第一个传感器问世以来,销售的传感器数量在去年已经突破了具有里程碑意义的4.5亿大关。飞思卡尔帮助客户开发产品,用以监控身边的大量产品和技术。 MEMS传感器是面向加速和压力传感器市场的支持技术。飞思卡尔将非常小的电子和机械组件包含在一个封装中,做成了MEMS传感器。这个封装还整合了集成电路(IC)。当MEMS感应、处理或控制周围环境时,它使系统的一部分能够进行信息处理。传感器适用于需要测量因倾斜、移动、定位、震动或摆动而产生的各种力,或者测量压力、高度、重量和水位的最终产品以及嵌入式系统。 飞思卡尔基于MEMS的压力传感器和加速传感器是汽车电子、保健监控设备、智能便携电子设备(如蜂窝电话、PDA、硬盘驱盘器、计算机外围设备和无线设备)等应用中的关键组件。使用MEMS传感器,您能够拥有更准确的血压监控设备;更精确的气象站气象测量;功能更高的呼吸器和反应更快、更强的游戏设备。 汽车设计人员和厂商在每辆汽车内的不同地方都要应用MEMS传感器。在加强汽车安全的应用中,加速传感器提供碰撞检测功能,并对前/侧气囊及其他汽车安全设备进行有效部署。在特殊的保健监控应用中,压力传感器为病人提供重要诊断。在蜂窝电话中,MEMS产品能用自然的手部运动(而不是推动按钮的方法)激活各种功能。 飞思卡尔开发的基于微机电系统(MEMS)的三轴向低重力加速计MMA7260Q,专门面向便携式消者电子产品。MMA7260Q的可选灵敏度允许在1.5 g、2 g、4 g和6 g的不同范围内进行设计。它的3μA睡眠模式、500μA低运行电流、1.0 ms的快速启动响应时间以及6 minx6 mm×1.45 mm的QFN小巧包装等其他特性,使围绕 MMA7260Q的设计活动轻松方便、经济高效。 MMA7260Q是一款单芯片设备,具有三轴向检测功能,使便携式设备能够智能地响应位置、方位和移动的变化。它的封装尺寸很小,只需较小的板卡空间,另外还提供快速启动和休眠模式。这些特性使MMA7260Q成为采用电池供电电子产品的理想之选,包括PDA、手机、3D游戏和数码相机等。 飞思卡尔能提供1.5~250 g的一系列加速传感器产品,使用在从高度敏感的地震监测到强劲的碰撞检测等应用中。 在三星电子最近发布的两款最新数字音频播放器(YH_J70和YP_T8)中,采用了这种传感器。YH_J70采用这种传感器,实现了通过倾斜和自由下落检测来滚动菜单的功能。在YP_T8闪存式多媒体播放器中,通过传感器的倾斜检测实现了游戏功能。 2 全方位感知 由于MMA7260Q传感器能在三个轴向上灵敏地准确测量到低重力水平的坠落、倾斜、移动、放置、震动和摇摆,各个行业的设计工程师都能得以致用。

加速度计和陀螺仪指引——数学模型和基本算法

加速度计和陀螺仪指南——数学模型和基本算法 本帖转自https://www.sodocs.net/doc/872731764.html,/thread-1695-1-1.html 本帖翻译自IMU(加速度计和陀螺仪设备)在嵌入式应用中使用的指南。 这篇文章主要介绍加速度计和陀螺仪的数学模型和基本算法,以及如何融合这两者,侧重算法、思想的讨论. 介绍 本指南旨在向兴趣者介绍惯性MEMS(微机电系统)传感器,特别是加速度计和陀螺仪以及其他整合IMU(惯性测量单元)设备。 IMU单元例子:上图中MCU顶端的ACC Gyro 6DOF,名为USBThumb,支持USB/串口通信 在这篇文章中我将概括这么几个基本并且重要的话题: - 加速度计(accelerometer)检测什么 - 陀螺仪(gyroscope,也称作 gyro)检测什么 - 如何将传感器ADC读取的数据转换为物理单位(加速度传感器的单位是g,陀螺仪的单位是度/秒)

- 如何结合加速度传感器和陀螺仪的数据以得到设备和地平面之间的倾角的准 确信息 在整篇文章中我尽量将数学运算降低到最少。如果你知道什么是正弦、余弦、正切函数,那无论你的项目使用哪种平台你应该都会明白和运用这篇文章中的思想,这些平台如Arduino、Propeller、Basic Stamp、Ateml芯片、PIC芯片等等。 总有些人认为使用IMU单元需要复杂的数学运算(复杂的FIR或IIR滤波,如卡尔曼滤波,Parks-McClellan滤波等)。你如果研究这些会得到很棒且很复杂的结果。我解释事情的方式,只需要基本的数学。我非常坚信简单的原则。我认为一个简单的系统更容易操作和监控,另外许多嵌入式设备并不具备能力和资源去实现需要进行矩阵运算的复杂算法。 我会用我设计的一个新IMU模块——Acc_Gyro Accelerometer + Gyro IMU作为例子。在下面的例子中我们会使用这个设备的参数。用这个模块作为介绍非常合适,因为它由3个设备组成: - LIS331AL (datasheet) – 3轴 2G 模拟加速度计 - LPR550AL (datasheet) –双轴(俯仰、翻滚)500°/s 加速度传感器 - LY550ALH (datasheet) –单轴(偏航)陀螺仪最后这个设备在这篇介绍中不使用,不过他在DCM Matrix implementation中有重要作用 它们一起组成了一个6自由度的惯性测量单元。这是个花哨的名字!然而,在花哨的名字后面是个非常有用的设备组合,接下来我们会详细介绍之。 第一部分加速度计 要了解这个模块我们先从加速度计开始。当我们在想象一个加速度计的时候我们可以把它想作一个圆球在一个方盒子中。你可能会把它想作一个饼干或者甜圈,但我就把它当做一个球好了:

陀螺仪认识入门

谈谈对陀螺仪和加速度传感器的感性认识 前几天看到官网的新规则觉得很有意思看看自己帐号注册2年多了比赛也做了2届从论坛上下了大堆资料也没给论坛贡献什么有价值的东西实在惭愧啊正好自己以前捣鼓过一段时间四轴飞行器把当时收集的一些资料发上来大家共享下吧大部分取自网络还有一部分自己的思考重要的地方用红字标明了来自网络的都用蓝字标明本人才疏学浅论坛里藏龙卧虎有不对的还请大家指正新手看看全当一个感性认识。由于时间太长就不标原文地址了大家搜搜都能搜到另外四轴飞控论坛上已经看到有人跑过去要7260 和EN—03的资料了嘿嘿数据手册其实很好找的相关资料也很多的大家多多利用搜索引擎 啊 加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了 F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS 技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加 速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是 g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是 g,0,0 所以说只靠加速度传感器 来估计自己的姿态是很危险而不可取的 加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也 就是横滚角和俯仰角计算公示如下俯仰角

三轴加速度传感器

Three-axis acceleration sensor variable in capacitance under application of acceleration United States Patent 5383364 Abstract: An acceleration sensor comprises an upper semiconductor substrate having a rigid frame, four deformable beams connected with the rigid frame, and a weight portion supported by the plurality of deformable beams, a lower semiconductor substrate bonded to the rigid frame, a plurality of movable electrodes attached to the weight portion, and electrically isolated from one another, and a plurality of stationary electrodes attached to the second semiconductor substrate, and opposite to the plurality of movable electrodes for forming a plurality of variable capacitors, and the center of gravity of the weight portion is spaced from a common neutral surface of the four beams for allowing acceleration to produce bending moment exerted on the four beams, thereby causing the variable capacitors to independently change the capacitance. Inventors: Takahashi, Masaji (Tokyo, JP) Kondo, Yuji (Tokyo, JP) Application Number: 07/972537 Publication Date: 01/24/1995 Filing Date: 11/06/1992 Export Citation: Click for automatic bibliography generation Assignee: NEC Corporation (Tokyo, JP) Primary Class: 73/514.32 Other Classes: 73/514.34, 73/514.36, 361/280 International Classes: G01P15/125; G01P15/18; (IPC1-7): G01P15/125 Field of Search: 73/517R, 73/517AV, 73/517B, 361/280 View Patent Images: Download PDF 5383364 PDF help US Patent References: 5243861 Capacitive type semiconductor accelerometer 1993-09-14 Kloeck et al. 735/17R 5134881 Micro-machined accelerometer with composite material springs 1992-08-04

完整版三轴数字加速度传感器ADXL345技术资料

概述: ADXL345是一款小而薄的超低功耗3轴加速度计,分辨率高(13位),测量范围达±16g。数字输出数据为16位二进制补码格式,可通过SPI(3线或4线)或I2C数字接口访问。ADXL345非常适合移动设备应用。它可以在倾斜检测应用中测量静态重力加速度,还可以测量运动或冲击导致的动态加速度。其高分辨率(3.9mg/LSB),能够测量不到1.0。的倾斜角度变化。该器件提供多种特殊检测功能。 活动和非活动检测功能通过比较任意轴上的加速度与用户设置的阈值来检测有无运动发生。敲击检测功能 可以检测任意方向的单振和双振动作。自由落体检测功能可以检测器件是否正在掉落。这些功能可以独立 映射到两个中断输岀引脚中的一个。正在申请专利的集成式存储器管理系统采用一个32级先进先岀(FIFO)缓冲器,可用于存储数据,从而将主机处理器负荷降至最低,并降低整体系统功耗。低功耗模式支持基于运动的智能电源管理,从而以极低的功耗进行阈值感测和运动加速度测量。ADXL345采用3 mm X 5 mm x 1 mm,14引脚小型超薄塑料封装。 对比常用的飞思卡尔的MMZ7260三轴加速度传感器,ADXL345,具有测量精度高、可以通过SPI或I2C 直接和单片机通讯等优点。 特性: 超低功耗:VS= 2.5 V 时(典型值),测量模式下低至23uA, 待机模式下为0.1 g A功耗随带宽自动按比例变化 用户可选的分辨率10位固定分辨率全分辨率,分辨率随g范围提高而提高, ±16g时高达13位(在所有g范围内保持4 mg/LSB的比例系数) 正在申请专利的嵌入式存储器管理系统采用FIFO技术,可将主机处理器负荷 降至最低。单振/双振检测,活动/非活动监控,自由落体检测 电源电压范围:2.0 V 至3.6 V I / O电压范围:1.7 V至VS SPI (3线和4线)和I2C数字接口 灵活的中断模式,可映射到任一中断引脚 通过串行命令可选测量范围 通过串行命令可选带宽 宽温度范围(-40°C至+85 °C) 抗冲击能力:10,000 g 无铅/符合RoHS标准 小而薄:3 mn X 5 mm x 1 mm,LGA 封装 模组尺寸:23*18*11mm (高度含插针高度 应用: 机器人控制、运动检测 过程控制,电池供电系统 硬盘驱动器(HDD)保护,单电源数据采集系统 手机,医疗仪器,游戏和定点设备,工业仪器仪表,个人导航设备

加速度计和陀螺仪指南

介绍 本指南旨在向兴趣者介绍惯性MEMS(微机电系统)传感器,特别是加速度计和陀螺仪以及其他整合IMU(惯性测量单元)设备。 IMU单元例子:上图中MCU顶端的ACC Gyro 6DOF,名为USBThumb,支持USB/串口 通信 在这篇文章中我将概括这么几个基本并且重要的话题: - 加速度计(accelerometer)检测什么 - 陀螺仪(gyroscope,也称作gyro)检测什么 - 如何将传感器ADC读取的数据转换为物理单位(加速度传感器的单位是g,陀螺仪的单位是度/秒) - 如何结合加速度传感器和陀螺仪的数据以得到设备和地平面之间的倾角的准确信息 在整篇文章中我尽量将数学运算降低到最少。如果你知道什么是正弦、余弦、正切函数,那无论你的项目使用哪种平台你应该都会明白和运用这篇文章中的思想,这些平台如Arduino、Propeller、Basic Stamp、Ateml芯片、PIC芯片等等。总有些人认为使用IMU单元需要复杂的数学运算(复杂的FIR或IIR滤波,如卡尔曼滤波,Parks-McClellan滤波等)。你如果研究这些会得到很棒且很复杂的结果。我解释事情的方式,只需要基本的数学。我非常坚信简单的原则。我认为一个简单的系统更容易操作和监控,另外许多嵌入式设备并不具备能力和资源去实现需要进行矩阵运算的复杂算法。 我会用我设计的一个新IMU模块——Acc_Gyro Accelerometer + Gyro IMU作为例子。在下面的例子中我们会使用这个设备的参数。用这个模块作为介绍非常合适,因为它由3个设备组成: - LIS331AL (datasheet) – 3轴2G 模拟加速度计 - LPR550AL (datasheet) –双轴(俯仰、翻滚)500°/s 加速度传感器 - LY550ALH (datasheet) –单轴(偏航)陀螺仪最后这个设备在这篇介绍中不使用,不过他在DCM Matrix implementation中有重要作用

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

加速度传感器原理与应用简介

加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。另一种就是线加速度计。 2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。 3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量)我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F 对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 现代科技要求加速度传感器廉价、性能优越、易于大批量生产。在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。以传统加工方法制造的加速度传感器难以全面满足这些要求。于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。可以预见在不久的将来,它将在加速度传感器市场中占主导地位。 微加速度传感器有压阻式、压电式、电容式等形式。 ·压电式 压电式传感器是利用弹簧质量系统原理。敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。虽然压

陀螺仪知识整理与解析

陀螺仪知识整理与解析 1、陀螺仪基础知识 (2) 2、Question and answer (2) 3、陀螺仪和加速度计的区别与联系 (3) 4、常用芯片介绍 (3)

1、陀螺仪基础知识 陀螺仪:测量角速度,是角速度传感器。时间积分后得到相对角度。陀螺和加速度计是惯性器件,是用来测量相对惯性空间的角速度(或对于积分类型的陀螺来说是角增量)和加速度。 在三维空间中描述一个刚体运动要六轴,三轴加速度,三轴角速度。测量角速度大部分芯片靠的是测量科特迪奥力,也就是让排水孔的水形成涡旋的力。 角速度跟角速率:速度是矢量、有方向。而速率是标量,只有大小,帶有平均的意味。如果采样点很快的話(dt趋于0),速度和速率的数值是一样的。 航模的陀螺仪全是角速度传感器,不管是高端还是低端。 mems陀螺仪积分很多时候造成零偏的主要原因应该是随机游走。 2、Question and answer Q:角速度传感器如果在它的测量轴上匀速转动输出是否为定值? A:是,不过首先要保证你是在匀速转动。 用过几种角速度传感器,发现匀速转动传感器,因为加了高通滤波,传感器输出的电平和静止时的电平一样,只有加速的时候电平才变动。 Q:如果在测量轴的某一位置静态输出为A,那么匀速转过45度后静止,那么此时输出是否为A? A:如果是静止测量,是如此的。但由于频宽,通常信号有一点点滞后。 Q:用陀螺仪测角度的话,是不是对测出的角速度积分即可?网上看到有些资料说可以用陀螺仪和加速度传感器组合测角度,这种方法具体如何实现? A:理论上如此,但是由于bias、drift、scale和数值积分的误差,积分结果是会漂移的。 假设加速度计测量到重力加速度时,可以对陀螺仪校正角

加速度计和陀螺仪传感器原理、检测及应用

加速度计和陀螺仪传感器原理、检测及应用 摘要:微机电系统(MEMS)在消费电子领域的应用越来越普及,移动市场的增长也带动了MEMS需求的日益旺盛。实际上,MEMS传感器正在成为消费类和移动产品差异化的关键要素,例如游戏控制器、智能手机和平板电脑。MEMS为用户提供了与其智能设备交互的全新方式。本文简要介绍MEMS的工作原理、检测架构以及各种潜在应用。本文网络版地址:http://https://www.sodocs.net/doc/872731764.html,/article/247467.htm 关键词:MEMS;加速度计;陀螺仪;传感器 DOI:10.3969/j.issn.1005-5517.2014.5.013 引言 微机电系统(MEMS)将机械和电子元件集成在微米级的小型结构中。利用微机械加工将所有电气器件、传感器和机械元件集成至一片共用的硅基片,从而由半导体和微加工技术组合而成。MEMS系统的主要元件是机械单元、检测电路以及ASIC或微控制器。本文简要介绍MEMS加速度计传感器和陀螺仪,讨论其工作原理、检测结构以及目前市场的热点应用,对我们日常生活具有深远的影响。 1 MEMS惯性传感器 MEMS传感器在许多应用中测量沿一个或多个轴向的

线性加速度,或者环绕一个或多个轴的角速度,以作为输入控制系统(图1)。 MEMS加速度计传感器通常利用位置测量接口电路测 量物体的位移,然后利用模/数转换器(ADC)将测量值转换为数字电信号,以便进行数字处理。陀螺仪则测量物体由于科里奥利加速度而发生的位移。 2 加速度计工作原理 根据牛顿第二定律,物理加速度(m/s2)与受到的合力(N)成正比,与其质量(kg)成反比,加速度方向与合力相同。 上述过程可简单归纳为:作用力导致物体发生位移,进而发生电容变化。将多个电极并联,可获得更大的电容变化,更容易检测到位移(图4)。V1和V2连接至电容的每侧,电容分压器的中心连接到物体。 物体重心的模拟电压通过电荷放大、信号调理、解调及低通滤波,然后利用Σ-ΔADC将其转换为数字信号。将ADC输出的数字比特流送至FIFO缓存器,后者将串行信号转换为并行数据流。随后,可通过诸如I2C或SPI等串行协议读取数据流,再将其送至主机做进一步处理(图5)。 Σ-ΔADC具有信号带宽较窄,分辨率非常高,适合加速度计应用。Σ-ΔADC输出由其位数决定,很容易转换成“g”(单位),用于加速度计算。“g”为重力加速度。

陀螺仪和加速度总结

陀螺仪、加速度之我见 作者:茶不思 可能一个模块一个模块的讲有些啰嗦,而且这些模块的使用方法网上也有很多教程,我以后就不在说这个了.大家有问题就搜索下吧,很容易找到.我目前用到的外设有:timer,usart,iic,spi,flash,gpio,exit,暂时就这么多. 今天想跟大家谈谈加速度计和陀螺仪,不少人在问加速度计陀螺仪的数据读出来了怎么用,咱们就从这两个传感器的特点开始了解下,了解了特点,用法就很容易了. 以下仅代表个人观点,有哪里不对,还请指出.... 做个比喻吧,加速度计,以下简称加计,大家可以把它想象成一个铁块,这个铁块是个立方体,有前后左右上下六个面,每个面连接有一个弹簧,弹簧另一端假设固定在一个卡车的集装箱里面,这样这个铁块就被这六个弹簧吊在集装箱里面了,由于铁块有重力,所以汽车不动时,上面的弹簧被拉长,下面的弹簧被压缩,这里假设是通过测量弹簧的拉力来输出加速度(实际有可能是电容什么的,这里不做讨论,了解特性就好),六个弹簧,两两一组,正好3个轴,这就是3轴加速度了,静止不动时,只有Z轴也就是上下两根弹簧有读数,其他两对弹簧是平衡的.现在假设汽车在做加速运动,那么不仅仅上下两根弹簧不平衡了,前后两根弹簧也会有变化,前面的弹簧拉长,后面的弹簧压缩,就有了前后方向的加速度.左右也是一个道理. 知道了加计的大致原理,那么加计有什么特点呢?让我们大家想象一种情况,就是这辆卡车行驶在颠簸的路上,集装箱里面的铁块肯定不会稳稳的吊着了,他会随着汽车左摇右摆,上下颠簸,而且有一点大家注意,铁块的此时的摆动,不是完全和汽车同步的,由于惯性等原因,铁块会在里面"乱动",荡来荡去,此时的加速度输出会是怎么样的呢?肯定也是随着铁块"荡来荡去",所以我们得出加计的一大特点,就是对震动很"敏感",如果把飞控板放在桌子上静止不动,可以说随便一个姿态算法的输出都不错,哪怕不滤波.可以当电机一转动起来,震动来了,加计就有了很大的干扰,此时如果处理不好,姿态就乱掉了. 然后我们再说说陀螺仪,陀螺仪顾名思义,肯定和陀螺有很大关系,没错,特点也和陀螺一样.还是假设在这个车里面,我们放上一个小时候玩的陀螺,不管用了什么方法,让它高速旋转起来,大家都知道,这样陀螺是不会倒的,他会尽量保持当前的姿态,陀螺仪正是利用这个特点.我们看两段视频来了解下. 通过视频,大家可以看到,陀螺在高速旋转时,是会尽量保持转轴不变的.那么我们就可以想到陀螺仪的特点了,就是对震动是"不敏感"的,因为它会尽量保持自己不被震动改变,但是陀螺会不断累积误差,造成"漂移". 好了,这里我们知道了加计和陀螺仪的特点,再考虑怎么使用,就简单多了,

加速度计and陀螺仪原理

MEMS加速度计原理 技术成熟的MEMS加速度计分为三种:压电式、容感式、热感式。压电式MEMS加速度计运用的是压电效应,在其内部有一个刚体支撑的质量块,有运动的情况下质量块会产生压力,刚体产生应变,把加速度转变成电信号输出。 容感式MEMS加速度计内部也存在一个质量块,从单个单元来看,它是标准的平板电容器。加速度的变化带动活动质量块的移动从而改变平板电容两极的间距和正对面积,通过测量电容变化量来计算加速度。Freescale的MMA7660FC这一款加速度计(3-Axis Orientation/MotionDetection Sensor),这一款芯片也是利用这一原理设计的。datasheet的第9页介绍了其工作原理:当芯片有向右的加速度时,中间的活动质量快相对于另外两块电容板向左移动,这两平行板电容器的电容就发生了变化,从而测量出芯片运动的加速度。 热感式MEMS加速度计内部没有任何质量块,它的中央有一个加热体,周边是温度传感器,里面是密闭的气腔,工作时在加热体的作用下,气体在内部形成一个热气团,热气团的比重和周围的冷气是有差异的,通过惯性热气团的移动形成的热场变化让感应器感应到加速度值。 由于压电式MEMS加速度计内部有刚体支撑的存在,通常情况下,压电式MEMS加速度计只能感应到“动态”加速度,而不能感应到“静态”加速度,也就是我们所说的重力加速度。而容感式和热感式既能感应“动态”加速度,又能感应“静态”加速度。 从上面的分析中,我们可以看到利用容感式和热感式加速度计进行定向时,加速度计测得的加速度里面包括重力加速度在各个轴上的重力分量和动态运动引起的加速度分量。因而,我觉得我们在利用这一类加速度计进行定向时,必须将动态加速度去掉(较为困难);在进行检测芯片的运动时,必须将重力加速度的去掉。 师兄,我觉得如果我们选择用加速度计来进行定向的话,我们可以考虑ST的LSM303DLH (5*5*1mm,0.83mA)这一款芯片。这一款芯片集成了测加速度和磁场的功能,完全可以满足我们定向的需求

陀螺仪”和“加速度计”工作原理

陀螺仪”和“加速度计”工作原理 2016-09-17 16:14:40 作者:没有夏天的四叶草修改:小马hoty 时间:2016/1/10 最近看到加速度计和陀螺仪比较火,而且也有很多人都在研究。于是也在网上淘了一个mpu6050模块,想用来做自平衡小车。可是使用起来就发愁了。网上关于mpu6050的资料的确不少,但是大家都是互相抄袭,然后贴出一段程序,看完之后还是不知道所以然。经过翻阅各个方面的资料,以及自己的研究在处理mpu6050数据方面有一些心得,在这里和大家分享一下。 1、加速度和陀螺仪原理 当然,在开始之前至少要弄懂什么是加速度计,什么是陀螺仪吧,否则那后边讲的都是没有意义的。简单的说,加速度计主要是测量物体运动的加速度,陀螺仪主要测量物体转动的角速度。这些理论的知识我就不多说了,都可以在网上查到。这里推荐一篇讲的比较详细的文章《AGuide To using IMU (Accelerometer and Gyroscope Devices) inEmbeddedApplications》,在网上可以直接搜索到。 2、加速度测量 在开始之前,不知大家是否还记得加速度具有合成定理?如果不记得可以先大概了解一下,其实简单的举个例子来说就是重力加速度可以理

解成是由x,y,z三个方向的加速度共同作用的结果。反过来说就是重力加速度可以分解成x,y,z三个方向的加速度。 加速度计可以测量某一时刻x,y,z三个方向的加速度值。而自平衡小车利用加速度计测出重力加速度在x,y,z轴的分量,然后利用各个方向的分量与重力加速度的比值来计算出小车大致的倾角。其实在自平衡小车上非静止的时候,加速度计测出的结果并不是非常精确。因为大家在高中物理的时候都学过,物体时刻都会受到地球的万有引力作用产生一个向下的重力加速度,而小车在动态时,受电机的作用肯定有一个前进或者后退方向的作用力,而加速度计测出的结果是,重力加速度与小车运动加速度合成得到一个总的加速度在三个方向上的分量。 不过我们暂时不考虑电机作用产生的运动加速度对测量结果的影响。因为我们要先把复杂的事情分解成一个个简单的事情来分析,这样才能看到成果,才会有信心继续。 下边我们就开始分析从加速度得到角度的方法。如下图,把加速度 计平放,分别画出xyz轴的方向。这三个轴就是我们后边分析所要用到的坐标系。如图一

加速度传感器原理以及选用

加速度传感器原理以及选用 什么是加速度传感器? 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量,比如g,也可以是变量。 加速度传感器一般用在哪里? 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。通过分析动态加速度,你可以分析出设备移动的方式。但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。但是,现在工程师们已经想出了很多方法获得更多的有用的信息。 加速度传感器可以帮助你的机器人了解它现在身处的环境。是在爬山?还是在走下坡,摔倒了没有?或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。一个好的程序员能够使用加速度传感器来回答所有上述问题。加速度传感器甚至可以用来分析发动机的振动。 目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。 加速度传感器是如何工作的? 多数加速度传感器是根据压电效应的原理来工作的。 所谓的压电效应就是 "对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应 "。 一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。 在选购加速度传感器的时候,需要考虑什么? 模拟输出 vs 数字输出:这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。 如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。 如果你使用的微控制器有模拟输入口,比如PIC/AVR/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似"acceleration=read_adc()"的指令,而且处理此指令的速度只要几微秒。 测量轴数量: 对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。 最大测量值: 如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。

对于陀螺仪和加速的传感器的认识】

加速度传感器测的是什么? 我觉得很多时候大家都被它的名字给误导了我觉得准确的来说它测的不是加速度至少对于mma7260这类的片子它检测的是它受到的惯性力(包括重力!重力也是惯性力)。那又有人要问了F=ma 惯性力不就是加速度么?差矣加速度传感器实际上是用MEMS技术检测惯性力造成的微小形变注意检测的是微小形变所以你把加速度传感器水平静止放在桌子上它的Z轴输出的是1g的加速度因为它Z轴方向被重力向下拉出了一个形变可是你绝对不会认为它在以1g的加速度往下落吧你如果让它做自由落体它的Z轴输出应该是0 给个形象的说法可以把它看成是一块弹弹胶它检测的就是自己在三个方向被外力作用造成的形变。从刚才的分析可以发现重力这个东西实际是个很恶心的东西它能隔空打牛,在不产生加速度的情况下对加速度传感器造成形变,在产生加速度的时候不造成形变,而其他力都做不到。可惜的是,加速度传感器不会区分重力加速度与外力加速度。 所以,当系统在三维空间做变速运动时,它的输出就不正确了或者说它的输出不能表明物体的姿态和运动状态举个例子当一个物体在空间做自由落体时在X轴受到一个外力作用产生g的加速度这时候x y z 轴的输出分别是g,0,0 如果这个物体被x轴朝下静止放在水平面上它x y z 轴的输出也分别是g,0,0 所以说只靠加速度传感器来估计自己的姿态是很危险而不可取的 加速度传感器有什么用? 加速度计,可以测量加速度,包括重力加速度,于是在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与刚才所说的R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横 滚角和俯仰角计算公示如下俯仰角横滚角 陀螺仪测的是什么? 陀螺仪可以测量角速度,具有高动态特性,但是它是一个间接测量器件,它测量的是角度的导数,角速度,显然我们要将角速度对时间积分才能得到角度看到积分我想敏感的同学马上就能发现一个致命的问题积分误差 积分误差的来源主要有两个一个是积分时间积分时间Dt越小,输出角度越准一个是器件本身的误差假设陀螺仪固定不动,理想角速度值是0dps(degree per second),但是有一个偏置0.1dps加在上面,于是测量出来是0.1dps,积分一秒之后,得到的角度是0.1度,1分钟之后是6度,还能忍受,一小时之后是360度,转了一圈所以说陀螺仪在短时间内有很大的参考价值 陀螺仪另外一个问题是它的测量基准是自身,并没有系统外的绝对参照物重力轴是个绝好的参照物因此需要陀螺仪和加速度传感器的配合使用如果要测偏航角YAW 还需要电子罗盘感知地磁方向给出水平方向的绝对参考(当然这个在智能车上不存在吧······——!) 陀螺仪和加速度传感器的融合 除了给出绝对参考系陀螺仪和加速度传感器相互融合使用的最重要的原因是: 综合考虑,加速度计是极易受外部干扰的传感器,但是测量值随时间的变化相对较小。陀螺仪可以积分得到角度关系,动态性能好,受外部干扰小,但测量值随时间变化比较大。可以看出,它们优缺点互补,结合起来才能有好的效果 用通俗点的话来说就是无论工作多久加速度传感器如果没收到外部干扰它测的就一定是准的!陀螺仪虽不会受到外部干扰可是时间长了由于积分误差累计它的值就全错

相关主题