搜档网
当前位置:搜档网 › LAMMPS拉伸命令分析

LAMMPS拉伸命令分析

LAMMPS拉伸命令分析
LAMMPS拉伸命令分析

LAMMPS拉伸模拟有两种常用的方法:fix deform 和velocity,也就是应变率拉伸和速度拉伸。

首先来说fix deform,这个命令使系统在给定的应变率下均匀拉伸。由于是对应变率进行控制,因此在用这个方法时通常要先定义应变率。

应变率定义的方法基本都一样,就是:

variable tmp equal "lx"

variable L0 equal ${tmp}

variable strain equal "(lx - v_L0)/v_L0"

另外这种拉伸方法的效果是让盒子整体变大,因此需要施加周期性边界条件P在拉伸方向上。

fix deform不能模拟真实拉伸过程中夹头对端部的固定,因此可以认为它是单纯的考虑了变形部分的变化特征。

再来谈谈velocity 拉伸,这个加载方法是让系统一端固定,另一端以均匀的速度移动,以此实现系统的拉伸,这个拉伸过程似乎更符合实际情况。同样为了让LAMMPS可以“夹住”系统的两端,在使用这种拉伸方法时,需要定义两个“夹头”。这个“夹头”就是定义的固定端region,这两个region中的原子的相对位置不随拉伸过程而变化。而定义了reign 之后还要把这个region中的原子定义为group。

有的同学很不理解为什么要对一个区域定义两次变量,定义一次不就行了吗?实际上这两次定义是不同的,我们看一下region和group的命令就可以理解:

Region 1 block INF 1 INF INF INF INF #定义一个叫1的区域

Group left region 1 #定义这个区域中的原子叫left Region命令定义了(-∞,1)的一个区域,区域命名为1,相当于用一条线划出了一个块,这个块位于系统的左边。而group命令定义这个块中的原子为left,也就是告诉LAMMPS 需要操作的这些原子叫left。这样我们发现其实不是定义了两次,而是先定义了一个块,让后定义了这个块中的原子。

还有一点需要注意的是使用velocity拉伸的系统在拉伸方向上需要施加自由边界条件s,如果用周期性边界条件的话,就相当于很多两端固定的盒子排成一列,你在拉伸一端时,同时它会靠近与它相邻的另一个盒子的固定端,就会出现“拉不动”的情况。

lammps实例(3)

Project #1 硅的晶格常数和体弹模量的计算 一、平衡晶格常数和内聚能 自然条件下硅为金刚石结构(dc )。计算模拟时,我们可以假定它为各种结构,f cc, bcc, sc, dc. 可以预测,模拟的dc 结构的硅的体系能量最低,也即最稳定。下面我们将运用LAMMPS 来对硅的各种结构进行模拟。 定义晶格能量为Φ, 数密度为 ρ: pot E N Φ= N V ρ= 其中E pot 为势能, N 为体系总原子数,V 为体系的体积。选取 Stillinger-Weber (SW),以下面命令执行 lammps 运算: 其中,lmp_serial 为 lammps 命令;”<” 符号为读取符;in.Silicon 为输入文件,里面包含运算所需要的各种数据和命令;-log 指定输出文件的名称。 可以看到屏幕上显示出lammps 运行的信息。这个计算量很小,所以很快就结束。接下来以如下命令来查看计算得到的数据: grep 是linux 中一个很重要的命令,用来搜索文本,读取匹配的行并打印出来。这里是搜索 dc.log 文件,将 @ 开头的行打印出来。如下: 晶格参数为5.4305埃,数密度为0.0499540303,每个原子的能量为-4.336599609eV.

下面具体来看刚才给的输入文件,in.Silicon . dc.log 文件中有原子总数的信息, 每个金刚石晶胞中有8个原子,383216?=,所以是216个原子。如下给出各种结构下的体系的原子数:

晶体结构类型 晶胞中的原子数 总原子数 简单立方SC 1 27 体心立方BCC 2 54 面心立方FCC 4 108 金刚石DC 8 216 表1. 不同晶体结构中的原子数 下图是计算模拟得出的各种结构下的数密度与每个原子能量的关系图。 横坐标为数密度, 以金刚石为例,ρ= 8/5.4315^3=0.049926,也即我们直接通过 grep 命令得到的第二项值;纵坐标为每个原子的能量,为第三项值。 金刚石之外,还需计算其他结构。只需对 in.Silicon 做稍微改动: 首先,将in.Silicon 复制成in.fcc : 然后编辑 in. fcc 改动如下几项: 然后如下命令执行: 相应的,如下命令查看log 文件中的数据:

ubuntu下并行安装lammps教程(需联网)超简单 亲测成功,适合小白

ubuntu下并行安装lammps教程(需联网)超简单亲测成功,适合小白 写在前面的话:手册很重要,一定要看手册!!!本人小白一个,没用过任何linux系统,前天才安装了ubuntu,linux系统和win系统有很大的区别,很多操作需要在终端中进行,因此想要安装lammps,最好先熟悉一下linux的基本操作,然后根据手册进行编译安装。安装过程中我走了很多弯路,下载lammps以后就先看了看手册,关于安装那一部分写的很详细,但由于对linux基本操作都不熟悉,以至于根本看不懂,没办法,只能按照网上的教程安装,但装了一天也没成功,最后舍弃所有教程,还是自己根据手册安装成功的。熟悉了linux的基本操作以后就能发现,如何安装lammps手册上其实说的很清楚了,很多教程都走了弯路,进行了很多不必要的步骤,特别是对ubuntu系统的用户来说。这个教程意在帮助ubuntu和lammps小白少走弯路,我尽可能详细地列出了安装过程中的每一个步骤,并对步骤进行了说明,希望能帮助小白们在了解linux基本操作的同时完成lammps的安装。但最好还是根据手册自行安装,因为手册上说的真的很详细。由于我也是小白,加上写作水平有限,难免有纰漏,有不足之处,还请见谅。 lqjunzi 2016.6.2 首先安装ubuntu系统,不会的自行查看相关教程 1.进入安装好的ubuntu系统,先打开software updater(桌面左下角有个类似Windows开始菜单的图表,点击,搜索updater)更新系统,不

是必要的,但不更新可能会出现问题,更新比较慢,要联网下载很多东西 2.打开终端(以下在终端中所需输入指令均高亮标出),系统默认是没有root密码的,但安装lammps时需要在root账户下进行,创建初始root密码的命令如下: lqjunzi@lqjunzi:~$ sudo passwd root #输入sudo passwd root按回车,可以鼠标复制粘贴,但ctrl+c不管用 [sudo] lqjunzi 的密码: #输入密码,回车(输完指令按回车执行,后面省略),输入过程不显示 输入新的 UNIX 密码: #再次输入密码,输入过程不显示 重新输入新的 UNIX 密码: #再次输入密码,输入过程不显示passwd:已成功更新密码 #提示root密码更新成功 lqjunzi@lqjunzi:~$ su #输入su,回车 Password: #输入密码,回车 root@lqjunzi:/home/lqjunzi# #可以看到最前面的用户名已经由lqjunzi变成啦root,而后面的~$也变成了#,#是在root下操作的标志 3.下载lammps安装包,下载后的安装包默认 在/home/lqjunzi/Downloads目录下,这里的lqjunzi是安装系统时的用户名,习惯的将下载后的lammps-stable.tar.gz复制至/home/lqjunzi/sw 目录下(完全可以不复制,就在Downloads下操作,只是个人习惯,如不移动则后面操作目录相应改变) root@lqjunzi:/home/lqjunzi# mkdir sw #在/home/lqjunzi目录下建立sw文件夹 root@lqjunzi:/home/lqjunzi# cd Downloads #进入 Downloads文件夹

lammps实例(4)

Project #2 金属中的点缺陷:空位和间隙原子 一、空位 从晶体中移去一个原子,即可形成空位。本例将运用 LAMMPS 计算空位形成能, E v. LAMMPS 输入文件为in.vacancy 1) 在 fcc 结构的完整Cu晶体中引入一个空位 沿<100>方向构造一个 4 ×N×N×N 的晶体。N为input 文件中lattice命令指定的个方向上的晶胞重复单元数。 2) 弛豫 当一个原子从晶体中移走之后,周围的原子将相应地调整位置以降低体系势能。为得到稳定的构型,需要对体系进行弛豫,relaxation. LAMMPS提供两种能量最小化方式,cg 和 sd。本例中选用 sd 方式进行能量最小化。 如下是输入文件,in.vacancy:

3) 运行lammps 4) 计算空位形成能 空位浓度由下式给出: [n ] = exp( ? F v / k B T ). 其中 F v = E v ? TS v 为形成一个空位所需要的Helmholtz 自由能. 忽略熵S v , 空位浓度公式简化为 [n ] = exp( ?E v / k B T ). 设 E 1 为完整晶体能量,含N 个原子;E 2 为弛豫后的晶体能量,含N – 1个原子。空位形成能 E v 为: 211v N E E E N -≡- 或 ()21v coh E E N E ≡--, 其中 E coh = E 1 / N , 为完整晶体的内聚能。 本例中以EAM 模型计算4×(20×20×20)=32000个原子的体系,得到空位形成能E v ~ 1.26 eV ,文献中的实验值为~1.28 eV ,符合较好。 另由上式计算得到,300K 温度下的空位浓度为~ 7.59×10-22 ,1350 K (T m ) 时的空位浓度~ 2.2×10-5(文献中的实验值为~2×10-4 )。换算时注意(1 eV/k B = 1.1604×10?4 K) 图1. 空位处于4×(6×6×6) 的 FCC 晶体中心,106c a =,206c a =,306c a =. 颜色依据原子势能标注。

lammps实例(2)

Project #4 表面与界面能 铜的表面能 当物体形成表面时,表面上的原子键发生断裂,接近表面的几层原子不再如之前处于平衡状态,从而导致能量的升高,升高的温度便是物体的表面能。 利用LAMMPS 做出 20*20*40 fcc 的盒子,删去边缘的原子制造出一段真空层;算出此时体系的总能量0E ,然后从中间把盒子切成两半并移至足够远的距离,此时的体系总能量为E final , 从而表面能: 02final surface E E A γ=? A 为表面的面积 (100) 面与 (111) 面 如下是输入文件in.surface_Cu_100 # LAMMPS Cu _Surface_100 units metal boundary p p p atom_style atomic lattice fcc 3.61 region box block 0 20 0 20 0 40 create_box 1 box create_atoms 1 box timestep 0.005 thermo 5 pair_style eam/alloy pair_coeff * * jin_copper_lammps.setfl Cu region boundary1 block INF INF INF INF 29.9 INF region boundary2 block INF INF INF INF INF 9.9 group boundary1 region boundary1 group boundary2 region boundary2 group boundary union boundary1 boundary2

vasp与lammps学习资料2020年

LAMMPS分子动力学模拟技术与应用课程内容 一、LAMMPS基础1分子动力学模拟入门理论——掌握lammps的in文件中各命令的意义1.1系综理论 1.2主要算法介绍 1.3积分步长的选取 1.4温度和压力控制 1.5周期性边界条件 1.6分子动力学模拟流程 二、LAMMPS入门学习2LAMMPS入门操作基础 2.1Linux命令入门基础——熟练掌握LAMMPS所用的Linux命令 2.2LAMMPS中一些安装包的介绍——为以后创建自己体系进行选择性安装 2.3LAMMPS的linux版串行和并行及GPU版编译安装——掌握LAMMPS的编译方法,针对自己体系编译可执行文件。 2.4LAMMPS的in文件结构格式、基本语法及常用命令讲解、data文件格式。2.5LAMMPS实例讲解。 实例操作:在linux系统编译安装自己的LAMMPS可执行程序。 三、LAMMPS进阶学习https://www.sodocs.net/doc/8c2948508.html,MMPS各种参数计算 3.1颗粒模拟 3.2可视化快照 3.3弹性常数模拟 3.4计算热导率 3.5计算粘度 3.6计算均方位移 3.7计算径向分布函数 3.8计算扩散系数 3.9计算能量数据 3.10Lammps常见错误及解决途径 实例操作:学员结合自己的科研方向,选择运行契合自己研究方向的例子 四、Lammps的建模4LAMMPS建模——掌握基本操作流程 4.1掌握lattice命令建立晶体模型 4.2Packmol建模语法学习及实操 4.3Material Studio建模学习及实操 4.4VMD建模学习及实操 实例操作:把上述实操模型转换成lammps的data文件 五、从examples的简单例子,到完成自己的科研课题5通过examples中的例子,理解要模拟对象的物理意义 5.1运行examples\flow到建立水分子在石墨烯片层(碳纳米管)内的流动模拟5.2运行examples\shear到石墨烯力学性质模拟 5.3运行examples\friction到金属/合金的摩擦模拟 5.4特殊结构的模拟建模(C60系列模型) 实例操作:学员探索由简单例子到自己科研课题的模拟过程 六、环氧树脂在二氧化硅表面吸附建模 (CVFF力场)6环氧树脂在二氧化硅表面吸附吸能的影响模拟过程 6.1创建构型文件 6.2建立输入脚本 6.3运行能量最小化及体系的预松弛

lammps计算例子过程说明

[lizhao@c0106 src]$ cd [lizhao@c0106 ~]$ ls examples fftw-2.1.5 fftw-2.1.5.tar.gz hosts lammps-21Oct10 lammps.tar.gz mpich-1.2.7p1 mpich.tar.gz [lizhao@c0106 ~]$ cd examples/ [lizhao@c0106 examples]$ ls colloid crack eim ellipse friction meam micelle msst nemd peptide pour README rigid srd comb dipole ELASTIC flow indent melt min neb obstacle peri prd reax shear USER [lizhao@c0106 examples]$ cd crack [lizhao@c0106 crack]$ ls in.crack log.crack.10Sep10.linux.1 log.crack.10Sep10.linux.4 [lizhao@c0106 crack]$ [lizhao@c0106 crack]$ vi hostfile [lizhao@c0106 crack]$ ls dump.crack hostfile in.crack log.crack.10Sep10.linux.1 log.crack.10Sep10.linux.4 https://www.sodocs.net/doc/8c2948508.html,mmps [lizhao@c0106 crack]$ ll total 2544 -rw-rw-r-- 1 lizhao lizhao 2564431 Dec 16 17:48 dump.crack -rw-rw-r-- 1 lizhao lizhao 12 Dec 16 2010 hostfile -rw-rw-r-- 1 lizhao lizhao 1212 Dec 16 17:40 in.crack -rw-rw-r-- 1 lizhao lizhao 4608 Dec 16 17:40 log.crack.10Sep10.linux.1 -rw-rw-r-- 1 lizhao lizhao 4613 Dec 16 17:40 log.crack.10Sep10.linux.4 -rw-rw-r-- 1 lizhao lizhao 4677 Dec 16 17:48 https://www.sodocs.net/doc/8c2948508.html,mmps [lizhao@c0106 crack]$ cat hostfile c0105 c0106 [lizhao@c0106 crack]$ mpdallexit [lizhao@c0106 crack]$ ls dump.crack hostfile in.crack log.crack.10Sep10.linux.1 log.crack.10Sep10.linux.4 https://www.sodocs.net/doc/8c2948508.html,mmps [lizhao@c0106 crack]$ mpdboot -n 2 -f hostfile -r rsh [lizhao@c0106 crack]$ mpdtrace c0106 c0105 [lizhao@c0106 crack]$ mpiexec -genv I_MPI_DEVICE ssm -perhost 2 -np 4 /export/home/lizhao/lammps-21Oct10/src/lmp_mkl < in.crack . . . . . . ——生成的代码 [lizhao@c0106 crack]$ cat in.crack

Lammps 石墨烯实例

一、简介 1.SiC热分解制备石墨烯 自2004年Novoselov、Geim和合作者们从石墨上剥离出世界上第一种二维材料——单层石墨:石墨烯(Graphene)以来,石墨烯就受到了科技界的广泛重视[1]。Novoselov 和Geim两人因此在2010年获得了诺贝尔物理学奖。因为石墨烯的独特特性,在许多技术领域例如光电子学上它都被寄予厚望。研究石墨烯这种材料相关的物理化学特性和发展大面积、高质量生长石墨烯的技术,同时将其与器件物理学联系起来是我们研究和应用石墨烯的必由途径。 石墨烯是由碳元素组成的二维六边形材料,其在光学、电学、热学、力学等性质十分优异。它有可能在后摩尔定律时代成为硅(Silicon)的继任者,在单分子气体传感器[2]、自旋电子学[3]、量子计算[4]、太赫兹振荡器[5]等等领域发挥重要作用。如今,从石墨上剥离出石墨烯仍然是一种重要的石墨烯制备方方法。然而,这种方法产生的石墨烯大小通常不超过1000 μm2,只适合实验室研究,尚不能在工业上大规模应用。科学家发展了其他的石墨烯制备方法,包括将石墨烯视作一种薄膜来生长的化学气相沉积(Chemical Vapor Deposition, CVD)法、热分解碳化硅法(SiC thermal decomposition)、氧化石墨烯还原法(Graphene oxide reduction)等。 CVD法通过使含碳气源在有催化作用的金属表面分解或者使溶入到这些有催化作用的金属中的碳(C)发生表面偏析,使得在金属表面生成石墨烯或者多层石墨烯(Few-Layer Graphene, FLG)。能否直接在半导体/绝缘体上生长石墨烯呢?碳化硅热分解成功的解决了这一问题。最早试图使六方晶系的SiC晶体石墨化的研究报告见于1961年,Badami在高温和真空环境下得到了发生了一定石墨化的SiC[6]。在一定的退火条件下,SiC晶体表面发生热分解,Si原子发生解吸附,而C原子留下来重新排列和组合可以生长成外延型的石墨烯层[7]。更细致的研究发现用热退火的方法在六方SiC的Si面上生长的石墨烯比C面有更好的可控性,例如:可以更好的控制石墨烯的层数。Si面上生长的石墨烯生长方向与基底晶体结构有密切关系,这样提供了在基底上均匀覆盖和特定方向生长石墨烯的可能性。特别地,石墨烯直接生长在半导体SiC上使得我们无

[转载]关于LAMMPS输出【Output】的问题

无论任何模拟,我们都是想从模拟中得到我们想要的数据【data】,然后分析这些数据,从而提取出相关的信息【MAYBE新的发现】,那么数据的输出是 必然的一道程序,下面谈谈LAMMPS软件是如何输出data。 LAMMPS中处理的输出数据主要分一下三个大的部分: 1.断点数据,这个主要是为了防止模拟过程中出现意外,比如实验室或机房突然断电,程序部分阶段有错误等等。 2.系统热力学量的输出,这些量一般是体系中各个原子的集体行为量,比如温度,压强等 3.单原子详细信息的输出,如我们想得到的轨迹文件 对应于上面的三大部分,LAMMPS设置了不同的命令,有些命令结合在一起实现相关的功能。 1.对于断点数据,原始数据,LAMMPS主要有一下命令进行数据的输入输出。read_data,read_restart【读入】,restart,write_restart【输出】,如果能灵活运用这几个命令,会让你的模拟在突发事件下得到经济上的收获。其中命令里有两类通配 符,* 表示时间步,% 表示CPU编号。 2.全局热力学数据,也就是所谓的thermodynamic output,这些量是面向于系统的,而不是面向于某一类,某一组,原子的。一般是系统 宏观信息的数据。处理这些数据的命令主要有如下几个 thermo, thermo_modify, thermo_style[这个命令对于初学者要认真研究和调试],还有相关的把单原子信息转换为【global quantities】的辅助命令:fix ave/time,fix ave/ spatial, compute reduce 这些命令可以自己设定输出的频率,文件名等等。thermo_style 和 compute/ fix/variable命令结合进行数据的处理和输出是个大学问,这个需要不断的调试才能熟练掌握。其实研究variable compute 和少数 关于数据处理的fix可以节约你大量后期数据处理的时间。 3.单原子数据。相关命令主要有dump, dump_modify,undump.时刻牢记这些命令用于处理atom的数据对于你出现的错误就有敏感 性了,呵呵。 4。echo,print,fix print结合variable可以用于调试你的脚本,纠错。 5.秀个例子,用于输出setforce, group原子于其他相互作用力 #------------------------------------------------------------------------------------ fix 3 tetras setforce 0.0 0.0 0.0 variable fx equal f_3[1] variable fy equal f_3[2] variable fz equal f_3[3] fix 4 tetras print 1 "-- ${fx} ${fy} ${fz} --" #------------------------------------------------------------------------------------ thermo 2 thermo_style custom step f_3[1] f_3[1] f_3[1] #------------------------------------------------------------------------------------ 以上由redream/一下是fc所写 关于output,手册4.15,曾粗略翻译过 除了restart文件,LAMMPS还有两种基本的输出。第一种是热力学输出,每隔一定的时间步就打印到屏幕和log文件的一列数。第二种是dump 文件,包括按照一定的频率写入文件的原子位置快照和各种per-atom数值。每个模拟打印一组热力学输出;可能生成任意数目的dump文件。如下所讨

lammps的in文件详解

例一 units metal # 单位为lammps 中的metel 类型 boundary p p p # 周期性边界条件 atom_style atomic # 原子模式 lattice fcc 3.61 # Cu 的晶格常数3.61 region box block 0 4 0 4 0 4 # x,y,z 各方向上的晶胞重复单元数,也即区域大小 create_box 1 box # 将上述区域指定为模拟的盒子 create_atoms 1 box # 将原子按晶格填满盒子 pair_style eam # 选取Cu 的EAM 势作为模型 pair_coeff * * Cu_u3.eam # EAM 势文件名称 run 0 # 运行0 步,仅为启动lammps 的热力学数据计算 variable E equal pe # 定义变量E 为系统总势能 variable N equal atoms # 定义变量N 为系统总原子数 print "the number of atoms & system energy now are $N $E" # 打印信息 create_atoms 1 single 2.45 2.05 2.05 # 在该位置插入一个原子 min_style sd # 能量最小化模式,sd minimize 1.0e-12 1.0e-12 1000 1000 # 能量最小化参数,指数越大最小化程度越深 print "interstitial introduced, minimized: $N atoms, energy is $E" fix 1 all nvt 100 100 100 drag 0.2 # nvt 系综,原子数、体积和温度保持不变;T=100K timestep 0.005 # 步长0.005fs run 1000 # 运行1000 步 print "nvt performed, temperature up: $N atoms, total energy is $E" fix 1 all nvt 100 0.0001 100 drag 0.2 # nvt 系综,温度由100K 到0.0001K run 1000 # 运行1000 步 print "nvt performed, temperature down: $N atoms, total energy is $E" compute 3 all pe/atom # 计算每个原子的势能 compute 4 all ke/atom # 计算每个原子的动能 compute 5 all coord/atom 3.0 # 计算每个原子的近邻原子数 dump 1 all custom 1 dump.atom id xs ys zs c_3 c_4 c_5 # 将信息写入dump.atom min_style sd minimize 1.0e-12 1.0e-12 10000 10000 # 再次能量最小化 print "the final state: $N atoms, total energy is $E" # 打印信息 ~ 例二 boundary p s s # 边界条件,拉伸方向是周期性,其余是自由边界;如果是薄膜拉伸则是两个周期性,块体则是三个周期性 units metal #单位制定义为metal atom_style atomic #原子类型自动 neighbor 2.0 bin #截断半径相关的东西 neigh_modifydelay 1 check yes # 邻近原子列表更新速度

lammps模拟实例详解

# Big colloid particles and small LJ particles units lj This command sets the style of units used for a simulation. It determines the units of all quantities specified in the input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this command is used at the very beginning of an input script.这个指令设定模拟的格式,它决定了在输入脚本文件和数据文件以及在屏幕上显示的输出物,日志文件和垃圾文件中所有的单元格式。典型的是,它经常用于输入脚本的开头 For style lj, all quantities are unitless. Without loss of generality, LAMMPS sets the fundamental quantities mass, sigma, epsilon, and the Boltzmann constant = 1. The masses, distances, energies you specify are multiples of these fundamental values. The formulas relating the reduced or unitless quantity (with an asterisk) to the same quantity with units is also given. Thus you can use the mass & sigma & epsilon values for a specific material and convert the results from a unitless LJ simulation into physical quantities. 对于lj格式,所有数量都是无量纲的。不失一般性的,lammps设定了基本量质量sigma epsilon 和波尔兹曼常数=1。你定义的质量,距离,能量是这些基本值的倍数。公式把衰减量或者是无量纲量(用*)和单元给出的相同的量关联起来。因此你可以用mass,sigma,epsilon值表示一个具体材料并且改变一个无量纲lj模拟的物理量的结果。 mass = mass or m distance = sigma, where x* = x / sigma time = tau, where tau = t* = t (epsilon / m / sigma^2)^1/2 energy = epsilon, where E* = E / epsilon velocity = sigma/tau, where v* = v tau / sigma force = epsilon/sigma, where f* = f sigma / epsilon torque = epsilon, where t* = t / epsilon temperature = reduced LJ temperature, where T* = T Kb / epsilon pressure = reduced LJ pressure, where P* = P sigma^3 / epsilon dynamic viscosity = reduced LJ viscosity, where eta* = eta sigma^3 / epsilon / tau charge = reduced LJ charge, where q* = q / (4 pi perm0 sigma epsilon)^1/2 dipole = reduced LJ dipole, moment where *mu = mu / (4 pi perm0 sigma^3 epsilon)^1/2 electric field = force/charge, where E* = E (4 pi perm0 sigma epsilon)^1/2 sigma / epsilon density = mass/volume, where rho* = rho sigma^dim atom_style atomic 原子类型atomic(原子的) Define what style of atoms to use in a simulation. This determines what attributes are associated with the atoms. This command must be used before a simulation is setup via a read_data, read_restart, or create_box command. 定义在模拟中用到的原子类型,这个决定了与原子有关的属性,这个命令必须用在模拟被设定之前通过read_data, read_restart, or create_box Atomic only the default values coarse-grain liquids, solids, metals Atomic 附加属性是只是默认值用于粗粒液体,固体和金属的模拟

LAMMPS实例 单层石墨烯拉伸运行脚本

单层石墨烯拉伸脚本文件 #Initialization units metal dimension2 boundary s s p newton on atom_style atomic neighbor1.0bin neigh_modify every1delay0check yes #Atom Definition #creat geometry variable latp equal1.43*sqrt(3)#C-C键长1.43 lattice custom2.4768a11.00.00.0a20.01.7320.0a30.00.01.3727& basis0.00.333330.0& basis0.00.666670.0& basis0.50.166670.0& basis0.50.833330.0 region graphene block020020-0.10.1 create_box3graphene create_atoms1box mass112 mass212 mass312 #Setting pair_style airebo3.011 pair_coeff**CH.airebo C C C region1block INF INF INF5.0INF INF units box group left region1 region2block INF INF80.0INF INF INF units box group right region2 group boundary union left right group mobile subtract all boundary region medium block INF INF5.080.0INF INF units box group medium region medium set group left type1 set group right type2 set group medium type3 #initial velocity compute1medium stress/atom NULL

lammps实例(5)

Project #5 熔化与凝固:氩,铜,铝 铜和铝的熔化转变: 对于铜和铝,LAMMPS建立8×8×5的FCC晶格体系;充分弛豫后利用Nose-Hover方法,保持压强为零,使体系从T=2.5K开始加热,直至发生熔化转变。 下面是铜熔化的输入文件: # LAMMPS Melt_Cu or Al units metal # 单位,指定为lammps里的金属类的单位,长度为?,能量为eV。boundary p p p # 周期性边界条件 atom_style atomic # 原子模式 variable x equal 2.5 # 定义变量 x为初始温度 lattice fcc 3.61 # Cu 的晶格常数3.61 #lattice fcc 4.05 region box block 0 8 0 8 0 5 # x,y,z各方向上的晶胞重复单元数,也即区域大小 create_box 1 box # 将上述区域指定为模拟的盒子 create_atoms 1 box # 将原子按晶格填满盒子 timestep 0.01 # 步长 0.005fs thermo 1000 #每隔1000步输出热力学结果 pair_style eam/alloy # 选取 Cu 的EAM势作为模型 pair_coeff * * jin_copper_lammps.setfl Cu # EAM 势文件名称 #pair_style eam/fs #pair_coeff * * Al_FM.eam.fs Al neighbor 0.5 bin neigh_modify every 5 delay 0 check yes #velocity all create $x 825577 dist gaussian fix 1 all nvt $x $x 1.0 drag 0.2 #保持初始温度,在NVT下弛豫 #compute 3 all pe/atom

LAMMPS案例分析—石墨烯拉伸和热传导

第一行一般是一些说明性的文字,例如解释一下这个输入文件的作用,模拟的是什么系统,作者是谁,什么时候完成的。这样做为了方便以后查阅起来方便。在LAMMPS 里用符号#来注释掉不需要执行的指令。 一、Initialization # 2d LJ crack simulation 使用L-J势能模拟裂纹的扩展 Units lj 设置整个模拟系统的单位;物理量均采用无量纲化的约化单位dimension 2 boundary s s p 设置a三个方向上的边界条件 atom_style atomic 基本物质单元所具备属性,参数atomic所有单元都是粗粒化小球neighbor 0.3 bin 成对势能的截至距离 neigh_modify delay 5 间隔多少载荷步从新形成近邻表 二、Atom Definition # create geometry lattice hex 0.93 指定晶格类型和晶格常数(二维六方密堆积) region box block 0 100 0 40 -0.25 0.25 三个方向上模拟的空间区域 create_box 5 box 按照空间区域创造5个模拟盒子 create_atoms 1 box 使模拟盒子里布满原子,原子种类记为1 mass 1 1.0 mass 2 1.0 mass 3 1.0 与5个模拟盒子对应,设置原子的质量 mass 4 1.0 mass 5 1.0 三、Setting # LJ potentials pair_style lj/cut 2.5 相互作用为LJ12-势,截断半径为2.5 pair_coeff * * 1.0 1.0 2.5 LJ 12-6 中的ε 和σ 分别为1.0 和1.0,截断半径为2.5 # define groups region 1 block INF INF INF 1.25 INF INF group lower region 1 定义lower组,便于施加外加速度region 2 block INF INF 38.75 INF INF INF group upper region 2 定义upper组,便于施加外加速度group boundary union lower upper 定义总边界组 group mobile subtract all boundary 定义可动原子组,便于统计温度 region leftupper block INF 20 20 INF INF INF region leftlower block INF 20 INF 20 INF INF

lammps初学者in文件中文解析

Lammps初学者——in文件中文解析 (1)初始化 Units: Units命令是用来设定模拟的原子类型。 Units style(lammps现在提供的有style=LJ、real、metal、si、cgs、electron)LJ是硬球模型 Real是真实的原子模型 Metal是金属原子模型 Si是硅(半导体)原子模型 Cgs Electron是电子模型 Dimension: Dimension命令是用来定义模拟的维度,默认情况为三维。 Dimension N (N=2,3) Boundary: Boundary命令是用来设定模拟的边界条件。 Boundary x y z (x,y,z=p,s,f,m四种类型中的一种或者两种) P是周期性边界条件

S是自由边界条件(但是具有收缩性) F是固定边界条件 M是具有最小值的自由边界条件(但是具有收缩性) Atom-style: Atom-style定义了模拟体系中的原子属性。 Delete-atoms: Pair-style: Pair-style定义了相互作用力场类型,即势函数。 (2)原子定义 1、 Read-data/read-restart: Read-data或read-restart为从data或restart文件中读取内容来定义原子。2、 Lattice: lattice是用来原子类型构建模型晶格结构。 Lattice style scale keyword values... Style表示点阵类型,点阵类型有none、sc、bcc、fcc、hcp、diamond、sq、sq2、hex、custom。 Scale表示构建的点阵类型的单位长度 Keyword表示后面可以追加0个或者多个关键字,关键字有origin、orient、

相关主题