搜档网
当前位置:搜档网 › 高考数学 题型全归纳 数列求和的若干常用方法

高考数学 题型全归纳 数列求和的若干常用方法

高考数学 题型全归纳 数列求和的若干常用方法
高考数学 题型全归纳 数列求和的若干常用方法

数列求和的若干常用方法

数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法

所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

例1.数列{an}的前n 项和12-=n n a S ,数列{bn}满

)(,311*

+∈+==N n b a b b n n n . (Ⅰ)证明数列{an}为等比数列;(Ⅱ)求数列{bn}的前n 项和Tn 。

解析:(Ⅰ)由

12,,1211-=∴∈-=++*

n n n n a S N n a S , 两式相减得:

,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同,

,

21

=∴

+n

n a a 同定义知}{n a 是首项为1,公比为2的等比数列.

(Ⅱ)

,22,2111

11-+-+-=-+==n n n n n n n n b b b b a

Λ

,2,2,2234123012=-=-=-b b b b b b

,

221--=-n n n b b 等式左、右两边分别相加得:

,

222

12132

2211

2

1

1+=--+=++++=---n n n n b b Λ

n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴--ΛΛ

=.

12222121-+=+--n n n n

已知等差数列

{}n a 的首项为1,前10项的和为145,求:.

242n a a a +++Λ

解析:首先由

3145291010110=?=??+

=d d

a S 则:

6

22322

1)

21(232)222(322323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n ΛΛ

二、裂项求和法

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,

然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)

11

1)1(1+-

=+=n n n n a n (2)

)121121(211)12)(12()2(2+--+=+-=n n n n n a n (3)

]

)2)(1(1

)1(1[21)2)(1(1++-+=+-=

n n n n n n n a n 等。

例3. 在数列{an}中,11211++

???++++=n n n n a n ,又

12+?=n n n a a b , 求数列{bn}的前n 项的和.

解析: ∵

211211n

n n n n a n =++???++++=

)

11

1(82122+-=+?=

n n n n b n

∴ 数列{bn}的前n 项和

)]

11

1()4131()3121()211[(8+-+???+-+-+-=n n S n =

)

111(8+-

n = 18+n n

例4.设{an }是正数组成的数列,其前n 项和为Sn ,并且对所有自然数n ,an 与2的等差中项等于Sn 与2的等比中项.

(1)写出数列{an }的前三项;(2)求数列{an }的通项公式(写出推证过程); (3)令bn=2

1

???? ??+++1n n n 1n a a a a (n ∈N),求:b 1+b2+…+bn -n.

解析:(1)略;(2) an=4n-2.; (3)令cn=bn-1, 则cn=2

1

???? ??-+++2a a a a 1n n

n 1n =21??????-??? ??+-+??? ?

?--+11n 21n 211n 21n 2 =1n 211n 21+-- b1+b2+…+bn -n=c1+c2+…+cn

=1n 2111n 211n 21

5131311+-

=??? ??+--+???+??? ??-+??? ??-

评析:一般地,若数列

{}n a 为等差数列,且公差不为0,首项也不为0,则求和:∑=+n

i i i

a

a 1

1

1

先考虑=∑=+n

i i i a a 11

1

∑=+-n

i i i

a a d 11)11(1则∑=+n

i i i a a 111=1111)11(1++=-n n a a n a a d 。下列求和:∑

=++n

i i i a a 1

1

1 也可用裂项求和法。

错位相减法 设数列

{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前项和n S 求解,均可用错位

相减法。

例 5.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令

)(lg N n a a b n n n ∈?=, 求数列{}n b 的前项和n S 。

解析:

a na a a a aS a na a a a S a

a n

b a a n n n n n n n n lg )32(lg )32(lg ,143232+++++=++++=∴?==ΛΛΘ

①-②得:

a na a a a S a n n n lg )()1(1

2+-+++=-Λ []

n

n a

na n a a a S )1(1)1(lg 2

-+--=

∴。

例6.已知数列

{}n a 是等差数列,且.12,23211=++=a a a a

(Ⅰ)略;(Ⅱ)令).(3R x a b n

n n ∈=求数列{}n b 前n 项和的公式. 解析:(Ⅰ)略;(Ⅱ)解:由

,323n

n n n n a b ==得 ,323)22(343212n

n n

n n S ?+-+?+?=-Λ① .

323)22(34323132+?+?-++?+?=n n n n n S Λ②

将①式减去②式,得

.32)13(332)333(221

12++?--=?-++-=-n n n n n n n S Λ 所以.

32)

31(31+?+-=n n n n S

四、组合化归法 例7.求和:)

12)(1(532321++++??+??=n n n S n Λ。

解析:

)

1(3)2)(1(2)342)(1(+-++=-++=n n n n n n n n a n Θ

而连续自然数可表示为组合数的形式,于是,数列的求和便转化为组合数的求和问题了。

21

322

1326122)1(,6)2)(1(++++-=∴=+=++n n n n n C C a C n n C n n n Θ

)

(6)(12212322323433+++++-+++=∴n n n C C C C C C S ΛΛ

32

432

12333323444612)(6)(12++++-=+++-+++=n n n n C C C C C C C C ΛΛ

)2()1(21

)1)(2(2

)1)(2)(3(!

3)1)(2(6!4)1)(2)(3(122++=++-+++=++-

+++=

∴n n n n

n n n n n n n

n n n n n n S n

评析:可转化为连续自然数乘积的数列求和问题,均可考虑组合化归法。 逆序相加法 例8.设数列

{}n a 是公差为d ,且首项为d a =0的等差数列,

求和:n

n n n n n C a C a C a S +++=+Λ11001 解析:因为n

n n n n n C a C a C a S +++=+Λ11001

00111n n n n n n n n C a C a C a S +++=--+Λn

n

n n n n C a C a C a 0110+++=-Λ

101010001110012)(2)())(()()()(2-+-+?+=∴+=++++=++++++=∴n n n n n n n n n n n

n n n n n n n a a S a a C C C a a C a a C a a C a a S ΛΛ

评析:此类问题还可变换为探索题形:

已知数列{}n a 的前项和n S 12)1(+-=n

n ,是否存在等差数列{}n b 使得 n

n

n n n n C b C b C b a +++=Λ2211对一切自然数n 都成立。

递推法

例6. 已知数列{}n a 的前项和n S 与n a 满足:

21

,,-

n n n S S a )2(≥n 成等比数列,且11=a ,

求数列

{}n a 的前项和n S 。

解析:由题意:1

2

),21(--=-=n n n n n n S S a S a S Θ

.1

21

122)1(11211)(2

1)21)((1

11

112

-=

∴-=-+=?=-∴=-?--=----n S n n S S S S S S S S S S S S n n n n n n n n n n n n

评析:本题的常规方法是先求通项公式,然后求和,但逆向思维,直接求出数列{}n a 的前项

n S 的递推公式,是一种最佳解法。

数列求和知识点总结(学案)

数列求和 1.求数列的前n项和的方法 (1)公式法 ①等差数列的前n项和公式②等比数列的前n 项和公式 (2)分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (5)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广

2.常见的裂项公式 (1)1n (n +1)=1n -1n +1 . (2)1(2n -1)(2n +1)=12? ?? ???12n -1-12n +1. (3)1n +n +1=n +1-n . 高频考点一 分组转化法求和 例1、已知数列{a n }的前n 项和S n = n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式; (2)设b n =2a n +(-1)n a n ,求数列{ b n }的前2n 项和. 【感悟提升】某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列{a n }的通项公式是a n =2·3n

-1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 高频考点二 错位相减法求和 例2、(2015·湖北)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式; (2) 当d >1时,记c n =a n b n ,求数列{c n }的前n 项和T n . 【感悟提升】用错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式; (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

数列求和方法小结

数列求和方法小结 等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和. 下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法) 将数列转化为等差或等比数列,直接使用等差或等比数列的前n 项和公式求得. 常用公式:等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= , 等比数列的求和公式?????≠--==) 1(1)1() 1(11q q q a q na S n n (切记:公比含字母时一定要讨论), 另 外 222221 (1)(21) 1236 n k n n n k n =++=+++ += ∑ , 2 3 333 3 1 (1)1232n k n n k n =+?? =+++ +=???? ∑ 例1 . 二、倒序相加法 此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和. 例2已知函数()x f x = (1)证明:()()11f x f x +-=; (2)求128910101010f f f f ?? ?????? + +++ ? ? ? ??? ?? ?? ?? 的值. 解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知, 1928551101010101010f f f f f f ????????????+=+==+ = ? ? ? ? ? ??? ???? ?? ???? 128910101010S f f f f ?? ?? ????=+ +++ ? ? ? ?????????令 982110101010S f f f f ?? ??????=+ +++ ? ? ? ??? ?? ?? ?? 则

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

数列求和知识点总结.doc

数列求和 1.求数列的前 n 项和的方法 (1) 公式法 ①等差数列的前 n 项和公式 ②等比数列的前 n 项和公式 (2) 分组求和法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和, 即等比数列求和公式的推导过程的推广. (5) 倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广 2.常见的裂项公式 1 1 1 (1) n (n +1)= n -n +1 . (2) 1 1 1 1 . n - )( n + ) = 2 n - - n + 1 2 1 2 (212 1 1 = n + - n (3) 1. n + n +1 高频考点一 分组转化法求和 例 1、已知数列 { a n } 的前 n 项和 S n = n 2+ n , n ∈ N * . 2 (1) 求数列 { a n } 的通项公式; (2) 设 b n = 2a n + ( - 1) n a n ,求数列 { b n } 的前 2n 项和.

【感悟提升】 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差, 从 而求得原数列的和, 这就要通过对数列通项结构特点进行分析研究, 将数列的通项合理分解 转化.特别注意在含有字母的数列中对字母的讨论. 【变式探究】已知数列 { a n } 的通项公式是 a n =2·3n - 1+ ( - 1) n ·(ln2 - ln3) + ( - 1) n ln3 ,求其前 n 项和n . n S 高频考点二 错位相减法求和 例 2、(2015 ·湖北 ) 设等差数列 { a n } 的公差为 d ,前 n 项和为 S n ,等比数列 { b n } 的公比为 q ,已知 b 1= a 1 ,b 2= 2, q = d , S 10= 100. (1) 求数列 { a n } , { b n } 的通项公式; n a n n n (2) 当 d>1 时,记 c = ,求数列 { c 的前 n 项和 T . b n 【感悟提升】用错位相减法求和时,应注意: (1) 要善于识别题目类型,特别是等比数列公比为负数的情形; (2) 在写出“ S n ”与“ qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ S n - qS n ”的表达式; (3) 在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于 1 和不等于 1 两种情况求解. 【变式探究】已知数列 n 满足首项为 1 n + 1 n * n 2 n { a } a = 2, a = 2a ( n ∈ N ) .设 b = 3log a - * n n n n 2( n ∈ N ) ,数列 { c } 满足 c = a b . (1) 求证:数列 { b n } 为等差数列; (2) 求数列 { c n } 的前 n 项和 S n . 高频考点三 裂项相消法求和 例 3、设各项均为正数的数列 2 2 2 { a n } 的前 n 项和为 S n ,且 S n 满足 S n -( n + n - 3) S n - 3( n +n ) = 0, n ∈ N * . (1) 求 a 1 的值; (2) 求数列 { a n } 的通项公式;

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

2022高三统考数学文北师大版一轮:第五章第四节 数列求和

第四节 数列求和 授课提示:对应学生用书第98页 [基础梳理] 1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1 +n (n -1)2 d . 2.等比数列的前n 项和公式 S n =??? na 1,q =1, a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.数列求和方法 (1)公式法求和: 使用已知求和公式求和的方法,即等差、等比数列或可化为等差、等比数列的求和方法. (2)错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的. (3)倒序相加法: 如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. (4)分组求和法: 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. (5)并项求和法: 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 1.先看数列通项特点,再想求和方法. 2.常见的拆项公式 (1)若{a n }为各项都不为0的等差数列,公差为d (d ≠0), 则1a n ·a n +1=1d (1a n -1a n +1 ); (2)1n (n +k )=1k (1n -1 n +k ); (3)1 n +n +1 =n +1-n ; (4)log a (1+1 n )=log a (n +1)-log a n (a >0且a ≠1). 3.一些常见数列的前n 项和公式

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

数列求和方法及典型例题

数列求和方法及典型例题 1?基本数列的前n 项和 门佝 aQ 2 1 ⑴等差数列a n 的前n 项和:S n na n(n 1)d an bn ⑵等比数列a n 的前n 项和S n : ①当q 1时,S n na i ;②当q 1时,& a i (1 q n ) a 1 a .q ; ; 1 q 1 q 2.数列求和的常用方法: 公式法:性质法:拆项分组法:裂项相消法;错位相减法;倒序相加法 题型一公式法、性质法求和 a 99 ______________________ 2?等差数列 a n 中,公差d 2,且a1 a 3 a 5 a 99 60,贝V a 1 a ? a 3 a 100 111 [例1]求数列1 一,2 — ,3-, ,(n 右), 的前n 项和S n ? 题型二拆项分组法求和 (1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求S n 。 [练]?求数列(2n 1)2的前n 项和S n . [例]?求和: 1 n(n 1) 题型三裂项相消法求和 [例]?求和: 1 , 2 1 1 ■ 4 “3 [例]求和:1 [练4]已知数列a n 满足a 1 1,a n 1 2a n 1 nN 1?已知S n 为等比数列 a n 的前n 项和,公比q 2,S g9 7 ,贝V a 3 a 6 a 9 [练2]在数列 a n 中,已知 a 1=2, a n+1=4a n — 3n + 1, n € N

h 1 O h 1 1 nh 1 n (1)求数列a n的通项公式。⑵若数列b n满足41 4 2 4 3 4 n a n 1 ,求数列 2n 若c n,求数列c n的前n项和S n。 a n a n 1 题型四错位相减法求和 [例]?设数列a n为1 2,2 22,3 2 3,4 2 3 n 2n x 0求此数列前n项的和. [例]?设数列{a n}满足a1+ 3a2 + 32a3 + …+ 3n_ 1a n=£, n€ N*. (1)求数列{a n}的通项公式;⑵设b n= n,求数列{b n}的前n项和S n. [练1]已知数列{ a n}、{b n}满足a11 , a2 3, b n 1 2(n N*),b n a n 1 a n。 b n (1)求数列{b n}的通项公式; (2)数列{ C n}满足C n b n log 2( a n 1)(n * N ),求S n C1 C2 ........ C n。 [练4]等比数列a n中,已知对任意自然数n, a〔a? a3 a n 2n 1,求a;a;a3 2 A.2n 1 B.12n 1 C.4n 1 1 n . D.— 4 1 3 3 a;的值 b n的通项公式。(3)

高考数学数列知识点及题型大总结

20XX 年高考数学数列知识点及题型大总结 等差数列 知识要点 1.递推关系与通项公式 m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --= --= --=-+=-+==-+1; )1()()1(1111变式:推广:通项公式:递推关系: 为常数) 即:特征:m k m kn n f a d a dn a n n ,(,)(), (1+==-+= ),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。 2.等差中项: 若c b a ,,成等差数列,则b 称c a 与的等差中项,且2 c a b +=;c b a ,,成等差数列是c a b +=2的充要条件。 3.前n 项和公式 2 )(1n a a S n n += ; 2)1(1d n n na S n -+= ) ,()(,)2(22212为常数即特征:B A Bn An S Bn An n f S n d a n d S n n n +=+==-+= 是数列 {}n a 成等差数列的充要条件。 4.等差数列 {}n a 的基本性质),,,(*∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若反之,不成立。 ⑵d m n a a m n )(-=- ⑶m n m n n a a a +-+=2

⑷n n n n n S S S S S 232,,--仍成等差数列。 5.判断或证明一个数列是等差数列的方法: ①定义法: )常数)(*+∈=-N n d a a n n (1?{}n a 是等差数列 ②中项法: )22 1*++∈+=N n a a a n n n (?{}n a 是等差数列 ③通项公式法: ),(为常数b k b kn a n +=?{}n a 是等差数列 ④前n 项和公式法: ),(2为常数B A Bn An S n +=?{}n a 是等差数列 练习:1.等差数列 {}n a 中, ) (3 1 ,1201191210864C a a a a a a a 的值为则-=++++ A .14 B .15 C .16 D .17 165 1203232)(32) 2(3 1 318999119=?==-=+-=-a d a d a a a a 2.等差数列 {}n a 中,12910S S a =>,,则前10或11项的和最大。 解:0912129 =-=S S S S , 003011111121110>=∴=∴=++∴a a a a a a ,又,, ∴ {}n a 为递减等差数列∴1110S S =为最大。 3.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为-110 解:∵ ,,,,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为 10010=S ,前10项的和为10100=S 解

数列求和优秀教案设计

题组教学:“探索—研究—综合运用”模式 ——“数列的裂差消项求和法解题课”教学设计 【课例解析】 1 教材的地位和作用 本节课是人教A版《数学(必修5)》第2章数列学完基础知识后的一节针对数列求和方法的解题课。通过本节课的教学让学生感受裂差消项求和法在数列求和中的魅力,体会裂项相消的作用,达到提高学生运用裂项相消求和的能力,并把培养学生的建构意识和合作,探索意识作为教学目标。 2 学情分析 在此之前,学生学习了数列的一般概念,又对等差、等比数列从定义、通项、性质、求和等方面进行了深入的研究。在研究过程中,数列求和问题重点学习了通过转化为等差、等比数列求和的方法,在推导等差、等比数列求和公式时用到了错位相减法、倒序相加法和裂差消项求和法,本节课在此基础上进一步对裂差消项求和法做深入的研究。本节课的容和方处于学生的认知水平和知识结构的最近发展区,学生能较好的完成本节课的教学任务。【方法阐释】 本节课的教学采用心智数学教育方式之“题组教学”模式,分为“创设情景、导入新课,题组探索、自主探究,题组研究、汇报交流,题组综合、巩固提高,归纳总结、提升拓展”五个教学环节. 本节课从学生在等比数列求和公式推导过程中用到的裂差消项求和法引入,从课本习题的探究入手展开教学,学生能自主发现裂差消项求和法,并很快进入深层次思维状态。接下来的研究性题组和综合性题组又从更深更广的层面加强裂差消项求和法的应用。 【目标定位】

1 知识与技能目标 掌握裂项相消法解决数列求和问题的基本思路、方法和适用围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂差消项求和法的探究过程、深化过程和推广过程。培养学生发现问题、分析问题和解决问题的能力。体会知识的发生、发展过程,培养学生的学习能力。 3 情感与价值观目标 通过数列裂差消项求和法的推广应用,使学生认识到在学习过程中的一切发现、发明,一切好的想法和念头都可以发扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。 4教学的重点和难点 本节课的教学重点为裂项相消求和的方法和形式。能将一些特殊数列的求和问题转化为裂项相消求和问题。 本节课的教学难点为用裂项相消的思维过程,不同的数列采用不同的方法,运用转化与化归思想分析问题和解决问题。 【课堂设计】 一、创设情景、导入新课 教师:请同学们回忆一下,我们在推导数列求和公式时,先后发现了哪几种数列求和的方法? 学生1:在等差数列求和公式的推导时我们用到了倒序相加法。在等比数列求和公式的推导中我们发现了错位相减法、裂差消项求和法。 学生2:在学习求和过程中,我们还发现了分组求和法和通项转换法。

相关主题